Informal and Formal Wage Differences Based on Cohorts in Indonesia
Abstract
:1. Introduction
2. Methodology
2.1. Data
2.2. The Estimation Model
3. Results
4. Discussion
Robustness Check
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The interpretation of the dummy coefficient in the log-linear model is . |
References
- Ablaza, Christine, Mark Western, and Wojtek Tomaszewski. 2021. Good jobs and bad jobs for Indonesia’s informal workers. International Labour Review 160: 143–68. [Google Scholar] [CrossRef]
- Bargain, Olivier, and Prudence Kwenda. 2014. The Informal Sector Wage Gap: New Evidence Using Quantile Estimations on Panel Data. Economic Development and Cultural Change 63: 117–53. Available online: http://www.jstor.org/stable/10.1086/677908 (accessed on 3 February 2021). [CrossRef]
- Blinder, Alan S. 1973. Wage Discrimination: Reduced Form and Structural Estimates. The Journal of Human Resources 8: 436–55. [Google Scholar] [CrossRef] [Green Version]
- BPS. 2017. Pedoman Pencacah Survei Angkatan Kerja Nasional, Februari 2017. Retrieved 9 May 2021. Available online: https://sirusa.bps.go.id/webadmin/pedoman/2017_3359_ped_Pedoman Pencacah Survei Angkatan Kerja Nasional Februari 2017.pdf (accessed on 15 January 2021).
- BPS. 2019. Keadaan Pekerja di Indonesia Februari 2019. Available online: https://www.bps.go.id/publication/2019/05/31/4a6b3b44a64b3250c10f2d36/keadaan-pekerja-di-indonesia-februari-2019.html (accessed on 15 January 2021).
- Chen, Martha Alter. 2001. Women and Informality: A Global Picture, the Global Movement. SAIS Review 21: 71–82. [Google Scholar] [CrossRef]
- Chun, Natalie. 2008. Middle Class Size in the Past, Present, and Future: A Description of Trends in Asia. ADB Economics Working Papers No. 217. Available online: https://www.adb.org/publications/middle-class-size-past-present-and-future-description-trends-asia (accessed on 25 November 2021).
- Dasgupta, Sukti, Ruttiya Bhula-or, and Tiraphap Fakthong. 2015. Earnings Differentials between Formal and Informal Employment in Thailand. Available online: https://ideas.repec.org/p/ilo/ilowps/994896403402676.html (accessed on 3 February 2021).
- Deininger, Klaus, Songqing Jin, and Hari Nagarajan. 2013. Wage Discrimination in India’s Informal Labor Markets: Exploring the Impact of Caste and Gender. Review of Development Economics 17: 130–47. [Google Scholar] [CrossRef]
- Dewi, Sri Gusvina. 2018. The Effects of Minimum Wage Throughout the Wage Distribution in Indonesia. Signifikan 7: 221–32. [Google Scholar] [CrossRef]
- El Badaoui, Eliane, Eric Strobl, and Frank Walsh. 2010. The formal sector wage premium and firm size. Journal of Development Economics 91: 37–47. [Google Scholar] [CrossRef] [Green Version]
- El-Mahdi, Alia, and Mona Amer. 2004. Egypt: Growing informality, 1990–2003. In Good Jobs, Bad Jobs, No Jobs: Labor Markets and Informal Work in Egypt, El Salvador, India, Russia, and South Africa. Edited by Tony Avirgan, Sarah Gammage and Josh Bivens. Washington, DC: Economic Policy Institute, pp. 31–86. [Google Scholar]
- Fields, Gary S. 2005. A Guide to Multisector Labor Market Models. Available online: https://ideas.repec.org/p/wbk/wbrwps/32547.html (accessed on 3 February 2021).
