Predicting Food Consumption to Reduce the Risk of Food Insecurity in Kazakhstan
Abstract
:1. Introduction
- Analyzing historical data related to food consumption and economic factors, and identifying dynamic trends and patterns.
- Using PCA analysis to indicate the key variables/factors for food consumption and their values for modelling a neural network.
- Demonstrating the computational power of an artificial neural network (ANN) to create models capable of successfully predicting total food consumption and the percentage distribution of different food consumption categories.
- Establishing the foundational architecture and parameters of the ANN models.
- Creating a neural network model that can be used to directly predict total food consumption and the percentage distribution of different food consumption categories, thus presenting an alternative to the existing calculation methods. Thus, the government has another useful method to develop economic policies tailored to current and short-term needs.
2. Materials and Methods
2.1. Datasets
2.2. Neural Network
3. Results
3.1. Selection of Input Parameters for Neural Network Modelling
- Natural population growth (%);
- GDP per capita (KZT);
- Food price and tariff index (previous year = 100);
- Poverty rate (%);
- Average household size (people);
- Average subsistence level per capita (KZT).
3.2. Modelling the Total Food Consumption
3.3. Modelling the Percentage Distribution of Various Food Consumption Categories
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abay, Kibrom A., Clemens Breisinger, Joseph Glauber, Sikandra Kurdi, David Laborde, and Khalid Siddig. 2023. The Russia-Ukraine War: Implications for Global and Regional Food Security and Potential Policy Responses. Global Food Security 36: 100675. [Google Scholar] [CrossRef]
- Abdella, Galal M., Murat Kucukvar, Nuri Cihat Onat, Hussein M. Al-Yafay, and Muhammet Enis Bulak. 2020. Sustainability Assessment and Modeling Based on Supervised Machine Learning Techniques: The Case for Food Consumption. Journal of Cleaner Production 251: 119661. [Google Scholar] [CrossRef]
- Abe, Sarah Krull, Andrew Stickley, Bayard Roberts, Erica Richardson, Pamela Abbott, David Rotman, and Martin McKee. 2013. Changing Patterns of Fruit and Vegetable Intake in Countries of the Former Soviet Union. Public Health Nutrition 16: 1924–32. [Google Scholar] [CrossRef] [PubMed]
- Agaidarov, Azamat, Rahardja Sjamsu, Ayesha Vawda, Victor Aragones, Nathan Hutson, and Peter J. Milne. 2023. Economic Recovery during Challenging Times. Kazakhstan Economic Update. World Bank Group. Available online: https://documents1.worldbank.org/curated/en/099319004172398510/pdf/IDU0336efa090a5ea047bc09e560dd1e8a21f03f.pdf (accessed on 15 September 2023).
- Aigarinova, Gulnar, Zhanna Akshatayeva, and Makpal Alimzhanova. 2014. Ensuring Food Security of the Republic of Kazakhstan as a Fundamental of Modern Agricultural Policy. Procedia-Social and Behavioral Sciences 143: 884–91. [Google Scholar] [CrossRef]
- Aimurzina, Baglan, Mazken Kamenova, Ainura Omarova, Galina Pestunova, Ainur Karipova, and Kulshara Madenova. 2018. Particular Forms of Management of Agro—Industrial Complex in the Sustainable Development of Agriculture. Journal of Environmental Management and Tourism 9: 639. [Google Scholar] [CrossRef]
- Akhmetova, Venera, Yuriy Balji, Yelena Kandalina, Ainara Iskineyeva, Akmaral Mukhamejanova, Akmaral Baspakova, Yassin Uzakov, Kuralay Issayeva, and Galia Zamaratskaia. 2022. Self-Reported Consumption Frequency of Meat and Fish Products among Young Adults in Kazakhstan. Nutrition and Health 2022: 02601060221114230. [Google Scholar] [CrossRef] [PubMed]
- Alfred, Rayner, Christylyn Leikson, Bonaventure Boniface, Geoffrey Harvey Tanakinjal, Assis Kamu, Mori Kogid, Stephen L. Sondoh, Nolila Mohd Nawi, Nalini Arumugam, and Ryan Macdonell Andrias. 2022. Modelling and Forecasting Fresh Agro-Food Commodity Consumption Per Capita in Malaysia Using Machine Learning. Mobile Information Systems 2022: 1–17. [Google Scholar] [CrossRef]
- Antelo, Manel, Magdalena Pilar, and Juan C. Reboredo. 2017. Economic Crisis and the Unemployment Effect on Household Food Expenditure: The Case of Spain. Food Policy 69: 11–24. [Google Scholar] [CrossRef]
- Barigozzi, Matteo, Lucia Alessi, Marco Capasso, and Giorgio Fagiolo. 2012. The Distribution of Household Consumption-Expenditure Budget Shares. Structural Change and Economic Dynamics 23: 69–91. [Google Scholar] [CrossRef]
- Bozsik, Norbert, Julieth P. Cubillos T, Bopushev Stalbek, László Vasa, and Róbert Magda. 2022. Food Security Management in Developing Countries: Influence of Economic Factors on Their Food Availability and Access. PLoS ONE 17: e0271696. [Google Scholar] [CrossRef]
- Bureau of National Statistics of the Republic of Kazakhstan. 2023. Statistics of Standard of Living. Available online: https://stat.gov.kz/en/industries/labor-and-income/stat-life/dynamic-tables/ (accessed on 4 August 2023).
