Corruption and Inflation in Agricultural Production: The Problem of the Chicken and the Egg
Abstract
:1. Introduction
2. Review of the Literature Focused on the Link between Corruption and Inflation in Agricultural Products
2.1. Corruption as a Cause of Agricultural Price Inflation
2.2. Corruption as a Consequence of Agricultural Price Inflation
2.3. Synthesis of the Relationship between Corruption and Producer Price Indices—The Importance of a Study Focused on Agricultural Goods
2.4. Corruption and Prices of Agricultural Products—The Working Hypothesis
2.5. Corruption Measures and Agricultural Price Indices
2.5.1. CPI, Control of Corruption, and Percentile Rank
2.5.2. Control of Corruption
2.5.3. Percentile Rank
2.6. Price Indices in Agriculture and the Evolution of Corruption—An X-ray of the Evolution in Several Countries
3. Hypotheses, Data and Empirical Equation
- -
- Analysis of the results of tests relating to the ‘slope homogeneity tests and cross-sectional dependence tests’;
- -
- Analysis of Panel Unit Root tests;
- -
- Analysis of Panel Cointegration tests;
- -
- Analysis of Panel Causality tests;
- -
- Analysis of Panel Estimation results.
3.1. Slope Homogeneity Tests and Cross-Sectional Dependency
3.2. Unit Root Tests
3.3. Cointegration Tests
3.4. Causality Tests
- (1)
- The increase in the prices of goods considered nontradable makes most consumer prices in these countries more expensive, which triggers an increase in the likelihood of public agents being corrupted in order to increase their private revenues and in response to growing tendencies of corruption proposals.
- (2)
- The increase in prices of tradable agricultural goods tends to benefit companies exporting these products with inflated prices (and their respective shareholders), creating an additional resource for these oligopolies to exert various pressures through corruption mechanisms to ensure quotas in the export market (Tyavambiza 2017; or Pupovic 2012), especially in economies with weaker regulatory institutions (Lehman and Thorne 2015).
- (3)
- The increase in the prices of agricultural goods decreases the disposable income of the consumer to access the public goods that are purchased, creating additional incentives for the use of corruption channels as a way to enhance the opportunity to acquire these goods (Diacon 2013).
3.5. Results of the Estimation
3.6. An Example—The Price of Apples as an Inducer of Corruption
4. Conclusions, Implications and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, Kym Anderson. 2010. Government Distortions of Agricultural Prices: Lessons from Rich and Emerging Economies. In Community, Market and State in Development. Edited by Keijiro Otsuka and Kaliappa Kaliraian. London: Palgrave MacMillan, Chap. 7. pp. 80–102. [Google Scholar]
- Arezki, Rabah, and Markus Bruckner. 2011. Food Prices and Political Instability. IMF Working Papers 2011. [Google Scholar] [CrossRef] [Green Version]
- Armeanu, Daniel, George Vintila, and Sa Gherghina. 2018. Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries. Sustainability 10: 4. [Google Scholar] [CrossRef] [Green Version]
- Bakir, Erdogan, and Al Campbell. 2006. The Effect of Neoliberalismo in the Fall in the Rate of Profit in Business Cycles. Review of Radical Political Economics, Union for Radical Political Economics 38: 365–73. [Google Scholar] [CrossRef]
- Baudin, Louis. 1936. La Monnaie Et La Formation Des Prix. I. Les Eléments. Paris: Sirey. [Google Scholar]
- Beg, Sabrin. 2017. Traditional Elites: Political Economy of Agricultural Technology and Tenancy. Working Papers 17-03. Newark, DE, USA: Department of Economics, University of Delaware. [Google Scholar]
- Benjamin, Gary. 1991. Lower prices trim dairy farmer earnings. In Agricultural Letter. Chicago: Federal Reserve Bank of Chicago, March 22, Available online: https://ideas.repec.org/a/fip/fedhal/y1991imar22n1808.html (accessed on 24 October 2021).
- Binswanger-Mkhize, Hans, Alex McCalla, and Preful Patel. 2010. Structural Transformation and African Agriculture. Global Journal of Emerging Market Economies, Emerging Markets Forum 2: 113–52. [Google Scholar] [CrossRef]
- Boehlje, Michael, and Luther Tweeten. 1980. The Impact of Inflation on Farmers and Agriculture. ISU Economic Report Series 16. Available online: http://lib.dr.iastate.edu/econ_las_economicreports/16 (accessed on 26 October 2022).
- Bogdanovica, Ilze, Ann McNeill, Rachael Murray, and John Britton. 2011. What Factors Influence Smoking Prevalence and Smoke Free Policy Enactment across the European Union Member States. PLoS ONE 6: e23889. [Google Scholar] [CrossRef]
- Breitung, Jorg. 2000. The local power of some unit root tests for panel data. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels, Advances in Econometrics. Edited by Badi Baltagi. Amsterdam: JAI, vol. 15, pp. 161–78. [Google Scholar]
- Breitung, Jorg, and Samarjit Das. 2005. Panel unit root tests under cross-sectional dependence. Statistica Neerlandica 59: 414–33. [Google Scholar] [CrossRef]
- Centorrino, Mario, and Ferdinando Ofria. 2003. Corruption and Public Expenditure in Italian Mezzogiorno. QA—Rivista dell’Associazione Rossi-Doria 1: 1–14. [Google Scholar]
- Choi, In. 2001. Unit root tests for panel data. Journal of International Money and Finance 20: 249–72. [Google Scholar] [CrossRef]
