The Health Effects of Economic Growth: Evidence from PM2.5-Attributable Mortality in China
Abstract
1. Introduction
2. Research Plan
2.1. City Definition
2.2. Population-Weighted Annual Average Concentrations
2.3. Quantitative HIA
2.4. Econometrics Analysis Design
2.4.1. Baseline Regression Model Design
2.4.2. Endogeneity, Robustness, and Heterogeneity Test Design
3. Results
3.1. PM2.5 Concentration in China
3.2. PM2.5-Attributable Mortality in China
3.3. Econometrics Analysis
3.3.1. Baseline Regression and Endogeneity and Robustness Test
3.3.2. Heterogeneity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Air pollution note—Data you need to know. (2021, September 7). Available online: https://www.unep.org/interactives/air-pollution-note (accessed on 2 February 2025).
- Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., Hystad, P., Larkin, A., Wozniak, S., & Lamsal, L. (2022). Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: Estimates from global datasets. The Lancet Planetary Health, 6(1), e49–e58. [Google Scholar] [CrossRef]
- Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2.5. Environmental Science & Technology, 49(13), 8057–8066. [Google Scholar] [CrossRef]
- Barlow, P. (2018). Does trade liberalization reduce child mortality in low-and middle-income countries? A synthetic control analysis of 36 policy experiments, 1963–2005. Social Science & Medicine (1982), 205, 107–115. [Google Scholar] [CrossRef]
- Beckerman, W. (1992). Economic growth and the environment: Whose growth? whose environment? World Development, 20(4), 481–496. [Google Scholar] [CrossRef]
- Bologna, J., Young, A. T., & Lacombe, D. J. (2016). A spatial analysis of incomes and institutional quality: Evidence from US metropolitan areas. Journal of Institutional Economics, 12(1), 191–216. [Google Scholar] [CrossRef]
- Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease. Circulation, 121(21), 2331–2378. [Google Scholar] [CrossRef]
- Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., … Spadaro, J. V. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences USA, 115(38), 9592–9597. [Google Scholar] [CrossRef]
- Callais, J., Hyde, K., Murtazashvili, I., & Zhou, Y. (2024). How does economic freedom influence public health? Evidence from U.S. cities. Southern Economic Journal, 90(3), 656–681. [Google Scholar] [CrossRef]
- Chen, F., & Chen, Z. (2021). Cost of economic growth: Air pollution and health expenditure. Science of The Total Environment, 755, 142543. [Google Scholar] [CrossRef]
- Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082), 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Fang, D., Wang, Q., Li, H., Yu, Y., Lu, Y., & Qian, X. (2016). Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Science of The Total Environment, 569–570, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- French, D. (2012). Causation between health and income: A need to panic. Empirical Economics, 42(2), 583–601. [Google Scholar] [CrossRef]
- Gao, G., Pueppke, S. G., Tao, Q., Wei, J., Ou, W., & Tao, Y. (2023). Effect of urban form on PM2.5 concentrations in urban agglomerations of China: Insights from different urbanization levels and seasons. Journal of Environmental Management, 327, 116953. [Google Scholar] [CrossRef]
- Gechert, S., & Heimberger, P. (2022). Do corporate tax cuts boost economic growth? European Economic Review, 147, 104157. [Google Scholar] [CrossRef]