- Chang, Yu-Hung, Meei-Shyuan Lee, and Mark Wahlqvist. 2009. Health and Nutrition Economics: Diet Costs Are Associated with Diet Quality. Asia Pacific Journal of Clinical Nutrition 18: 598–604. [Google Scholar]
- Christensen, Cade, Torrey Wagner, and Brent Langhals. 2021. Year-Independent Prediction of Food Insecurity Using Classical and Neural Network Machine Learning Methods. AI 2: 244–60. [Google Scholar] [CrossRef]
- Chuku, Chuku, Anthony Simpasa, and Jacob Oduor. 2019. Intelligent Forecasting of Economic Growth for Developing Economies. International Economics 159: 74–93. [Google Scholar] [CrossRef]
- Coleman-Jensen, Alisha, Matthew Rabbitt, Christian Gregory, and Anita Singh. 2022. Household Food Security in the United States in 2021. Available online: https://www.ers.usda.gov/webdocs/publications/104656/err-309.pdf (accessed on 15 September 2023).
- Deléglise, Hugo, Agnès Bégué, Roberto Interdonato, Elodie Maître d’Hôtel, Mathieu Roche, and Maguelonne Teisseire. 2020. Linking Heterogeneous Data for Food Security Prediction. In Communications in Computer and Information Science. Berlin/Heidelberg: Springer, pp. 335–44. [Google Scholar] [CrossRef]
- Denissova, Oxana, and Madina Rakhimberdinova. 2021. Development of Import Substitution as a Factor in Ensuring Food Security in Kazakhstan. Economics: The Strategy and Practice 16: 107–15. [Google Scholar] [CrossRef]
- EFSA. 2023. Food Consumption Data|EFSA. Available online: https://www.efsa.europa.eu/en/data-report/food-consumption-data (accessed on 22 August 2023).
- Erokhin, Vasilii, Li Diao, Tianming Gao, Jean-Vasile Andrei, Anna Ivolga, and Yuhang Zong. 2021. The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study. International Journal of Environmental Research and Public Health 18: 7356. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2009. FAO Report. Food and Agriculture Organization of the United Nations: Economic Crises—Impacts and Lessons Learned. In The State of Food Insecurity in the World 10th. Rome: FAO. Available online: http://www.fao.org/catalog/inter-e.htm (accessed on 15 September 2023).