- Clem, Ralph. 2011. From the Arab Street to the Silk Road: Implications of the Unrest in North Africa for the Central Asian States. Eurasian Geography and Economics 52: 228–41. [Google Scholar] [CrossRef]
- Dankumo, Ali, Izma Suryati, Yasmin Bani, and Hanny Hamza. 2019. The Relationship between Public Expenditure, Corruption and Poverty in Nigeria. Jurnal Ekonomi Dan Studi Pembangunan 11. [Google Scholar] [CrossRef]
- de Oliveira Neves, Fabio, Eduardo Salgado, Luiz Beijo, Jean Lira, and Luiz da Silva Ribeiro. 2021. Analysis of the quality management system for automotive industry- ISO/TS 16949 in the world. Total Quality Management & Business Excellence 32: 153–76. [Google Scholar] [CrossRef]
- Dekhtyar, Nadyia, Ov Deyneka, and Nataliya Pihul. 2019. International Indices in Reducing the Shadow Economy Level. Financial and Credit Activity Problems of Theory and Practice 2: 348–54. [Google Scholar] [CrossRef] [Green Version]
- Diacon, Paula-Elena. 2013. The Economic Crisis between Liberalization and Government Intervention. EuroEconomica 32: 77–83. [Google Scholar]
- Dincer, Oguzan, and Burak Gunalp. 2008. Corruption, Income Inequality, and Poverty in the United States. Working Papers 2008.54. Milano: Fondazione Eni Enrico Mattei. [Google Scholar]
- Dumbili, Emeka, and Adedayo Sofadekan. 2016. I Collected Money, not a Bribe: Strategic Ambiguity and the Dynamics of Corruption in Contemporary Nigeria. Social Sciences 5: 36. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, Elena Ivona, and Christophe Hurlin. 2012. Testing for Granger non-causality in heterogeneous panels. Economic Modelling 29: 1450–60. Available online: https://EconPapers.repec.org/RePEc:eee:ecmode:v:29:y:2012:i:4:p:1450-1460 (accessed on 26 October 2022). [CrossRef] [Green Version]
- Dunnett, Andrew. 1990. Understanding the Economy. Lisboa: F Calouste Gulbenkian. [Google Scholar]
- Dzhumashev, Ratbek. 2006. Public Goods, Corruption and Growth. Monash Economics Working Papers, 15/06. Clayton: Department of Economics, Monash University. [Google Scholar]
- FAO. 2001. Agricultural Producer Price Indices. Paris: Food and Agriculture Organization of the United Nations. [Google Scholar]
- Fasiani, Mauro. 1941. Principii di Scienza delle Finanze. Torino: Giappichelli, vol. 1, quoted version: Mauro. Fasiani. 1962. Principios de Ciencia de la Hacienda. tradução de Gabriel de Usera. Washington, DC: Aguilar. [Google Scholar]
- Fink, Rodney. 2002. Corruption and the Agricultural Sector. New York: Management Systems International. [Google Scholar]
- Foster, William, Alberto Valdés, Benjamim Davis, and Gustavo Anríquez. 2011. The Filters to Exit Rural Poverty: An Analysis of the Complementaries of Assets in Developing Countries. ESA Working Papers 289019. Rome: Agricultural Development Economics Division (ESA), Food and Agriculture Organization of the United Nations. [Google Scholar]
- Haberler, Gottfried. 1974. Economic Growth and Stability. Los Angeles: Nash Publishing Corporation. [Google Scholar]
- Hadri, Kaddour. 2000. Testing for stationarity in heterogeneous panel data. Econometrics Journal 3: 148–61. [Google Scholar] [CrossRef]
- Hoyos, Rafael, and Vasilis Sarafidis. 2006. Testing for Cross-Sectional Dependence in Panel-Data Models. Stata Journal 6: 482–96. [Google Scholar] [CrossRef] [Green Version]
- Idrovo, Alvaro, Myriam Ruiz-Rodriguez, and Abigail Manzano-Patino. 2010. Beyond the income inequality hypothesis and human health: A worldwide exploration. Revista de Saúde Pública 44: 695–702. [Google Scholar] [CrossRef] [Green Version]
- Im, Kyung, Mhashem Pesaran, and Shin Yongcheol. 2003. Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74. [Google Scholar] [CrossRef]
- Islam, Md Sharif, Md Nazrul Mondal, Md Ismail Tareque, Md Aminur Rahman, Md Nazrul Hoque, Md Munsur Ahmed, and Hafiz Khan. 2018. Correlates of healthy life expectancy in low- and lower-middle-income countries. BMC Public Health 18: 476. [Google Scholar] [CrossRef] [Green Version]
- Johnson, Dgale. 1980. Inflation, Agricultural Output, and Productivity. American Journal of Agricultural Economics 62: 917–23. [Google Scholar] [CrossRef] [Green Version]
- Kao, Chihwa. 1999. Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics 90: 1–44. [Google Scholar] [CrossRef]
- Kaufmann, Daniel, Aart Kraay, and Massimo Mastruzzi. 2010. The Worldwide Governance Indicators: Methodology and Analytical Issues. World Bank Policy Research Working Paper No. 5430. Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130 (accessed on 26 October 2022).
- Kisel’akova, Dana, Beata Sofrankova, Erika Onuferova, and Veronika Cabinova. 2019. The evaluation of competitive position of EU-28 economies with using global multi-criteria indices. Equilibrium 14: 441–62. [Google Scholar] [CrossRef]
- Klitgaard, Robert. 2015. Addressing Corruption Together. New York: OECD. [Google Scholar]
- Konefal, Jason, Michael Mascarenhas, and Maki Hatanaka. 2005. Governance in the Global Agro-food System: Backlighting the Role of Transnational Supermarket Chains. Agriculture and Human Values 22: 291–302. [Google Scholar] [CrossRef]
- Kozlovskyi, Serhii, Liudmyla Nikolenko, Oth Peresada, Of Pokhyliuk, Oli Yatchuk, Niu Bolgarova, and Og Kulhanik. 2020. Estimation level of public welfare on the basis of methods of intellectual analysis. Global Journal of Environmental Science and Management 6: 355–72. [Google Scholar] [CrossRef]