- Geloso, V., & Pavlik, J. B. (2021). Economic freedom and the economic consequences of the 1918 pandemic. Contemporary Economic Policy, 39(2), 255–263. [Google Scholar] [CrossRef]
- Gradín, C., & Wu, B. (2020). Income and consumption inequality in China: A comparative approach with India. China Economic Review, 62, 101463. [Google Scholar] [CrossRef]
- Haberl, H., Wiedenhofer, D., Virág, D., Kalt, G., Plank, B., Brockway, P., Fishman, T., Hausknost, D., Krausmann, F., Leon-Gruchalski, B., Mayer, A., Pichler, M., Schaffartzik, A., Sousa, T., Streeck, J., & Creutzig, F. (2020). A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environmental Research Letters, 15(6), 065003. [Google Scholar] [CrossRef]
- Han, L., Zhou, W., & Li, W. (2016). Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Scientific Reports, 6(1), 23604. [Google Scholar] [CrossRef]
- Health Effects Institute. (2020). State of global air 2020. Special report. Health Effects Institute. [Google Scholar]
- Hope, D., & Limberg, J. (2022). The economic consequences of major tax cuts for the rich. Socio-Economic Review, 20(2), 539–559. [Google Scholar] [CrossRef]
- Jin, X., Luan, W., Yang, J., Yue, W., Wan, S., Yang, D., Xiao, X., Xue, B., Dou, Y., Lyu, F., & Wang, S. (2023). From the coast to the interior: Global economic evolution patterns and mechanisms. Humanities and Social Sciences Communications, 10(1), 723. [Google Scholar] [CrossRef]
- Kahraman, A. C., & Sivri, N. (2022). Comparison of metropolitan cities for mortality rates attributed to ambient air pollution using the AirQ model. Environmental Science and Pollution Research, 29(28), 43034–43047. [Google Scholar] [CrossRef] [PubMed]
- Khomenko, S., Cirach, M., Pereira-Barboza, E., Mueller, N., Barrera-Gómez, J., Rojas-Rueda, D., De Hoogh, K., Hoek, G., & Nieuwenhuijsen, M. (2021). Premature mortality due to air pollution in European cities: A health impact assessment. The Lancet Planetary Health, 5(3), e121–e134. [Google Scholar] [CrossRef]
- Kibirige, G. W., Yang, M.-C., Liu, C.-L., & Chen, M. C. (2023). Using satellite data on remote transportation of air pollutants for PM2.5 prediction in northern Taiwan. PLoS ONE, 18(3), e0282471. [Google Scholar] [CrossRef]
- Lin, C., Li, Y., Lau, A. K. H., Deng, X., Tse, T. K. T., Fung, J. C. H., Li, C., Li, Z., Lu, X., Zhang, X., & Yu, Q. (2016). Estimation of long-term population exposure to PM2.5 for dense urban areas using 1-km MODIS data. Remote Sensing of Environment, 179, 13–22. [Google Scholar] [CrossRef]
- Lin, C. Q., Liu, G., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., & Lao, X. Q. (2018). High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015. Atmospheric Environment, 180, 110–116. [Google Scholar] [CrossRef]
- Linden, A. H., & Hönekopp, J. (2021). Heterogeneity of research results: A new perspective from which to assess and promote progress in psychological science. Perspectives on Psychological Science, 16(2), 358–376. [Google Scholar] [CrossRef]
- Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M. S. Z. S., Saldiva, P. H. N., Lavigne, E., Matus, P., Ortega, N. V., Garcia, S. O., Pascal, M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., … Kan, H. (2019). Ambient particulate air pollution and daily mortality in 652 cities. The New England Journal of Medicine, 381(8), 705–715. [Google Scholar] [CrossRef]
- Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., Liu, Y., Wang, J., Jantunen, M., Bi, J., & Kinney, P. L. (2017). Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, 98, 75–81. [Google Scholar] [CrossRef]
- Liu, W., Wu, W., Thakuriah, P., & Wang, J. (2020). The geography of human activity and land use: A big data approach. Cities, 97, 102523. [Google Scholar] [CrossRef]
- Liu, Y., Tong, D., Cheng, J., Davis, S. J., Yu, S., Yarlagadda, B., Clarke, L. E., Brauer, M., Cohen, A. J., Kan, H., Xue, T., & Zhang, Q. (2022). Role of climate goals and clean-air policies on reducing future air pollution deaths in China: A modelling study. The Lancet Planetary Health, 6(2), e92–e99. [Google Scholar] [CrossRef] [PubMed]
- Lu, X., Lin, C., Li, W., Chen, Y., Huang, Y., Fung, J. C. H., & Lau, A. K. H. (2019). Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Science of The Total Environment, 652, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Lu, X., Lin, C., Li, Y., Yao, T., Fung, J. C. H., & Lau, A. K. H. (2017). Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation. Environment International, 98, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Lu, X., Yuan, D., Chen, Y., & Fung, J. C. H. (2021). Impacts of urbanization and long-term meteorological variations on global PM2.5 and its associated health burden. Environmental Pollution, 270, 116003. [Google Scholar] [CrossRef]
- Ma, Z., Dey, S., Christopher, S., Liu, R., Bi, J., Balyan, P., & Liu, Y. (2022). A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sensing of Environment, 269, 112827. [Google Scholar] [CrossRef]
- Mathers, C. D., Shibuya, K., Boschi-Pinto, C., Lopez, A. D., & Murray, C. J. (2002). Global and regional estimates of cancer mortality and incidence by site: I. Application of regional cancer survival model to estimate cancer mortality distribution by site. BMC Cancer, 2, 36. [Google Scholar] [CrossRef]
- Mo, H., Jiang, K., Wang, P., Shao, M., & Wang, X. (2022). Co-benefits of energy structure transformation and pollution control for air quality and public health until 2050 in Guangdong, China. International Journal of Environmental Research and Public Health, 19(22), 14965. [Google Scholar] [CrossRef]
- Nagano, H., Puppim de Oliveira, J. A., Barros, A. K., & Costa Junior, A. d. S. (2020). The “heart kuznets curve”? Understanding the relations between economic development and cardiac conditions. World Development, 132, 104953. [Google Scholar] [CrossRef]
- Nair, M., Bherwani, H., Mirza, S., Anjum, S., & Kumar, R. (2021). Valuing burden of premature mortality attributable to air pollution in major million-plus non-attainment cities of India. Scientific Reports, 11(1), 22771. [Google Scholar] [CrossRef]
- Nilsson, A., Bonander, C., Strömberg, U., & Björk, J. (2019). Assessing heterogeneous effects and their determinants via estimation of potential outcomes. European Journal of Epidemiology, 34(9), 823–835. [Google Scholar] [CrossRef]
- Omran, A. R. (1971). The epidemiologic transition: A theory of the epidemiology of population change. Milbank Quarterly, 39(4), 509–538. [Google Scholar] [CrossRef]
- Patterson, A. C. (2023). Is economic growth good for population health? A critical review. Canadian Studies in Population, 50(1), 1. [Google Scholar] [CrossRef]