- Fortin, Nicole, Thomas Lemieux, and Sergio Firpo. 2010. Decomposition Methods in Economics. Cambridge: Elsevier. [Google Scholar] [CrossRef]
- Goldin, Claudia. 2004. The Long Road to the Fast Track: Career and Family. The ANNALS of the American Academy of Political and Social Science 596: 20–35. [Google Scholar] [CrossRef] [Green Version]
- Goldin, Claudia. 2006. The Quiet Revolution That Transformed Women’s Employment, Education, and Family. The American Economic Review 96: 1–21. [Google Scholar] [CrossRef]
- Gong, Xiaodong, and Arthur Van Soest. 2002. Wage differentials and mobility in the urban labour market: A panel data analysis for Mexico. Labour Economics 9: 513–29. [Google Scholar] [CrossRef]
- Günther, Isabel, and Andrey Launov. 2012. Informal employment in developing countries: Opportunity or last resort? Journal of Development Economics 97: 88–98. [Google Scholar] [CrossRef]
- Heckman, James J. 1979. Sample Selection Bias as a Specification Error. Econometrica 47: 153–61. [Google Scholar] [CrossRef]
- Hohberg, Maike, and Jann Lay. 2015. The impact of minimum wages on informal and formal labor market outcomes: Evidence from Indonesia. IZA Journal of Labor Development 4: 1–25. [Google Scholar] [CrossRef] [Green Version]
- Jann, Ben. 2008. The {Blinder-Oaxaca} Decomposition for Linear Regression Models. The Stata Journal 8: 453–79. [Google Scholar] [CrossRef] [Green Version]
- Lee, Jong-Wha, and Dainn Wie. 2015. Technological Change, Skill Demand, and Wage Inequality: Evidence from Indonesia. World Development 67: 238–50. [Google Scholar] [CrossRef] [Green Version]
- Mincer, Jacob. 1974. Schooling, Experience, and Earnings. National Bureau of Economic Research. New York: Columbia University Press. [Google Scholar]
- Mønsted, Trine. 2000. Wage Differentials between the Formal and the Informal Sector in Urban Bolivia. La Paz: Universidad Católica Boliviana, Instituto de Investigaciones Socio-Económicas (IISEC). [Google Scholar]
- Naidoo, Darian, Truman G. Packard, and Ilmiawan Auwalin. 2015. Mobility, Scarring and Job Quality in Indonesia’s Labor Market. Policy Research Working Papers. Washington, DC: The World Bank. [Google Scholar] [CrossRef]
- Neuman, Shoshana, and Ronald L. Oaxaca. 2004. Wage Decompositions with Selectivity-Corrected Wage Equations: A Methodological Note. The Journal of Economic Inequality 2: 3–10. [Google Scholar] [CrossRef]
- Newhouse, David, and Vivi Alatas. 2010. Indonesia Jobs Report: Towards Better Jobs and Security For All. Washington, DC: The World Bank. [Google Scholar]
- Nordman, Christophe J., Faly Rakotomanana, and François Roubaud. 2016. Informal versus Formal: A Panel Data Analysis of Earnings Gaps in Madagascar. World Development 86: 1–17. [Google Scholar] [CrossRef] [Green Version]
- Oaxaca, Ronald. 1973. Male-Female Wage Differentials in Urban Labor Markets. International Economic Review 14: 693–709. Available online: http://www.jstor.org/stable/2525981 (accessed on 3 January 2021). [CrossRef]
- OECD. 2018. OECD Employment Outlook 2018. Paris: OECD. [Google Scholar]
- Perry, G. E., W. F. Maloney, O. S. Arias, P. Fajnzylber, A. D. Mason, and J. Saavedra-Chanduvi. 2007. Informality: Exit and Exclusion. Washington, DC: World Bank Publications. [Google Scholar]
- Portes, Alejandro, Silvia Blitzer, and John Curtis. 1986. The urban informal sector in Uruguay: Its internal structure, characteristics, and effects. World Development 14: 727–41. [Google Scholar] [CrossRef]
- Prabowo, Aryo. 2021. The Earnings Difference of Workers in Indonesia: 2007 and 2014. The Indonesian Journal of Development Planning 5: 177–94. [Google Scholar] [CrossRef]
- Pratap, Sangeeta, and Erwan Quintin. 2006. Are labor markets segmented in developing countries? A semiparametric approach. European Economic Review 50: 1817–41. [Google Scholar] [CrossRef]
- Pratomo, D., and C. Manning. 2019. The Role of Transitions in Supporting the Growth of Formal Sector Jobs. Available online: http://www.smeru.or.id/sites/default/files/events/fkp_20181025_chris_manning_devanto_pratomo.pdf (accessed on 25 November 2021).