- Krivonos, Ekaterina, and David Dawe. 2014. Policy Responses to High Food Prices in Latin America and the Caribbean. Rome: Trade and Markets Division Food and Agriculture Organization of the United Nations. [Google Scholar]
- Kumar, Ronald, and Peter Stauvermann. 2020. Economic and Social Sustainability: The Influence of Oligopolies on Inequality and Growth. Sustainability 12: 9378. [Google Scholar] [CrossRef]
- Laajaj, Rachid, Marcela Eslava, and Tidiane Kinda. 2019. The Costs of Bureaucracy and Corruption at Customs: Evidence from the Computerization of Imports in Colombia. Documentos CEDE 017173. Bogotá: Universidad de los Andes—CED. [Google Scholar]
- Lehman, Glen, and Kim Thorne. 2015. Corruption, criminality and the privatised state: The implications for accounting. Accounting Forum 39: 366–70. [Google Scholar] [CrossRef]
- Levin, Andrew, Chien-Fu Lin, and Chia-Shang Chu. 2002. Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics 108: 1–24. [Google Scholar] [CrossRef]
- Lyeonov, Serhiy, Olha Kuzmenko, Hanna Yarovenko, and Tatiana Dotsenko. 2019. The Innovative Approach to Increasing Cybersecurity of Transactions Through Counteraction to Money Laundering. Marketing and Management of Innovations 3: 308–26. [Google Scholar] [CrossRef]
- Maeda, Kentaro, and Adam Ziegfeld. 2015. Socioeconomic status and corruption perceptions around the world. Research & Politics, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maes, Dries, Mark Vancauteren, and Su Van Passel. 2016. Investigating market power in the Belgian pork production chain. In Proceedings of the 149th Seminar European Association of Agricultural Economists, Rennes, France, October 27–28; p. 245114. [Google Scholar]
- Mehmet, Senturk, Akbas Ekrem, and Ozkan Gokcem. 2014. Cross Sectional Dependence and Cointegration Analysis among the Gdp-Foreign Direct Investment and Aggregate Credits: Evidence from Selected Developing Countries. Asian Economic and Financial Review 4: 1485–501. [Google Scholar]
- Mensah, Yaw. 2014. An Analysis of the Effect of Culture and Religion on Perceived Corruption in a Global Context. Journal of Business Ethics 121: 255–82. [Google Scholar] [CrossRef]
- Monte, Alfredo, and Luca Pennacchio. 2020. Corruption Government Expenditure and Public Debt in OECD Countries. Comparative Economic Studies 62: 739–71. [Google Scholar] [CrossRef]
- Mukherjee, Sacchidananda, and Debashis Chakraborty. 2013. Is environmental sustainability influenced by socioeconomic and sociopolitical factors? cross-country empirical evidence. Sustainable Development 21: 353–71. [Google Scholar] [CrossRef]
- Nelson, Fred, and Arun Agrawal. 2008. Patronage or participation? Community-based natural resource management reform in sub-Saharan Africa Corruption perceptions index 2006. Development and Change 39: 557–85. [Google Scholar] [CrossRef] [Green Version]
- Njegovan, Nikola, and Mirela Tomaš-Simin. 2020. Inflation and Prices of Agricultural Products. Economic Themes 58: 203–17. [Google Scholar] [CrossRef]
- Onuferova, Erika, Veronika Cabinova, and Mária Matijova. 2020. Categorization of the EU Member States in the Context of Selected Multicriteria International Indices Using Cluster Analysis. Review of Economic Perspectives 20: 379–401. [Google Scholar] [CrossRef]
- Ortega, Bienvenido, Antonio Casquero, and Jesus Sanjuan. 2016. Corruption and Convergence in Human Development: Evidence from 69 Countries During 1990–2012. Social Indicators Research 127: 691–719. [Google Scholar] [CrossRef]
- Pareto, Vilfredo. 1906. Manuale d’Economia Politica, 13th ed. Milan: Societa Editrice. [Google Scholar]
- Pedroni, Peter. 1999. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics 61: 653–70. [Google Scholar] [CrossRef]
- Pedroni, Peter. 2004. Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests, With an Application to the PPP Hypothesis. Econometric Theory 20: 597–625. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, Mhashem. 2003. General Diagnostic Tests for Cross Section Dependence in Panels. Working Paper, No. 0435. Cambridge: Cambridge University. [Google Scholar]
- Pesaran, Mhashem. 2007. A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. Journal of Applied Econometrics 22: 265–312. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, Mhashem, and Ronald Smith. 1995. Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68: 79–113. Available online: https://EconPapers.repec.org/RePEc:eee:econom:v:68:y:1995:i:1:p:79-113 (accessed on 26 October 2022). [CrossRef]
- Pesaran, Mhashem, and Takashi Yamagata. 2008. Testing slope homogeneity in large panels. Journal of Econometrics 142: 50–93. Available online: https://EconPapers.repec.org/RePEc:eee:econom:v:142:y:2008:i:1:p:50-93 (accessed on 26 October 2022). [CrossRef]
- Podobnik, Boris, Jia Shao, Djuro Njavro, Plamen Ivanov, and He Stanley. 2008. Influence of corruption on economic growth rate and foreign investment. European Physical Journal B 63: 547–50. [Google Scholar] [CrossRef] [Green Version]
- Pupovic, Elvira. 2012. Corruption’s Effect on Foreign Direct Investment—The Case of Montenegro. Economic Review: Journal of Economics and Business 10: 13–28. [Google Scholar]
- Radukic, Snezana, Milan Marković, and Milica Radović. 2015. The Effect of Food Prices on Inflation in the Republic of Serbia. Journal of Central Banking Theory and Practice 4: 23–36. [Google Scholar] [CrossRef] [Green Version]