- FAO. 2023a. Regional Review of Food Security and Nutrition in Europe and Central Asia 2022. Rome: FAO; IFAD; UNICEF; UN; WFP; WHO; WMO. [Google Scholar] [CrossRef]
- FAO. 2023b. The State of Food Security and Nutrition in the World 2023. Rome: FAO; IFAD; UNICEF; WFP; WHO. [Google Scholar] [CrossRef]
- FAO. 2023c. Yemen—Shocks, Agricultural Livelihoods and Food Security. Rome: FAO. [Google Scholar] [CrossRef]
- Foini, Pietro, Michele Tizzoni, Giulia Martini, Daniela Paolotti, and Elisa Omodei. 2023. On the Forecastability of Food Insecurity. Scientific Reports 13: 2793. [Google Scholar] [CrossRef] [PubMed]
- Gerber Machado, Pedro, Julia Tomei, Adam Hawkes, and Celma de Oliveira Ribeiro. 2020. A Simulator to Determine the Evolution of Disparities in Food Consumption between Socio-Economic Groups: A Brazilian Case Study. Sustainability 12: 6132. [Google Scholar] [CrossRef]
- Gizzatova, Alla, Ludmila Tarshylova, and Aigul Kazambayeva. 2014. Research on Production and Consumption of Food in the Regions of the Republic of Kazakhstan. Actual Problems of Economics 154: 294–301. [Google Scholar]
- Godfray, H. Charles J., John R. Beddington, Ian R. Crute, Lawrence Haddad, David Lawrence, James F. Muir, Jules Pretty, Sherman Robinson, Sandy M. Thomas, and Camilla Toulmin. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327: 812–18. [Google Scholar] [CrossRef]
- Green, Rosemary, Laura Cornelsen, Alan D. Dangour, Rachel Turner, Bhavani Shankar, Mario Mazzocchi, and Richard D. Smith. 2013. The Effect of Rising Food Prices on Food Consumption: Systematic Review with Meta-Regression. BMJ 346: f3703. [Google Scholar] [CrossRef]
- Grimaccia, Elena, and Alessia Naccarato. 2022. Food Insecurity in Europe: A Gender Perspective. Social Indicators Research 161: 649–67. [Google Scholar] [CrossRef] [PubMed]
- Guo, Xinru, Yumin Guo, Jiangfeng Wang, Houcheng Zhang, Zhilong He, Weifeng Wu, and Pan Zhao. 2022. Energy, Exergy and Ecology Performance Prediction of a Novel SOFC-AMTEC-TEG Power System. Applied Thermal Engineering 217: 119235. [Google Scholar] [CrossRef]
- Hjelm, Lisa, Astrid Mathiassen, and Amit Wadhwa. 2016. Measuring Poverty for Food Security Analysis. Food and Nutrition Bulletin 37: 275–89. [Google Scholar] [CrossRef] [PubMed]
- Islam, Mohammad Mozahidul. 2014. The Contending Images of Food Security in Bangladesh. Journal of International Development 26: 1054–70. [Google Scholar] [CrossRef]
- Jain, Sharad Kumar, Pankaj Mani, Sanjay K. Jain, Pavithra Prakash, Vijay P. Singh, Desiree Tullos, Sanjay Kumar, Shefali P. Agarwal, and Ashok P. Dimri. 2018. A Brief Review of Flood Forecasting Techniques and Their Applications. International Journal of River Basin Management 16: 329–44. [Google Scholar] [CrossRef]
- Jarrell, Olivia, Emily Janoch, and Elizabeth Courtney. 2023. Knowing Better, Responding Worse: How Mistakes from 2008 Led to the Food Crisis of Today. Available online: https://reliefweb.int/report/world/knowing-better-responding-worse-how-mistakes-2008-led-food-crisis-today (accessed on 15 September 2023).
- Jensen, Robert T., and Nolan H. Miller. 2008. Giffen Behavior and Subsistence Consumption. American Economic Review 98: 1553–77. [Google Scholar] [CrossRef] [PubMed]
- Jia, Mengmeng, and Lin Zhen. 2021. Analysis of Food Production and Consumption Based on the Emergy Method in Kazakhstan. Foods 10: 1520. [Google Scholar] [CrossRef] [PubMed]
- Jia, Mengmeng, Lin Zhen, and Yu Xiao. 2022. Changing Food Consumption and Nutrition Intake in Kazakhstan. Nutrients 14: 326. [Google Scholar] [CrossRef]
- Jia, Mengmeng, Lin Zhen, Wanni Yang, and Shuang Wang. 2023. Changing Food Consumption Pattern and Influencing Factors in Bangladesh. Foods 12: 401. [Google Scholar] [CrossRef]
- Khishauyeva, Zhanat, Sayan Shakeyev, Galym Ospanov, Raimbekov Habibulaevich, and Mukashev Abugalievich. 2017. Strategic Development in the Food Sector of Kazakhstan. International Journal of Economic Perspectives 11: 9–17. [Google Scholar]
- Kohl, Richard, Andrei Roudoi, and Julia Zislin. 2005. Kazakhstan. Economic Performance Assessment. Nathan Associates Inc. Available online: https://pdf.usaid.gov/pdf_docs/PNADE692.pdf (accessed on 15 September 2023).