- Plass, D., Hilderink, H., Lehtomäki, H., Øverland, S., Eikemo, T. A., Lai, T., Gorasso, V., & Devleesschauwer, B. (2022). Estimating risk factor attributable burden—Challenges and potential solutions when using the comparative risk assessment methodology. Archives of Public Health, 80, 148. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K., Kennedy, J., & King, L. (2013). Is wealthier always healthier in poor countries? The health implications of income, inequality, poverty, and literacy in India. Social Science & Medicine, 88(C), 98–107. [Google Scholar]
- Ranis, G., & Stewart, F. (2000). Economic growth and human development. World Development, 28(2), 197–219. [Google Scholar] [CrossRef]
- Rentschler, J., & Leonova, N. (2023). Global air pollution exposure and poverty. Nature Communications, 14, 4432. [Google Scholar] [CrossRef]
- Sacks, D. W., Stevenson, B., & Wolfers, J. (2012). The new stylized facts about income and subjective well-being. Emotion, 12(6), 1181–1187. [Google Scholar] [CrossRef]
- Shen, H., Shen, G., Chen, Y., Russell, A. G., Hu, Y., Duan, X., Meng, W., Xu, Y., Yun, X., Lyu, B., Zhao, S., Hakami, A., Guo, J., Tao, S., & Smith, K. R. (2021). Increased air pollution exposure among the Chinese population during the national quarantine in 2020. Nature Human Behaviour, 5(2), 239–246. [Google Scholar] [CrossRef]
- Shen, H., Tao, S., Chen, Y., Ciais, P., Güneralp, B., Ru, M., Zhong, Q., Yun, X., Zhu, X., Huang, T., Tao, W., Chen, Y., Li, B., Wang, X., Liu, W., Liu, J., & Zhao, S. (2017). Urbanization-induced population migration has reduced ambient PM2.5 concentrations in China. Science Advances, 3(7), e1700300. [Google Scholar] [CrossRef]
- Southerland, V. A., Brauer, M., Mohegh, A., Hammer, M. S., van Donkelaar, A., Martin, R. V., Apte, J. S., & Anenberg, S. C. (2022). Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: Estimates from global datasets. The Lancet Planetary Health, 6(2), e139–e146. [Google Scholar] [CrossRef]
- Suzuki, K. (2022). Corporate tax cuts in a Schumpeterian growth model with an endogenous market structure. Journal of Public Economic Theory, 24(2), 324–347. [Google Scholar] [CrossRef]
- Swift, R. (2011). The relationship between health and GDP in OECD countries in the very long run. Health Economics, 20(3), 306–322. [Google Scholar] [CrossRef] [PubMed]
- van den Brekel, L., Lenters, V., Mackenbach, J. D., Hoek, G., Wagtendonk, A., Lakerveld, J., Grobbee, D. E., & Vaartjes, I. (2024). Ethnic and socioeconomic inequalities in air pollution exposure: A cross-sectional analysis of nationwide individual-level data from The Netherlands. The Lancet Planetary Health, 8(1), e18–e29. [Google Scholar] [CrossRef]
- van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., Hsu, N. C., Kalashnikova, O. V., Kahn, R. A., Lee, C., Levy, R. C., Lyapustin, A., Sayer, A. M., & Martin, R. V. (2021). Monthly global estimates of fine particulate matter and their uncertainty. Environmental Science & Technology, 55(22), 15287–15300. [Google Scholar] [CrossRef]
- Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abolhassani, H., Aboyans, V., Abrams, E. M., Abreu, L. G., Abrigo, M. R. M., Abu-Raddad, L. J., Abushouk, A. I., … Murray, C. J. L. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10258), 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A., Kulmala, M., Kerminen, V.-M., Kujansuu, J., Wang, Z., Ding, D., Zhang, X., Wang, H., Tian, M., Petäjä, T., Jiang, J., & Hao, J. (2017). Particulate matter pollution over China and the effects of control policies. Science of The Total Environment, 584–585, 426–447. [Google Scholar] [CrossRef]
- Wang, Y., Wang, Y., Xu, H., Zhao, Y., & Marshall, J. D. (2022). Ambient air pollution and socioeconomic status in China. Environmental Health Perspectives, 130(6), 067001. [Google Scholar] [CrossRef]
- Wu, Y., Shi, K., Chen, Z., Liu, S., & Chang, Z. (2022). Developing improved time-series DMSP-OLS-Like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Transactions on Geoscience and Remote Sensing, 60, 4407714. [Google Scholar] [CrossRef]
- Xu, F., Huang, Q., Yue, H., Feng, X., Xu, H., He, C., Yin, P., & Bryan, B. A. (2023). The challenge of population aging for mitigating deaths from PM2.5 air pollution in China. Nature Communications, 14(1), 5222. [Google Scholar] [CrossRef]
- Yan, X., Zang, Z., Luo, N., Jiang, Y., & Li, Z. (2020). New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environment International, 144, 106060. [Google Scholar] [CrossRef]
- Zhu, S., Tang, J., Zhou, X., Li, P., Liu, Z., Zhang, C., Zou, Z., Li, T., & Peng, C. (2023). Research progress, challenges, and prospects of PM2.5 concentration estimation using satellite data. Environmental Reviews, 31(4), 605–631. [Google Scholar] [CrossRef]
Papers | Spatial Scale | Factors | Data Sources | |||
---|---|---|---|---|---|---|
Global/Regional | Urban | Socio-Demographic | Institutional | Ground Monitoring | Remote Sensing | |
(Lu et al., 2019) | √ | |||||
(Southerland et al., 2022) | √ | |||||
(Kahraman & Sivri, 2022) | √ | |||||
(Lu et al., 2021) | √ | |||||
(Y. Wang et al., 2022) | √ | |||||
(van den Brekel et al., 2024) | √ | |||||
(Mo et al., 2022) | √ | |||||
(Y. Liu et al., 2022) | √ | |||||
(Ma et al., 2022) | √ | |||||
(Yan et al., 2020) | √ | |||||
(Kibirige et al., 2023) | √ |
Baseline | Endogeneity | Robustness | ||||
---|---|---|---|---|---|---|
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
pgdp | −1.222 *** | −1.739 *** | −1.222 *** | −0.672 *** | ||
(−28.95) | (−19.41) | (−28.95) | (−5.64) | |||
pgdp2 | 0.053 *** | 0.082 *** | 0.053 *** | 0.019 *** | ||
(26.75) | (18.60) | (26.75) | (3.50) | |||
road | −0.023 *** | 0.130 *** | −0.017 ** | −0.010 | −0.023 *** | 0.024 |
(−3.28) | (15.58) | (−2.47) | (−1.32) | (−3.28) | (1.43) | |
Tech | −0.003 | 0.043 *** | −0.003 | −0.003 | −0.003 | −0.006 |
(−1.11) | (13.30) | (−1.33) | (−1.05) | (−1.11) | (−1.53) | |
ndvi | 0.717 *** | 1.158 *** | 0.719 *** | 0.737 *** | 0.717 *** | 0.470 *** |
(11.16) | (14.19) | (11.71) | (11.70) | (11.16) | (5.36) | |
wind | 0.003 | 0.026 *** | −0.003 | −0.006 | 0.003 | −0.037 *** |
(0.80) | (5.67) | (−0.86) | (−1.48) | (0.80) | (−6.67) | |
temp | 0.022 *** | −0.015 *** | 0.021 *** | 0.022 *** | 0.022 *** | 0.021 *** |
(5.68) | (−4.14) | (5.88) | (5.92) | (5.68) | (4.34) | |
network | −0.004 ** | −0.009 *** | −0.004 *** | −0.005 *** | −0.004 ** | −0.002 |
(−2.54) | (−4.67) | (−2.94) | (−3.28) | (−2.54) | (−0.50) | |
L1.pgdp | −1.079 *** | |||||
(−26.30) | ||||||
L1.pgdp2 | 0.044 *** | |||||
(22.93) | ||||||
L2.pgdp | −1.137 *** | |||||
(−26.37) | ||||||
L2.pgdp2 | 0.046 *** | |||||