- Reding, Peter. 1996. Debt Crises and Exchange Crises. Papers 171. Paris: Notre-Dame de la Paix, Sciences Economiques et Sociales. [Google Scholar]
- Ruengdet, Kamon, and Winai Wongsurawat. 2015. The mechanisms of corruption in agricultural price intervention projects: Case studies from Thailand. The Social Science Journal 52: 22–33. [Google Scholar] [CrossRef]
- Ruiz Morillas, Na. 2016. Political corruption, transparency and citizen movements: A comparative approach between China and Japan. Revista de Investigaciones Políticas y Sociológicas 15: 149–64. [Google Scholar]
- Sanz, Carlos, Alberto Solé-Ollé, and Pilar Sorribas-Navarro. 2020. Betrayed by the Elites: How Corruption Amplifies the Political Effects of Recessions. Working Papers 2020/02. Barcelona: Institut d’Economia de Barcelona (IEB). [Google Scholar]
- Schmit, Todd, Roberta Severson, Jesse Strzok, and Jose Barros. 2018. Economic Contributions of the Apple Industry Supply Chain in New York State. Ithaca: Charles H. Dyson School of Applied Economics and Management Cornell University. [Google Scholar]
- Shah, Ajay, Katie Eminson, Ilze Bogdanovica, and John Britton. 2019. The Relation Between Tobacco Tax Structure and Corruption in European Union Member States. International Journal of Environmental Research and Public Health 16: 2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simovic, Minja. 2021. The Impact of Corruption on Economic Growth in the Countries of Southeast Europe. Transformations in Business & Economics 20: 298–308. [Google Scholar]
- Tang, Thomas, Toto Sutarso, Mahfooz Ansari, Vivien Lim, Thompson Teo, Fernando Arias-Galicia, Ilya Garber, Randy Chiu, Brigitte Charles-Pauvers, Roberto Luna-Arocas, and et al. 2018a. Monetary Intelligence and Behavioral Economics Across 32 Cultures: Good Apples Enjoy Good Quality of Life in Good Barrels. Journal of Business Ethics 148: 893–917. [Google Scholar] [CrossRef]
- Tang, Thomas, Toto Sutarso, Mahfooz Ansari, Vivien Lim, Thompson Teo, Fernando Arias-Galicia, Ilya Garber, Randy Chiu, Brigitte Charles-Pauvers, Roberto Luna-Arocas, and et al. 2018b. Monetary Intelligence and Behavioral Economics: The Enron Effect-Love of Money, Corporate Ethical Values, Corruption Perceptions Index (CPI), and Dishonesty Across 31 Geopolitical Entities. Journal of Business Ethics 148: 919–37. [Google Scholar] [CrossRef]
- Tatum, Robert. 2010. Liberalization of import restrictions on capital goods and the balance of payments. The Journal of International Trade & Economic Development 19: 385–419. [Google Scholar]
- Traca, Daniel, and Pusham Dutt. 2007. Corruption and Tariffs as Barriers to Imports. ULB Institutional Repository 2013/9237. Brussels: ULB—Universite Libre de Bruxelles. [Google Scholar]
- Tuzunturk, Selim, Betul Inam, and Filiz Giray. 2018. Analyzing the Relationship between Foreign Direct Investment and Privatization in the European Union Founder Nations by Using Panel Data Approach. Panoeconomicus 65: 587–607. [Google Scholar] [CrossRef] [Green Version]
- Tyavambiza, Takawira. 2017. Corruption and Bad Policies Repel Foreign Capital and Cause Domestic Capital to Flee: Is Jovanovic Right? International Journal of Economics and Financial Issues 7: 204–15. [Google Scholar]
- Van Zyl, Jo. 1986. The Effect of Inflation on Agricultural Production Under Conditions of Risk. Agrekon 25: 52–59. [Google Scholar] [CrossRef]
- Wang, Zhaohua, Yasir Rasool, Muhammad Asghar, and Bo Wang. 2019. Dynamic linkages among CO2 emissions, human development, financial development, and globalization: Empirical evidence based on PMG long-run panel estimation. Environmental Science and Pollution Research 26: 36248–63. [Google Scholar] [CrossRef]
- Wanjiku, Julliet, Lincoln Njagi, and Desmond Kirui. 2016. Trends of Food and Agricultural Input Prices in Eastern Africa. ReSAKSS Issue Notes 26. Washington, DC: International Food Policy Research Institute (IFPRI). [Google Scholar]
- Westerlund, Joakim. 2005. A panel CUSUM test of the null of cointegration. Oxford Bulletin of Economics and Statistics 67: 231–62. [Google Scholar] [CrossRef]
- Westerlund, Joakim. 2007. Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics 69: 709–48. [Google Scholar] [CrossRef]
- You, Jong-Sung, and Sangeev Khagram. 2005. A comparative study of inequality and corruption. American Sociological Review 70: 136–57. [Google Scholar]
Variable | Observations | Mean | Std. Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Corruption Perception Index (cpi) | 1890 | 22.99538 | 25.97975 | 0.0000872 | 92 |
Control of Corruption | 1890 | 0.3023958 | 1.066263 | −1.52 | 2.47 |
Control of Corruption (percentile rank) | 1890 | 56.75673 | 29.58121 | 0.0003891 | 100 |
apples | 1890 | 464.4982 | 11,154.5 | 0.00000247 | 336,501.1 |
bananas | 1890 | 255.4008 | 5999.226 | 0.00000219 | 180,300.1 |
barley | 1890 | 55.35064 | 47.62522 | 0.0001151 | 195.81 |
cassava | 1890 | 22.96647 | 44.79801 | 0.000000439 | 505 |
cucumbers and gherkins | 1890 | 281.7146 | 5941.807 | 0.0000231 | 178,323.5 |
grapes | 1890 | 151.6874 | 2821.976 | 0.0000222 | 84,696.94 |
maize | 1890 | 113.8439 | 1687.538 | 0 | 69,435.37 |
oil palm fruit | 1890 | 13.2718 | 50.19763 | 0.00000226 | 1233.59 |
onions dry | 1890 | 529.9577 | 12,596.02 | 0.00000345 | 379,513.9 |
oranges | 1890 | 133.5039 | 2520.897 | 0.00000213 | 75,506.17 |
potatoes | 1890 | 299.2566 | 6254.74 | 0.00000117 | 187,020.8 |
rice paddy | 1890 | 39.25667 | 46.38307 | 0.000000228 | 200.94 |