- Kujawska, Justyna, Monika Kulisz, and Zulfiya Aubakirova. 2022. Application of Artificial Neural Networks Model to Predict the Levels of Sulfur Dioxides in the Air of Zamość, Poland. Journal of Physics: Conference Series 2412: 012005. [Google Scholar] [CrossRef]
- Lal, Rattan. 2016. Global Food Security and Nexus Thinking. Journal of Soil and Water Conservation 71: 85A–90A. [Google Scholar] [CrossRef]
- Liang, Yihang, Lin Zhen, Changshun Zhang, and Yunfeng Hu. 2020. Consumption of Products of Livestock Resources in Kazakhstan: Characteristics and Influencing Factors. Environmental Development 34: 100492. [Google Scholar] [CrossRef]
- Loginov, Dmitri. 2020. Russia’s Food Security: Obstacles to Development. E3S Web of Conferences 164: 06033. [Google Scholar] [CrossRef]
- Lutoslawski, Krzysztof, Marcin Hernes, Joanna Radomska, Monika Hajdas, Ewa Walaszczyk, and Agata Kozina. 2021. Food Demand Prediction Using the Nonlinear Autoregressive Exogenous Neural Network. IEEE Access 9: 146123–36. [Google Scholar] [CrossRef]
- Lv, Furong, Longyun Deng, Zhengtao Zhang, Zheye Wang, Quanyuan Wu, and Jianmin Qiao. 2022. Multiscale Analysis of Factors Affecting Food Security in China, 1980–2017. Environmental Science and Pollution Research 29: 6511–25. [Google Scholar] [CrossRef]
- Martini, Giulia, Alberto Bracci, Lorenzo Riches, Sejal Jaiswal, Matteo Corea, Jonathan Rivers, Arif Husain, and Elisa Omodei. 2022. Machine Learning Can Guide Food Security Efforts When Primary Data Are Not Available. Nature Food 3: 716–28. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Abas Omar. 2022. Modeling and Forecasting Somali Economic Growth Using ARIMA Models. Forecasting 4: 1038–50. [Google Scholar] [CrossRef]
- Munch, Stephan B., Valerie Poynor, and Juan Lopez Arriaza. 2017. Circumventing Structural Uncertainty: A Bayesian Perspective on Nonlinear Forecasting for Ecology. Ecological Complexity 32: 134–43. [Google Scholar] [CrossRef]
- Nelson, Julie A. 1988. Household Economies of Scale in Consumption: Theory and Evidence. Econometrica 56: 1301. [Google Scholar] [CrossRef]
- Oishi, Yusuke, Fumihiko Imamura, and Daisuke Sugawara. 2015. Near-field Tsunami Inundation Forecast Using the Parallel TUNAMI-N2 Model: Application to the 2011 Tohoku-Oki Earthquake Combined with Source Inversions. Geophysical Research Letters 42: 1083–91. [Google Scholar] [CrossRef]
- Parliament of the Republic of Kazakhstan. 2023. Law of the Republic of Kazakhstan Dated January 6, 2012 No. 527-IV ‘About National Security of the Republic of Kazakhstan’ (as Amended and Supplemented as of February 26, 2023). Available online: https://online.zakon.kz/Document/?Doc_id=31106860&pos=3;-106#pos=3;-106 (accessed on 22 August 2023).
- Pool, Ursula, and Mark Dooris. 2022. Prevalence of Food Security in the UK Measured by the Food Insecurity Experience Scale. Journal of Public Health 44: 634–41. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, Mohammad Fazle, Morshadul Hasan, and Sándor Kovács. 2021. Food Security and Transition towards Sustainability. Sustainability 13: 12433. [Google Scholar] [CrossRef]
- Rabbitt, Matthew P., Alisha Coleman-Jensen, and Christian A. Gregory. 2017. Understanding the Prevalence, Severity, and Distribution of Food Insecurity in the United States. Amber Waves: The Economics of Food, Farming, Natural Resources, & Rural America. Available online: https://www.ers.usda.gov/amber-waves/2017/september/understanding-the-prevalence-severity-and-distribution-of-food-insecurity-in-the-united-states/ (accessed on 15 September 2023).