- Rama, Martin. 2001. The Consequences of Doubling the Minimum Wage: The Case of Indonesia. Industrial and Labor Relations Review 54: 864–81. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, Alexander D., Arya Gaduh, Nicholas E. Burger, Charina Chazali, Indrasari Tjandraningsih, Rini Radikun, Cole Sutera, and Sarah Weilant. 2016. Rethinking Indonesia’s Informal Sector. World Development 80: 96–113. [Google Scholar] [CrossRef] [Green Version]
- Skoufias, Emmanuel, and Asep Suryahadi. 2002. A cohort analysis of wages in Indonesia. Applied Economics 34: 1703–10. [Google Scholar] [CrossRef]
- Suryahadi, Asep, Joseph Marshan, and Veto Tyas Indrio. 2018. Structural transformation and the release of labor from agriculture. In Indonesia: Enhancing Productivity 20 through Quality Jobs. Edited by E. Ginting, C. Manning and K. Taniguchi. Manila: Asian Development Bank, pp. 100–29. [Google Scholar]
- Tannuri-Pianto, Maria, and Donald Pianto. 2002. Informal employment in Brazil-a choice at the top and segmentation at the bottom: A quantile regression approach. Anais do XXIV Encontro Brasileiro de Econometria 2: 77. [Google Scholar]
- Tansel, Aysit, and Elif Oznur Acar. 2016. The Formal/Informal Employment Earnings Gap: Evidence from Turkey. In Inequality after the 20th Century: Papers from the Sixth ECINEQ Meeting. Bingley: Emerald Group Publishing Limited, Volume 24, pp. 121–54. [Google Scholar] [CrossRef]
- Taufiq, Nuri, and Teguh Dartanto. 2020. Education, informal turnover and poverty dynamics in Indonesia. International Journal of Economics and Management 14: 157–72. [Google Scholar]
- Wicaksono, Eko, Hidayat Amir, and Anda Nugroho. 2017. The Sources of Income Inequality in Indonesia: A Regression-Based Inequality Decomposition. Tokyo: Asian Development Bank Institute (ADBI). Available online: http://hdl.handle.net/10419/163166 (accessed on 25 November 2021).
- World Bank. 2016. Indonesia’s Rising Divide (English). Washington, DC: World Bank. [Google Scholar]
- Wulandari, Riska, Dwi Susilo, and Dias Satria. 2018. Income Inequality between Formal-Informal Employees Based on Education Group. Economics and Finance in Indonesia 64: 25–42. [Google Scholar]
- Xiaochen, Bian. 2017. Essays on the Informal and the Formal Sector of the Indonesian Labour Market. Singapore: ScholarBank@NUS Repository. [Google Scholar]
- Yan, Jin. 2016. The Impact of The Minimum Wage Changes on Wages in The Informal and Formal Sector: Evidence From Indonesia. Ithaca: Cornell University. [Google Scholar]
Age Group | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|
15–19 | 1,361,099 | 1,563,174 | 1,587,250 | 1,684,545 |
20–24 | 1,819,594 | 2,094,129 | 2,108,362 | 2,236,560 |
25–29 | 2,172,390 | 2,399,056 | 2,489,229 | 2,617,012 |
30–34 | 2,451,806 | 2,650,159 | 2,780,282 | 2,880,453 |
35–39 | 2,748,140 | 2,910,602 | 2,982,764 | 3,122,455 |
40–44 | 2,921,924 | 3,078,404 | 3,110,507 | 3,305,665 |
45–49 | 3,378,014 | 3,334,748 | 3,449,582 | 3,430,826 |