soybeans | 1890 | 860.3369 | 22,180.81 | 0.0000274 | 669,268.9 |
sugar beet | 1890 | 45.11226 | 53.51277 | 0.00000342 | 262.16 |
sugarcane | 1890 | 191.4717 | 5601.529 | 0 | 231,040.9 |
sweet potatoes | 1890 | 444.5301 | 11,111.4 | 0.00000320 | 334,522.1 |
tomatoes | 1890 | 450.173 | 10,229.83 | 0.0000167 | 307,122.4 |
melons | 1890 | 44.94437 | 61.15798 | 0.00000557 | 1017.68 |
wheat | 1890 | 564.426 | 13,593.78 | 0.00000507 | 408,938.1 |
Corruption Perception Index | Control of Corruption (Levels) | Control of Corruption (Percentiles) | ||||
---|---|---|---|---|---|---|
Production Price Index | delta | adj. | delta | adj. | delta | adj. |
apples | 9.692 *** | 10.469 *** | 2.541 ** | 2.745 *** | 3.541 *** | 3.825 *** |
bananas | 10.348 *** | 11.177 *** | 0.941 | 1.016 | 1.517 | 1.638 |
barley | 5.244 *** | 5.664 *** | 4.313 *** | 4.659 *** | 3.719 *** | 4.017 *** |
cassava | 1.253 | 1.353 | 2.589 *** | 2.797 *** | 2.901 *** | 3.134 *** |
cucumbers and gherkins | 14.171 *** | 15.307 *** | 3.278 *** | 3.540 *** | 4.625 *** | 4.995 *** |
grapes | 7.589 *** | 8.197 *** | 2.423 ** | 2.617 *** | 3.009 *** | 3.251 *** |
maize | 6.234 *** | 6.733 *** | 5.091 *** | 5.498 *** | 4.794 *** | 5.178 *** |
oil palm fruit | 0.115 | 0.124 | 0.829 | 0.895 | 0.674 | 0.729 |
onions dry | 13.458 *** | 14.537 *** | 2.812 *** | 3.037 *** | 3.258 *** | 3.519 *** |
oranges | 9.136 *** | 9.868 *** | 3.356 *** | 3.625 *** | 2.757 *** | 2.978 *** |
potatoes | 13.767 *** | 14.870 *** | 5.245 *** | 5.665 *** | 5.130 *** | 5.541 *** |
rice paddy | 3.526 *** | 3.809 *** | 5.146 *** | 5.558 *** | 4.374 *** | 4.725 *** |
soybeans | 12.933 *** | 13.969 *** | 5.753 *** | 6.214 *** | 5.876 *** | 6.347 *** |
sugar beet | 11.138 *** | 12.031 *** | 5.514 *** | 5.956 *** | 5.825 *** | 6.292 *** |
sugarcane | 2.492 ** | 2.692 *** | −0.232 | −0.251 | −0.278 | −0.300 |
sweet potatoes | 8.963 *** | 9.681 *** | 2.391 ** | 2.583 *** | 2.441 ** | 2.637 *** |
tomatoes | 19.114 *** | 20.646 *** | 6.472 *** | 6.990 *** | 7.088 *** | 7.655 *** |
melons | 8.014 *** | 8.656 *** | 3.507 *** | 3.788 *** | 3.221 *** | 3.479 *** |
wheat | 12.593 *** | 13.602 *** | 5.415 *** | 5.848 *** | 4.749 *** | 5.130 *** |
Corruption Perception Index | Control of Corruption (Levels) | Control of Corruption (Percentiles) | ||||
---|---|---|---|---|---|---|
Production Price Index | delta | adj. | delta | adj. | delta | adj. |
apples | −5.210 *** | −5.627 *** | −6.266 *** | −6.768 *** | −5.954 *** | −6.431 *** |
bananas | −3.445 *** | −3.721 *** | −6.209 *** | −6.706 *** | −6.040 *** | −6.524 *** |
barley | 11.260 *** | 12.162 *** | 2.091 ** | 2.258 ** | 1.547 | 1.671 * |
cassava | 4.794 *** | 5.178 *** | −1.042 | −1.125 | −0.689 | −0.745 |
cucumbers and gherkins | −3.346 *** | −3.614 *** | −5.960 *** | −6.438 *** | −5.348 *** | −5.776 *** |
grapes | −1.832 * | −1.979 ** | −5.218 *** | −5.636 *** | −4.264 *** | −4.606 *** |
maize | 3.271 *** | 3.533 *** | 1.997 ** | 2.157 ** | 1.056 | 1.140 |
oil palm fruit | −4.568 *** | −4.934 *** | −4.786 *** | −5.170 *** | −4.850 *** | −5.239 *** |
onions dry | −5.315 *** | −5.741 *** | −6.385 *** | −6.897 *** | −6.066 *** | −6.552 *** |
oranges | 0.072 | 0.078 | −4.857 *** | −5.246 *** | −4.415 *** | −4.768 *** |
potatoes | −3.086 *** | −3.334 *** | −5.726 *** | −6.185 *** | −5.319 *** | −5.745 *** |
rice paddy | 9.382 *** | 10.134 *** | 2.170 ** | 2.343 ** | 1.627 | 1.757 * |
soybeans | −6.003 *** | −6.484 *** | −6.526 *** | −7.049 *** | −6.500 *** | −7.021 *** |
sugar beet | 8.504 *** | 9.185 *** | 3.195 *** | 3.451 *** | 2.893 *** | 3.125 *** |
sugarcane | −4.466 *** | −4.824 *** | −6.026 *** | −6.508 *** | −5.754 *** | −6.215 *** |
sweet potatoes | −5.216 *** | −5.634 *** | −6.409 *** | −6.922 *** | −6.334 *** | −6.841 *** |
tomatoes | −4.590 *** | −4.958 *** | −6.216 *** | −6.714 *** | −5.707 *** | −6.165 *** |
melons | 11.022 *** | 11.905 *** | 0.653 | 0.705 | 0.573 | 0.619 |
wheat | −3.606 *** | −3.895 *** | −5.784 *** | −6.248 *** | −3.474 *** | −3.752 *** |
Corruption Perception Index | Control of Corruption (Levels) | Control of Corruption (Percentiles) | ||||
---|---|---|---|---|---|---|
Production Price Index | test val | p-val | test val | p-val | test val | p-val |
apples | 236.421 | 0.0000 | 2.668 | 0.0076 | −0.045 | 1.0357 |
bananas | 236.402 | 0.0000 | 2.669 | 0.0076 | −0.043 | 1.0345 |
barley | 239.905 | 0.0000 | 1.916 | 0.0554 | −0.022 | 1.0175 |
cassava | 233.157 | 0.0000 | 2.291 | 0.0220 | −0.260 | 1.2054 |
cucumbers and gherkins | 236.445 | 0.0000 | 2.668 | 0.0076 | −0.044 | 1.0352 |
grapes | 236.463 | 0.0000 | 2.668 | 0.0076 | −0.045 | 1.0360 |
maize | 236.595 | 0.0000 | 2.654 | 0.0079 | −0.065 | 1.0516 |
oil palm fruit | 236.468 | 0.0000 | 2.526 | 0.0115 | −0.114 | 1.0911 |
onions dry | 236.407 | 0.0000 | 2.668 | 0.0076 | −0.044 | 1.0353 |
oranges | 236.427 | 0.0000 | 2.670 | 0.0076 | −0.044 | 1.0349 |
potatoes | 236.453 | 0.0000 | 2.670 | 0.0076 | −0.043 | 1.0342 |
rice paddy | 237.065 | 0.0000 | 1.649 | 0.0991 | −0.420 | 1.3255 |
soybeans | 236.393 | 0.0000 | 2.668 | 0.0076 | −0.044 | 1.0352 |
sugar beet | 236.216 | 0.0000 | 4.413 | 0.0000 | 1.943 | 0.0520 |
sugarcane | 236.595 | 0.0000 | 2.658 | 0.0079 | −0.056 | 1.0448 |
sweet potatoes | 236.407 | 0.0000 | 2.668 | 0.0076 | −0.044 | 1.0348 |
tomatoes | 236.415 | 0.0000 | 2.669 | 0.0076 | −0.044 | 1.0349 |