- Rakha, Ahmed, Hansi Hettiarachchi, Dina Rady, Mohamed Medhat Gaber, Emad Rakha, and Mohammed M. Abdelsamea. 2021. Predicting the Economic Impact of the COVID-19 Pandemic in the United Kingdom Using Time-Series Mining. Economies 9: 137. [Google Scholar] [CrossRef]
- Rashidi Chegini, Khadijeh, Mohammad Reza Pakravan-Charvadeh, Mehdi Rahimian, and Saeed Gholamrezaie. 2021. Is There a Linkage between Household Welfare and Income Inequality, and Food Security to Achieve Sustainable Development Goals? Journal of Cleaner Production 326: 129390. [Google Scholar] [CrossRef]
- Republic of Kazakhstan. 2022. The National Plan for Ensuring Food Security of the Republic of Kazakhstan for the Years 2022–2024. Available online: https://adilet.zan.kz/rus/docs/P2200000178 (accessed on 15 September 2023).
- Rosen, Stacey L., and Shahla Shapouri. 2001. Effects of Income Distribution on Food Security. In Agricultural Information Bulletin. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwio5e6nlbSDAxV2jVYBHXEpCH0QFnoECA0QAw&url=https%3A%2F%2Fwww.ers.usda.gov%2Fwebdocs%2Fpublications%2F42359%2F31922_aib765-2_002.pdf%3Fv%3D0&usg=AOvVaw2oP3cKBcD3E3js3rZzai21&opi=89978449 (accessed on 15 September 2023).
- Saboori, Behnaz, Riza Radmehr, Yu Yvette Zhang, and Slim Zekri. 2022. A New Face of Food Security: A Global Perspective of the COVID-19 Pandemic. Progress in Disaster Science 16: 100252. [Google Scholar] [CrossRef]
- Siddiqui, Faareha, Rehana A. Salam, Zohra S. Lassi, and Jai K. Das. 2020. The Intertwined Relationship Between Malnutrition and Poverty. Frontiers in Public Health 8: 453. [Google Scholar] [CrossRef]
- Smed, Sinne, Inge Tetens, Thomas Bøker Lund, Lotte Holm, and Annemette Ljungdalh Nielsen. 2018. The Consequences of Unemployment on Diet Composition and Purchase Behaviour: A Longitudinal Study from Denmark. Public Health Nutrition 21: 580–92. [Google Scholar] [CrossRef]
- Stephens, Emma C., Andrew D. Jones, and David Parsons. 2018. Agricultural Systems Research and Global Food Security in the 21st Century: An Overview and Roadmap for Future Opportunities. Agricultural Systems 163: 1–6. [Google Scholar] [CrossRef]
- Stukach, Viktor F., Ainur S. Baidalinova, and Rustam E. Suleimanov. 2022. Development of the Agricultural Sector as a Factor of Ensuring Food Security of Kazakhstan in the Context of the EAEU. Economy of Regions 18: 223–36. [Google Scholar] [CrossRef]
- Sun, Chaojiao, Alistair J. Hobday, Scott A. Condie, Mark E. Baird, J. Paige Eveson, Jason R. Hartog, Anthony J. Richardson, Andrew D. L. Steven, Karen Wild-Allen, Russell C. Babcock, and et al. 2022. Ecological Forecasting and Operational Information Systems Support Sustainable Ocean Management. Forecasting 4: 1051–79. [Google Scholar] [CrossRef]
- Tajaddini, Reza, and Hassan F. Gholipour. 2018. Control of Corruption and Luxury Goods Consumption. Kyklos 71: 613–41. [Google Scholar] [CrossRef]
- Travasso, Sandra M., Smitha Joseph, Sumathi Swaminathan, Jawahar R. Manivannan, Patrick Webb, Anura Kurpad, and Tinku Thomas. 2023. A Longitudinal Survey on Changes in Employment and Food Consumption during the COVID-19 Pandemic in Rural Bihar, India. The Journal of Nutrition 153: 2985–93. [Google Scholar] [CrossRef] [PubMed]
- United Nations. 2015. The 17 Goals|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 15 September 2023).
- USDA ERS. 2023. USDA ERS-Food Consumption & Demand. Available online: https://www.ers.usda.gov/topics/food-choices-health/food-consumption-demand/ (accessed on 22 August 2023).
- Wang, Jiehao, Yan Xing, Feihu Qin, Tianran Ma, and Haonan Liang. 2010. Grey-Neural Network Combination Forecast Model of the World Food Consumption. IEEE 1: 129–32. [Google Scholar] [CrossRef]
- WFP. 2023a. War in Ukraine Drives Global Food Crisis|World Food Programme. Available online: https://www.wfp.org/publications/war-ukraine-drives-global-food-crisis-0 (accessed on 22 August 2023).