(22.86) | ||||||
Constant | 14.525 *** | 14.007 *** | 14.328 *** | 9.801 *** | 12.591 *** | |
(53.84) | (53.63) | (51.95) | (36.33) | (17.22) | ||
Observations | 5480 | 5480 | 5206 | 4932 | 5480 | 3014 |
R-squared | 0.987 | 0.191 | 0.989 | 0.989 | 0.993 | 0.991 |
city FE | YES | YES | YES | YES | YES | YES |
year FE | YES | YES | YES | YES | YES | YES |
LM statistic | 1446.65 *** | |||||
Cragg–Donald Wald F-statistic | 1000.13 *** |
Mortality Clusters | Population Size | Personal Income Level | Coastal or Non-Coastal | |
---|---|---|---|---|
Variables | Model 7 | Model 8 | Model 9 | Model 10 |
Pgdp | −1.104 *** | −1.646 *** | −1.863 *** | −1.274 *** |
(−20.38) | (−5.60) | (−18.69) | (−23.90) | |
pgdp2 | 0.048 *** | 0.077 *** | 0.083 *** | 0.054 *** |
(18.65) | (5.71) | (17.66) | (21.15) | |
cluster2#pgdp | −0.072 | |||
(−0.94) | ||||
cluster3#pgdp | −0.589 *** | |||
(−4.62) | ||||
cluster2#pgdp2 | 0.000 | |||
(0.03) | ||||
cluster3#pgdp2 | 0.029 *** | |||
(4.71) | ||||
mediumCity#pgdp | 0.657 | |||
(1.54) | ||||
largeCity#pgdp | 0.501 * | |||
(1.68) | ||||
veryLargeCity#pgdp | 0.683 ** | |||
(2.28) | ||||
megaCity#pgdp | −0.162 | |||
(−0.50) | ||||
mediumCity#pgdp2 | −0.032 | |||
(−1.54) | ||||
largeCity#pgdp2 | −0.029 ** | |||
(−2.10) | ||||
veryLargeCity#pgdp2 | −0.037 *** | |||
(−2.70) | ||||
megaCity#pgdp2 | 0.005 | |||
(0.34) | ||||
upperMiddleIncome#pgdp | 0.753 *** | |||
(6.70) | ||||
highIncome#pgdp | 0.829 *** | |||
(5.11) | ||||
upperMiddleIncome#pgdp2 | −0.036 *** | |||
(−6.59) | ||||
highIncome#pgdp2 | −0.040 *** | |||
(−4.72) | ||||
coastalCity#pgdp | −0.309 *** | |||
(−3.83) | ||||
coastalCity#pgdp2 | 0.013 *** | |||
(3.37) | ||||
Road | −0.000 | −0.017 ** | −0.020 *** | −0.025 *** |
(−0.02) | (−2.37) | (−2.80) | (−3.49) | |
Tech | 0.002 | −0.003 | −0.001 | −0.003 |
(0.97) | (−1.37) | (−0.45) | (−1.29) | |
Ndvi | 0.480 *** | 0.663 *** | 0.703 *** | 0.663 *** |
(7.35) | (10.32) | (10.97) | (10.29) | |
Wind | −0.002 | 0.000 | 0.005 | 0.000 |
(−0.45) | (0.13) | (1.28) | (0.08) | |
Temp | 0.021 *** | 0.021 *** | 0.022 *** | 0.021 *** |
(5.50) | (5.60) | (5.75) | (5.49) | |
Network | −0.005 *** | −0.004 *** | −0.004 *** | −0.003 ** |
(−3.04) | (−2.61) | (−2.90) | (−2.14) | |
Constant | 14.319 *** | 14.116 *** | 14.621 *** | 15.663 *** |
(52.79) | (50.86) | (48.08) | (49.97) | |
Observations | 5480 | 5480 | 5480 | 5480 |
R-squared | 0.988 | 0.988 | 0.987 | 0.987 |
city FE | YES | YES | YES | YES |
year FE | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Chao, Y.; Xie, S.; Yuan, K. The Health Effects of Economic Growth: Evidence from PM2.5-Attributable Mortality in China. Economies 2025, 13, 192. https://doi.org/10.3390/economies13070192
Xue C, Chao Y, Xie S, Yuan K. The Health Effects of Economic Growth: Evidence from PM2.5-Attributable Mortality in China. Economies. 2025; 13(7):192. https://doi.org/10.3390/economies13070192
Chicago/Turabian StyleXue, Cheng, Yiying Chao, Shangwei Xie, and Kebiao Yuan. 2025. "The Health Effects of Economic Growth: Evidence from PM2.5-Attributable Mortality in China" Economies 13, no. 7: 192. https://doi.org/10.3390/economies13070192
APA StyleXue, C., Chao, Y., Xie, S., & Yuan, K. (2025). The Health Effects of Economic Growth: Evidence from PM2.5-Attributable Mortality in China. Economies, 13(7), 192. https://doi.org/10.3390/economies13070192