melons | 234.054 | 0.0000 | 3.082 | 0.0021 | 0.693 | 0.4881 |
wheat | 236.402 | 0.0000 | 2.670 | 0.0076 | −0.044 | 1.0350 |
Corruption Perception Index | Control of Corruption (Levels) | Control of Corruption (Percentiles) | ||||
Production Price Index | test val | p-val | test val | p-val | test val | p-val |
apples | 235.490 | 0.0000 | 7.739 | 0.0000 | 9.943 | 0.0000 |
bananas | 226.483 | 0.0000 | 5.582 | 0.0000 | 3.443 | 0.0006 |
barley | 102.659 | 0.0000 | 101.153 | 0.0000 | 99.166 | 0.0000 |
cassava | 79.245 | 0.0000 | 11.417 | 0.0000 | 14.635 | 0.0000 |
cucumbers and gherkins | 235.435 | 0.0000 | 27.515 | 0.0000 | 28.696 | 0.0000 |
grapes | 229.499 | 0.0000 | 36.014 | 0.0000 | 32.024 | 0.0000 |
maize | 193.648 | 0.0000 | 107.159 | 0.0000 | 102.579 | 0.0000 |
oil palm fruit | 146.977 | 0.0000 | 0.467 | 0.6403 | 1.015 | 0.3101 |
onions dry | 231.305 | 0.0000 | 8.448 | 0.0000 | 9.111 | 0.0000 |
oranges | 203.245 | 0.0000 | 19.607 | 0.0000 | 16.027 | 0.0000 |
potatoes | 233.712 | 0.0000 | 33.014 | 0.0000 | 31.971 | 0.0000 |
rice paddy | 66.012 | 0.0000 | 47.069 | 0.0000 | 53.921 | 0.0000 |
soybeans | 232.530 | 0.0000 | 1.225 | 0.2206 | 0.028 | 0.9780 |
sugar beet | 90.293 | 0.0000 | 35.230 | 0.0000 | 34.817 | 0.0000 |
sugarcane | 219.527 | 0.0000 | 6.927 | 0.0000 | 3.716 | 0.0002 |
sweet potatoes | 228.577 | 0.0000 | 2.600 | 0.0093 | 1.248 | 0.2119 |
tomatoes | 233.134 | 0.0000 | 14.518 | 0.0000 | 16.432 | 0.0000 |
melons | 73.425 | 0.0000 | 56.671 | 0.0000 | 55.931 | 0.0000 |
wheat | 233.177 | 0.0000 | 7.047 | 0.0000 | 7.926 | 0.0000 |
Fisher | Hadri LM | Levin–Liu–Chu | Breitung | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dfuller | Pperron | ||||||||||||||||
Variable | Levels | Trend | Demean | Levels | Trend | Demean | Levels | Trend | Demean | Levels | Trend | No_Constant | Demean | Levels | Trend | No_Constant | Demean |
cpi | 1.0000 | 0.9054 | 1.0000 | 1.0000 | 0.9990 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0979 | 0.7149 | 0.0000 | 0.8829 | 0.0992 |
d.cpi | 0.0000 | 0.0084 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0360 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
apples | 0.0000 | 0.0000 | 0.1161 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6336 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.apples | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
bananas | 0.0000 | 0.0004 | 0.0922 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9739 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.bananas | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
barley | 0.0136 | 0.9958 | 0.9621 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.9278 | 1.0000 | 0.0000 | 0.1725 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.barley | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5760 | 1.0000 | 1.0000 | 0.0000 | 0.8553 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
cassava | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8107 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6228 | 0.0000 | 0.6732 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.cassava | 0.0000 | 0.0000 | 0.5982 | 0.0000 | 0.0000 | 0.0000 | 0.5772 | 0.0000 | 0.9381 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9420 | 0.0000 | 0.0000 |
cucumbers and gherkins | 0.0000 | 0.0957 | 0.0841 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9688 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.cucumbers and gherkins | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
grapes | 0.0000 | 0.0317 | 0.0822 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1028 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.grapes | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0015 | 0.9207 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
maize | 0.9902 | 1.0000 | 0.0000 | 0.0099 | 1.0000 | 0.0000 | 0.3872 | 0.0000 | 0.3849 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.maize | 0.0002 | 0.0336 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0151 | 0.5742 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
oil palm fruit | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0070 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0052 | 0.0000 | 0.0000 |
d.oil palm fruit | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5198 | 1.0000 | 0.9998 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
onions dry | 0.0314 | 0.6389 | 0.1067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9017 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.onions dry | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3235 | 0.9790 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
oranges | 0.0000 | 0.0718 | 0.0784 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.oranges | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0021 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
potatoes | 0.0005 | 0.9984 | 0.0527 | 0.0000 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9915 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.potatoes | 0.0000 | 0.0542 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
rice paddy | 0.0000 | 0.0000 | 0.8495 | 0.0000 | 0.0000 | 0.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0012 | 1.0000 | 0.0000 | 0.9999 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.rice paddy | 0.0000 | 0.0000 | 0.0118 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2246 | 0.0099 | 0.9909 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