50–54 | 3,626,983 | 3,703,469 | 3,793,509 | 3,772,288 |
55–59 | 3,533,016 | 3,781,950 | 4,083,219 | 3,930,529 |
60+ | 2,044,160 | 2,045,848 | 2,234,565 | 2,280,785 |
Average | 2,552,962 | 2,742,621 | 2,829,130 | 2,913,897 |
Average of 15–34 | 1,951,222 | 2,176,630 | 2,241,281 | 2,354,642 |
Average of 35–60+ | 3,042,040 | 3,142,504 | 3,275,691 | 3,307,091 |
Employment Type | Employment Status | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | F | F | F | F | F | F | I |
2 | F | F | F | F | F | F | I |
3 | F | F | F | F | F | F | I |
4 | I | F | F | F | I | I | I |
5 | I | F | F | F | I | I | I |
6 | I | I | F | F | I | I | I |
7 | I | F | F | F | I | I | I |
8 | I | F | F | F | I | I | I |
9 | I | F | F | F | I | I | I |
10 | I | F | F | F | I | I | I |
Total Decomposition | 2010 | 2019 | ||
---|---|---|---|---|
Young | Old | Young | Old | |
formal wage | 13.64 *** | 14.07 *** | 13.88 *** | 14.19 *** |
informal wage | 13.12 *** | 13.36 *** | 13.53 *** | 13.57 *** |
wage difference | 0.515 *** | 0.718 *** | 0.357 *** | 0.618 *** |
endowment effect | 0.0713 *** | 0.220 *** | 0.0152 | 0.146 * |
coefficient effect | 0.378 *** | 0.148 *** | 0.0971 *** | 0.0374 |
interaction | 0.0661 *** | 0.350 *** | 0.245 ** | 0.435 *** |
N | 119,975 | 157,619 | 91,613 | 130,053 |
municipal/city dummy | yes | yes | yes | yes |
sectoral dummy | yes | yes | yes | yes |
Decomposition | Endowment Effect | Coefficient Effect | Interaction Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2019 | 2010 | 2019 | 2010 | 2019 | |||||||
Young | Old | Young | Old | Young | Old | Young | Old | Young | Old | Young | Old | |
education | 0.111 *** | 0.0919 *** | 0.0696 *** | 0.0553 *** | 0.249 *** | 0.393 *** | 0.100 *** | 0.180 *** | 0.105 *** | 0.365 *** | 0.0491 *** | 0.170 *** |
experience | −0.117 *** | −0.101 *** | −0.154 *** | −0.0869 *** | 0.129 | 1.626 *** | −0.216 *** | 0.608 *** | −0.0383 | −0.350 *** | 0.0654 *** | −0.130 *** |
experience, squared | 0.0430 | 0.130 *** | 0.0898 *** | 0.0863 *** | 0.00680 | −0.685 *** | 0.133 *** | −0.274 *** | −0.00303 | 0.263 *** | −0.062 *** | 0.102 *** |
1 if female | −0.0648 *** | 0.0135 *** | −0.128 *** | −0.0309 *** | 0.0684 *** | 0.089 *** | 0.0427 *** | 0.072 *** | 0.0362 *** | −0.006 *** | 0.0699 *** | 0.014 *** |
1 if urban | 0.0109 | 0.0123 *** | −0.00274 | 0.00253 | 0.0218 * | 0.0091 ** | 0.0307 *** | 0.016 *** | 0.0152 * | 0.0052 ** | 0.0295 *** | 0.011 *** |
1 if part. in training | 0.00671 | 0.0185 *** | −0.00397 | 0.000198 | 0.00216 | 0.002 *** | 0.0038 *** | 0.003 *** | 0.00529 | 0.013 *** | 0.0169 *** | 0.028 *** |
regional per-capita income | 0.0508 | 0.0257 *** | 0.00937 | 0.0319 | 0.669 | 0.454 * | 0.400 | −0.145 | −0.0375 | −0.0192 * | −0.0271 | 0.0100 |
distance to the workplace | 0.00694 | 0.0108 ** | 0.01000 *** | 0.00998 *** | 0.00243 | 0.000317 | −0.00207 | −0.0158 | 0.00387 | 0.000916 | −0.000227 | −0.00137 |
duration of travelling | 0.00565 | 0.00596 | 0.00601 *** | 0.00164 | −0.00140 | −0.00018 | −0.0289 | 0.00463 | −0.00222 | −0.00049 | −0.00189 | 0.000232 |