- WFP. 2023b. Food Security Assessment of Colombian Population—Executive Summary|World Food Programme. Available online: https://www.wfp.org/publications/2023-food-security-assessment-colombian-population-executive-summary (accessed on 4 October 2023).
- Wineman, Ayala. 2016. Multidimensional Household Food Security Measurement in Rural Zambia. Agrekon 55: 278–301. [Google Scholar] [CrossRef]
- World Bank. 2023. Kazakhstan Overview: Development News, Research, Data|World Bank. Available online: https://www.worldbank.org/en/country/kazakhstan/overview (accessed on 15 September 2023).
- Zereyesus, Yacob, Lila Cardell, Constanza Valdes, Kayode Ajewole, Wendy Zeng, Jayson Beckman, Maros Ivanic, Reem Hashad, Jeremy Jelliffe, and Jennifer Kee. 2022. International Food Security Assessment. Report No. GFA-34. Washington: U.S. Department of Agriculture, Economic Research Service. [Google Scholar]
Year | Population Growth Rate | GDP per Capita | Food Price and Tariff Index | Poverty Rate | Income Concentration Ratio | Average Household Size | Average Subsistence Level per Capita | Unemployment Rate |
---|---|---|---|---|---|---|---|---|
(%) | (KZT) | (Previous Year = 100) | (%) | (Gini Index) | (People) | (KZT) | (%) | |
2000 | −0.36 | 311,409 | 113.9 | 31.8 | 0.307 | 3.4 | 4007 | 12.8 |
2001 | −0.24 | 354,051 | 110.0 | 46.7 | 0.366 | 3.7 | 4596 | 10.4 |
2002 | −0.10 | 388,732 | 108.1 | 44.5 | 0.328 | 3.6 | 4761 | 9.3 |
2003 | 0.11 | 423,457 | 108.2 | 37.5 | 0.315 | 3.6 | 5128 | 8.8 |
2004 | 0.57 | 460,895 | 108.3 | 33.9 | 0.305 | 3.5 | 5427 | 8.4 |
2005 | 0.83 | 501,128 | 109.0 | 31.6 | 0.304 | 3.5 | 6014 | 8.1 |
2006 | 0.96 | 548,912 | 107.7 | 18.2 | 0.312 | 3.4 | 8410 | 7.8 |
2007 | 1.17 | 590,966 | 129.3 | 12.7 | 0.309 | 3.4 | 9653 | 7.3 |
2008 | 1.13 | 599,141 | 111.2 | 12.1 | 0.288 | 3.3 | 12,364 | 6.6 |
2009 | 2.64 | 594,429 | 101.2 | 8.2 | 0.267 | 3.4 | 12,660 | 6.6 |
2010 | 1.38 | 628,871 | 110.2 | 6.5 | 0.278 | 3.4 | 13,487 | 5.8 |
2011 | 1.46 | 665,808 | 109.8 | 5.5 | 0.290 | 3.5 | 16,072 | 5.4 |
2012 | 1.42 | 688,007 | 105.1 | 3.8 | 0.284 | 3.5 | 16,815 | 5.3 |
2013 | 1.42 | 718,864 | 102.7 | 2.9 | 0.276 | 3.4 | 17,789 | 5.2 |
2014 | 1.48 | 738,106 | 107.3 | 2.9 | 0.278 | 3.4 | 19,068 | 5.0 |
2015 | 1.49 | 736,126 | 110.1 | 2.6 | 0.278 | 3.4 | 19,647 | 5.1 |
2016 | 1.46 | 733,715 | 108.9 | 2.5 | 0.278 | 3.4 | 21,612 | 5.0 |
2017 | 1.41 | 753,478 | 106.2 | 2.7 | 0.287 | 3.4 | 23,783 | 4.9 |
2018 | 1.33 | 774,127 | 104.8 | 4.3 | 0.289 | 3.4 | 27,072 | 4.9 |
2019 | 1.31 | 798,597 | 109.6 | 4.3 | 0.290 | 3.4 | 29,342 | 4.8 |
2020 | 1.28 | 768,586 | 111.4 | 5.3 | 0.291 | 3.4 | 33,015 | 4.9 |
2021 | 1.33 | 791,285 | 110.0 | 5.2 | 0.294 | 3.4 | 37,579 | 4.9 |