soybeans | 0.0022 | 0.9944 | 0.1167 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4474 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.soybeans | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0186 | 0.7946 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
sugar beet | 0.0017 | 0.6428 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5952 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0031 |
d.sugar beet | 0.0000 | 0.0000 | 0.2428 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1511 | 0.0000 | 0.0161 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
sugarcane | 0.0016 | 0.6825 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5272 | 0.0000 | 0.5264 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.sugarcane | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
sweet potatoes | 0.0000 | 0.0000 | 0.0930 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.sweet potatoes | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
tomatoes | 0.0957 | 1.0000 | 0.0870 | 0.0000 | 0.5933 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.tomatoes | 0.0085 | 0.8579 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
melons | 0.0000 | 0.0013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 1.0000 | 0.0000 | 0.0208 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.melons | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9951 | 0.0106 | 1.0000 | 0.0000 | 0.6863 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
wheat | 0.1802 | 1.0000 | 0.0887 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9945 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
d.wheat | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 |
Control of corruption | 0.0408 | 0.0055 | 0.0526 | 0.0003 | 0.0478 | 0.0080 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0078 | 0.0000 | 0.0002 | 0.0176 |
d.control of corruption | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9993 | 0.9783 | 0.9989 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
percentile rank | 0.0149 | 0.1535 | 0.0690 | 0.0000 | 0.0518 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3025 | 0.0000 | 0.0001 | 0.0000 | 0.3189 | 0.0001 |
d.percentile rank | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9989 | 0.9861 | 0.9980 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Pesaran 2003 | IPS 2003 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Levels | Trend | Demean | Levels | Trend | ||||||||||
Variable | z Value | p Value | z Value | p Value | z Value | p Value | Cips | 10% | 5% | 1% | Cips | 10% | 5% | 1% |
cpi | −4.797 | 0.000 | 0.834 | 0.798 | −4.797 | 0.000 | −2.955 | −2.01 | −2.07 | −2.17 | −3.040 | −2.51 | −2.56 | −2.66 |
d.cpi | −5.903 | 0.000 | −6.763 | 0.000 | −5.903 | 0.000 | −4.104 | −2 | −2.07 | −2.18 | −4.518 | −2.51 | −2.57 | −2.7 |
apples | −0.250 | 0.401 | 6.474 | 1.000 | −0.250 | 0.401 | −2.840 | −2.01 | −2.07 | −2.17 | −2.603 | −2.51 | −2.56 | −2.66 |
d.apples | −1.174 | 0.120 | 3.292 | 1.000 | −1.174 | 0.120 | −3.364 | −2 | −2.07 | −2.18 | −3.528 | −2.51 | −2.57 | −2.7 |
bananas | −2.168 | 0.015 | 4.897 | 1.000 | −2.168 | 0.015 | −3.330 | −2.01 | −2.07 | −2.17 | −3.117 | −2.51 | −2.56 | −2.66 |
d.bananas | −3.394 | 0.000 | 2.617 | 0.996 | −3.394 | 0.000 | −4.149 | −2 | −2.07 | −2.18 | −4.122 | −2.51 | −2.57 | −2.7 |
barley | −0.475 | 0.317 | 8.670 | 1.000 | −0.475 | 0.317 | −2.883 | −2.01 | −2.07 | −2.17 | −2.513 | −2.51 | −2.56 | −2.66 |
d.barley | 0.529 | 0.702 | 4.821 | 1.000 | 0.529 | 0.702 | −3.976 | −2 | −2.07 | −2.18 | −4.142 | −2.51 | −2.57 | −2.7 |
cassava | −4.459 | 0.000 | 1.415 | 0.921 | −4.459 | 0.000 | −3.831 | −2.01 | −2.07 | −2.17 | −3.756 | −2.51 | −2.56 | −2.66 |
d.cassava | −10.124 | 0.000 | −6.506 | 0.000 | −10.124 | 0.000 | −5.354 | −2 | −2.07 | −2.18 | −5.435 | −2.51 | −2.57 | −2.7 |
cucumbers and gherkins | 0.435 | 0.668 | 11.018 | 1.000 | 0.435 | 0.668 | −2.386 | −2.01 | −2.07 | −2.17 | −1.965 | −2.51 | −2.56 | −2.66 |
d.cucumbers and gherkins | 3.188 | 0.999 | 9.026 | 1.000 | 3.188 | 0.999 | −2.761 | −2 | −2.07 | −2.18 | −2.821 | −2.51 | −2.57 | −2.7 |
grapes | 0.017 | 0.507 | 9.511 | 1.000 | 0.017 | 0.507 | −2.848 | −2.01 | −2.07 | −2.17 | −2.498 | −2.51 | −2.56 | −2.66 |
d.grapes | 0.526 | 0.701 | 5.873 | 1.000 | 0.526 | 0.701 | −3.645 | −2 | −2.07 | −2.18 | −3.701 | −2.51 | −2.57 | −2.7 |
maize | 9.046 | 1.000 | 19.975 | 1.000 | 9.046 | 1.000 | −1.199 | −2.01 | −2.07 | −2.17 | −1.053 | −2.51 | −2.56 | −2.66 |
d.maize | 7.499 | 1.000 | 10.180 | 1.000 | 7.499 | 1.000 | −3.479 | −2 | −2.07 | −2.18 | −3.801 | −2.51 | −2.57 | −2.7 |
oil palm fruit | −4.631 | 0.000 | −1.858 | 0.032 | −4.631 | 0.000 | −3.939 | −2.01 | −2.07 | −2.17 | −3.881 | −2.51 | −2.56 | −2.66 |
d.oil palm fruit | −9.793 | 0.000 | −5.161 | 0.000 | −9.793 | 0.000 | −5.423 | −2 | −2.07 | −2.18 | −5.547 | −2.51 | −2.57 | −2.7 |
onions dry | 3.324 | 1.000 | 12.258 | 1.000 | 3.324 | 1.000 | −2.618 | −2.01 | −2.07 | −2.17 | −2.463 | −2.51 | −2.56 | −2.66 |
d.onions dry | 1.387 | 0.917 | 5.322 | 1.000 | 1.387 | 0.917 | −3.736 | −2 | −2.07 | −2.18 | −3.882 | −2.51 | −2.57 | −2.7 |
oranges | −2.566 | 0.005 | 4.928 | 1.000 | −2.566 | 0.005 | −3.190 | −2.01 | −2.07 | −2.17 | −3.052 | −2.51 | −2.56 | −2.66 |
d.oranges | −4.568 | 0.000 | 0.732 | 0.768 | −4.568 | 0.000 | −4.230 | −2 | −2.07 | −2.18 | −4.325 | −2.51 | −2.57 | −2.7 |