visually impaired | −0.000412 | 0.00135 *** | 0.158 | 0.0121 | 0.000474 | −0.00029 | ||||||
hearing issue | 0.000102 | 0.00115 ** | 0.0190 | −0.0156 | −0.000076 | 0.000272 | ||||||
mobility issue | −0.000077 | 0.000628 * | −0.265 | −0.0246 | 0.000074 | 0.000200 | ||||||
dissolvent | 0.000077 | 0.00015 | 0.379 | 0.0664 | −0.000065 | −0.00015 | ||||||
communication issue | 0.000574 | 0.000570 ** | 0.0451 | 0.115 * | −0.00022 | −0.0005 * | ||||||
other disability | 0.000610 | 0.00103 *** | 0.00028 | 0.0604 | −0.00000 | −0.00044 | ||||||
wage system | 0.0614 *** | 0.0495 *** | 0.0227 | 0.0141 | −0.0121 | −0.00701 | ||||||
contract system | 0.0600 | 0.0390 | 0.0273 | −0.0949 | −0.00812 | 0.0323 | ||||||
1 if health insurance covered | 0.00125 | −0.000097 | 0.255 | −0.0155 | −0.00194 | 0.000015 | ||||||
1 if access OHS | 0.0611 ** | 0.0781 *** | 0.298 *** | 0.426 *** | 0.0893 *** | 0.182 *** | ||||||
1 if life insurance covered | −0.00584 | 0.00187 | 0.392 | −0.574 | 0.00413 | −0.00300 | ||||||
1 if union member | 0.00117 | −0.00952 | −0.133 | −0.372 *** | 0.00498 | 0.039 *** | ||||||
constant | −0.383 | −1.543*** | −0.659 | 0.510 | ||||||||
N | 119,975 | 157,619 | 91,613 | 130,053 | 119,975 | 157,619 | 91,613 | 130,053 | 119,975 | 157,619 | 91,613 | 130,053 |
municipal dummy | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
sectoral dummy | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Total Decomposition | 2010 | 2019 | ||
---|---|---|---|---|
Young | Old | Young | Old | |
formal wage | 13.64 *** | 14.07 *** | 13.88 *** | 14.18 *** |
informal wage | 13.12 *** | 13.36 *** | 13.66 *** | 13.71 *** |
wage difference | 0.515 *** | 0.718 *** | 0.223 *** | 0.472 *** |
endowment effect | 0.0713 *** | 0.220 *** | 0.028 *** | 0.144 ** |
coefficient effect | 0.378 *** | 0.148 *** | 0.167 *** | 0.0677 * |
interaction | 0.0661 *** | 0.350 *** | 0.028 *** | 0.260 ** |
N | 119,975 | 157,619 | 114,516 | 210,404 |
municipal/city dummy | yes | yes | yes | yes |
sectoral dummy | yes | yes | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoso, R.P.; Sahadewo, G.A.; Sugiyanto, C.; Setiastuti, S.U. Informal and Formal Wage Differences Based on Cohorts in Indonesia. Economies 2022, 10, 317. https://doi.org/10.3390/economies10120317
Santoso RP, Sahadewo GA, Sugiyanto C, Setiastuti SU. Informal and Formal Wage Differences Based on Cohorts in Indonesia. Economies. 2022; 10(12):317. https://doi.org/10.3390/economies10120317
Chicago/Turabian StyleSantoso, Rokhedi Priyo, Gumilang Aryo Sahadewo, Catur Sugiyanto, and Sekar Utami Setiastuti. 2022. "Informal and Formal Wage Differences Based on Cohorts in Indonesia" Economies 10, no. 12: 317. https://doi.org/10.3390/economies10120317
APA StyleSantoso, R. P., Sahadewo, G. A., Sugiyanto, C., & Setiastuti, S. U. (2022). Informal and Formal Wage Differences Based on Cohorts in Indonesia. Economies, 10(12), 317. https://doi.org/10.3390/economies10120317