2022 | 3.30 | 790,763 | 125.5 | 5.2 | 0.285 | 3.4 | 43,566 | 4.9 |
Year | Total Food Consumption | Bakery Products and Cereals | Meat and Meat Products | Milk and Dairy Products | Oils and Fats | Fruits and Vegetables | Potatoes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(per Capita per Month in kg) | (kg) | (%) | (kg) | (%) | (kg) | (%) | (kg) | (%) | (kg) | (%) | (kg) | (%) | |
2000 | 59.20 | 10.30 | 17.40 | 3.7 | 6.25 | 19.6 | 33.11 | 0.9 | 1.52 | 8.5 | 14.36 | 5.5 | 9.29 |
2001 | 63.10 | 10.00 | 15.85 | 3.7 | 5.86 | 19.6 | 31.06 | 1.5 | 2.38 | 10.8 | 17.12 | 5.5 | 8.72 |
2002 | 61.90 | 10.00 | 16.16 | 3.8 | 6.14 | 19.3 | 31.18 | 1.2 | 1.94 | 9.5 | 15.35 | 5.4 | 8.72 |
2003 | 58.60 | 10.20 | 17.41 | 3.4 | 5.80 | 16.7 | 28.50 | 1.1 | 1.88 | 9.3 | 15.87 | 4.6 | 7.85 |
2004 | 54.60 | 9.70 | 17.77 | 3.3 | 6.04 | 15.8 | 28.94 | 0.9 | 1.65 | 8.9 | 16.30 | 4.1 | 7.51 |
2005 | 54.40 | 9.50 | 17.46 | 3.3 | 6.07 | 15.8 | 29.04 | 0.9 | 1.65 | 8.9 | 16.36 | 3.9 | 7.17 |
2006 | 57.90 | 10.30 | 17.79 | 3.7 | 6.39 | 17.1 | 29.53 | 0.9 | 1.55 | 9.4 | 16.23 | 3.8 | 6.56 |
2007 | 59.50 | 10.20 | 17.14 | 4.1 | 6.89 | 17.3 | 29.08 | 0.9 | 1.51 | 9.7 | 16.30 | 3.8 | 6.39 |
2008 | 58.80 | 10.20 | 17.35 | 4.1 | 6.97 | 17.0 | 28.91 | 0.9 | 1.53 | 9.7 | 16.50 | 3.7 | 6.29 |
2009 | 60.70 | 10.10 | 16.64 | 4.2 | 6.92 | 17.5 | 28.83 | 1.1 | 1.81 | 10.2 | 16.80 | 3.6 | 5.93 |
2010 | 60.20 | 10.20 | 16.94 | 4.4 | 7.31 | 17.0 | 28.24 | 1.1 | 1.83 | 9.9 | 16.45 | 3.5 | 5.81 |
2011 | 69.30 | 10.40 | 15.01 | 5.5 | 7.94 | 19.0 | 27.42 | 1.6 | 2.31 | 12.2 | 17.60 | 4.0 | 5.77 |
2012 | 69.10 | 10.30 | 14.91 | 5.6 | 8.10 | 18.4 | 26.63 | 1.5 | 2.17 | 12.1 | 17.51 | 4.1 | 5.93 |
2013 | 70.60 | 10.40 | 14.73 | 5.8 | 8.22 | 19.0 | 26.91 | 1.5 | 2.12 | 12.4 | 17.56 | 4.1 | 5.81 |
2014 | 70.40 | 10.52 | 14.93 | 5.9 | 8.36 | 18.8 | 26.70 | 1.6 | 2.21 | 12.3 | 17.45 | 4.0 | 5.74 |
2015 | 73.00 | 10.80 | 14.79 | 6.1 | 8.36 | 19.5 | 26.71 | 1.6 | 2.19 | 12.9 | 17.67 | 4.0 | 5.48 |
2016 | 72.70 | 10.90 | 14.99 | 6.1 | 8.39 | 19.6 | 26.96 | 1.6 | 2.20 | 12.5 | 17.19 | 4.0 | 5.50 |
2017 | 73.70 | 11.14 | 15.12 | 6.1 | 8.25 | 19.8 | 26.88 | 1.6 | 2.21 | 12.8 | 17.31 | 3.9 | 5.30 |
2018 | 80.60 | 11.54 | 14.32 | 6.5 | 8.05 | 21.8 | 27.01 | 1.6 | 1.98 | 14.1 | 17.47 | 4.0 | 5.02 |
2019 | 79.10 | 11.40 | 14.41 | 6.6 | 8.34 | 21.1 | 26.68 | 1.4 | 1.77 | 13.6 | 17.19 | 4.0 | 5.06 |
2020 | 81.10 | 11.69 | 14.42 | 7.0 | 8.60 | 21.6 | 26.66 | 1.4 | 1.78 | 13.8 | 16.96 | 4.2 | 5.15 |
2021 | 77.80 | 11.10 | 14.27 | 6.9 | 8.87 | 20.3 | 26.09 | 1.4 | 1.80 | 13.1 | 16.84 | 3.9 | 5.01 |
2022 | 74.50 | 10.70 | 14.36 | 6.5 | 8.72 | 18.9 | 25.37 | 1.3 | 1.74 | 12.6 | 16.91 | 3.7 | 4.97 |
ID | Eigenvalues | % of Total Variance | Cumulative Eigenvalues | Cumulative % |
---|---|---|---|---|
1 | 5.416777 | 67.70972 | 5.416777 | 67.7097 |
2 | 1.137102 | 14.21378 | 6.553880 | 81.9235 |
3 | 0.756293 | 9.45366 | 7.310173 | 91.3772 |
4 | 0.342751 | 4.28438 | 7.652923 | 95.6615 |
5 | 0.198354 | 2.47942 | 7.851277 | 98.1410 |
6 | 0.090914 | 1.13642 | 7.942191 | 99.2774 |
7 | 0.052033 | 0.65042 | 7.994224 | 99.9278 |
8 | 0.005776 | 0.07220 | 8.000000 | 100.0000 |
Variables | Factor Coordinates of Variables | |||
---|---|---|---|---|
Principal Component #1 | Principal Component #2 | Principal Component #3 | Principal Component #4 | |
Population growth rate (%) | −0.864404 | 0.124719 | −0.019662 | 0.452331 |
GDP per capita (KZT) | −0.957218 | 0.000139 | −0.233246 | −0.132317 |
Food price and tariff index (previous year = 100) | −0.012964 | 0.981131 | 0.118890 | 0.046963 |
Poverty rate (%) | 0.964009 | 0.062631 | −0.075177 | 0.065354 |
Income concentration ratio (Gini index) | 0.860438 | 0.263823 | −0.341785 | −0.145397 |
Average household size (people) | 0.752328 | −0.081289 | −0.584805 | 0.241730 |
Average subsistence level per capita (KZT) | −0.817264 | 0.276860 | −0.382275 | −0.185840 |
Unemployment rate (%) | 0.921718 | 0.113222 | 0.277069 | −0.007256 |
Training Algorithm | Levenberg–Marquardt |
---|---|
Epoch | 7 |
Performance | 4.42 × 10−29 |
Best validation performance | 4.3324 at epoch 4 |
Gradient | 1.19 × 10−13 |
R (all) | 0.99488 |
MSE | 0.8679 |
MAE | 0.3435 |
Training Algorithm | Levenberg–Marquardt |
---|---|
Epoch | 11 |
Performance | 0.00479 |
Best validation performance | 0.14962 at epoch 5 |
Gradient | 0.00629 |
R (all) | 0.99973 |
MSE | 0.0392 |
MAE | 0.1239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duisenbekova, A.; Kulisz, M.; Danilowska, A.; Gola, A.; Ryspekova, M. Predicting Food Consumption to Reduce the Risk of Food Insecurity in Kazakhstan. Economies 2024, 12, 11. https://doi.org/10.3390/economies12010011
Duisenbekova A, Kulisz M, Danilowska A, Gola A, Ryspekova M. Predicting Food Consumption to Reduce the Risk of Food Insecurity in Kazakhstan. Economies. 2024; 12(1):11. https://doi.org/10.3390/economies12010011
Chicago/Turabian StyleDuisenbekova, Aigerim, Monika Kulisz, Alina Danilowska, Arkadiusz Gola, and Madina Ryspekova. 2024. "Predicting Food Consumption to Reduce the Risk of Food Insecurity in Kazakhstan" Economies 12, no. 1: 11. https://doi.org/10.3390/economies12010011
APA StyleDuisenbekova, A., Kulisz, M., Danilowska, A., Gola, A., & Ryspekova, M. (2024). Predicting Food Consumption to Reduce the Risk of Food Insecurity in Kazakhstan. Economies, 12(1), 11. https://doi.org/10.3390/economies12010011