potatoes | 2.605 | 0.995 | 15.870 | 1.000 | 2.605 | 0.995 | −2.263 | −2.01 | −2.07 | −2.17 | −1.861 | −2.51 | −2.56 | −2.66 |
d.potatoes | 5.780 | 1.000 | 10.151 | 1.000 | 5.780 | 1.000 | −3.172 | −2 | −2.07 | −2.18 | −3.281 | −2.51 | −2.57 | −2.7 |
rice paddy | −6.070 | 0.000 | 0.060 | 0.524 | −6.070 | 0.000 | −3.499 | −2.01 | −2.07 | −2.17 | −3.473 | −2.51 | −2.56 | −2.66 |
d.rice paddy | −10.111 | 0.000 | −4.689 | 0.000 | −10.111 | 0.000 | −4.738 | −2 | −2.07 | −2.18 | −4.779 | −2.51 | −2.57 | −2.7 |
soybeans | 3.022 | 0.999 | 14.541 | 1.000 | 3.022 | 0.999 | −2.526 | −2.01 | −2.07 | −2.17 | −1.962 | −2.51 | −2.56 | −2.66 |
d.soybeans | 2.581 | 0.995 | 5.413 | 1.000 | 2.581 | 0.995 | −3.304 | −2 | −2.07 | −2.18 | −3.536 | −2.51 | −2.57 | −2.7 |
sugar beet | −0.975 | 0.165 | 1.880 | 0.970 | −0.975 | 0.165 | −3.029 | −2.01 | −2.07 | −2.17 | −3.416 | −2.51 | −2.56 | −2.66 |
d.sugar beet | −8.829 | 0.000 | −4.752 | 0.000 | −8.829 | 0.000 | −4.864 | −2 | −2.07 | −2.18 | −4.951 | −2.51 | −2.57 | −2.7 |
sugarcane | 14.335 | 1.000 | 20.467 | 1.000 | 14.335 | 1.000 | −0.827 | −2.01 | −2.07 | −2.17 | −1.001 | −2.51 | −2.56 | −2.66 |
d.sugarcane | 11.210 | 1.000 | 12.658 | 1.000 | 11.210 | 1.000 | −2.151 | −2 | −2.07 | −2.18 | −2.579 | −2.51 | −2.57 | −2.7 |
sweet potatoes | 0.246 | 0.597 | 7.681 | 1.000 | 0.246 | 0.597 | −3.191 | −2.01 | −2.07 | −2.17 | −3.070 | −2.51 | −2.56 | −2.66 |
d.sweet potatoes | −2.429 | 0.008 | 3.051 | 0.999 | −2.429 | 0.008 | −4.343 | −2 | −2.07 | −2.18 | −4.388 | −2.51 | −2.57 | −2.7 |
tomatoes | 3.944 | 1.000 | 15.410 | 1.000 | 3.944 | 1.000 | −1.965 | −2.01 | −2.07 | −2.17 | −1.557 | −2.51 | −2.56 | −2.66 |
d.tomatoes | 7.380 | 1.000 | 12.897 | 1.000 | 7.380 | 1.000 | −2.742 | −2 | −2.07 | −2.18 | −2.821 | −2.51 | −2.57 | −2.7 |
melons | −1.803 | 0.036 | 3.913 | 1.000 | −1.803 | 0.036 | −3.442 | −2.01 | −2.07 | −2.17 | −3.465 | −2.51 | −2.56 | −2.66 |
d.melons | −5.999 | 0.000 | −1.170 | 0.121 | −5.999 | 0.000 | −5.106 | −2 | −2.07 | −2.18 | −5.156 | −2.51 | −2.57 | −2.7 |
wheat | 5.189 | 1.000 | 17.112 | 1.000 | 5.189 | 1.000 | −1.983 | −2.01 | −2.07 | −2.17 | −1.588 | −2.51 | −2.56 | −2.66 |
d.wheat | 3.340 | 1.000 | 7.387 | 1.000 | 3.340 | 1.000 | −2.718 | −2 | −2.07 | −2.18 | −2.771 | −2.51 | −2.57 | −2.7 |
Control of corruption | −2.110 | 0.017 | 0.030 | 0.512 | −2.110 | 0.017 | −1.900 | −2.01 | −2.07 | −2.17 | −2.270 | −2.51 | −2.56 | −2.66 |
d.control of corruption | −5.605 | 0.000 | −1.535 | 0.062 | −5.605 | 0.000 | −4.060 | −2 | −2.07 | −2.18 | −4.115 | −2.51 | −2.57 | −2.7 |
Percentile rank | −1.248 | 0.106 | 1.191 | 0.883 | −1.248 | 0.106 | −1.816 | −2.01 | −2.07 | −2.17 | −2.274 | −2.51 | −2.56 | −2.66 |
d.percentile rank | −5.583 | 0.000 | −2.293 | 0.011 | −5.583 | 0.000 | −4.209 | −2 | −2.07 | −2.18 | −4.239 | −2.51 | −2.57 | −2.7 |
Pedroni | Kao | Westerlund | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel | Group | ModDF | DF | ADF | UnModDF | UnDF | Gt | Ga | Pt | Pa | ||||||
Production Price Index | v | rho | t | adf | rho | t | adf | |||||||||
apples | 6.277 *** | −5.69 *** | −7.742 *** | −7.695 *** | −0.5177 | −5.713 *** | −163.9 *** | −17.0008 *** | −11.8586 *** | −22.1999 *** | −16.0093 *** | −11.6247 *** | −0.261 | −0.840 | −13.595 *** | −4.873 *** |
bananas | 6.354 *** | −5.539 *** | −7.52 *** | −4.942 *** | −0.3779 | −5.449 *** | −90.67 *** | −16.7452 *** | −11.6060 *** | −22.0404 *** | −15.5170 *** | −11.3128 *** | −0.531 | −2.184 | −13.638 *** | −4.862 *** |
barley | 13.67 *** | −8.091 *** | −5.551 *** | −2.666 ** | −3.07 *** | −2.138 ** | −7.782 *** | −7.1889 *** | −4.7638 *** | −5.5351 *** | −14.1770 *** | −7.5791 *** | −0.030 | −0.686 | 2.554 | 0.509 |
cassava | 29.79 *** | −7.85 *** | −2.453 ** | 0.2933 | −3.012 *** | 1.482 | −7.78 *** | −10.1924 *** | −7.1119 *** | −9.1570 *** | −12.0030 *** | −7.7432 *** | −0.513 | −1.735 | −10.344 *** | −3.397 *** |
Cucumbers and gherkins | 6.365 *** | −5.475 *** | −7.437 *** | −6.331 *** | −0.3183 | −5.353 *** | −140.9 *** | −16.6513 *** | −11.5107 *** | −21.9733 *** | −15.3293 *** | −11.1939 *** | −0.308 | −1.240 | −13.657 *** | −4.858 *** |
grapes | 6.397 *** | −5.491 *** | −7.452 *** | −4.955 *** | −0.334 | −5.37 *** | −64.77 *** | −16.6495 *** | −11.5102 *** | −21.9711 *** | −15.3285 *** | −11.1936 *** | −0.348 | −1.085 | −13.650 *** | −4.854 *** |
maize | 4.971 *** | −14.73 *** | −18.4 *** | −6.657 *** | −8.95 *** | −18.39 *** | −7.838 *** | −32.9442 *** | −22.9144 *** | −19.8833 *** | −33.6712 *** | −22.9989 *** | 0.129 | −0.255 | −15.780 *** | −6.493 *** |
oil palm fruit | 21.65 *** | −8.179 *** | −5.053 *** | −1.998* | −4.022 *** | −3.436 *** | −17.64 *** | 2.5962 *** | −0.1243 | −11.2950 *** | −22.3564 *** | −15.2237 *** | −0.462 | −1.240 | 2.938 | 2.176 |
onions dry | 6.303 *** | −5.635 *** | −7.661 *** | −8.726 *** | −0.4666 | −5.616 *** | −146.1 *** | −16.9126 *** | −11.7680 *** | −22.1478 *** | −15.8308 *** | −11.5118 *** | 0.036 | −0.468 | −13.617 *** | −4.874 *** |
oranges | 6.421 *** | −5.412 *** | −7.324 *** | −4.112 *** | −0.2622 | −5.219 *** | −31.61 *** | −16.5380 *** | −11.4042 *** | −21.8879 *** | −15.1235 *** | −11.0633 *** | −0.401 | −1.565 | −13.667 *** | −4.845 *** |
potatoes | 6.397 *** | −5.34 *** | −7.261 *** | −6.445 *** | −0.1923 | −5.142 *** | −129.5 *** | −16.5630 *** | −11.3563 *** | −22.0859 *** | −14.9921 *** | −10.9786 *** | −0.049 | −0.800 | −13.784 *** | −4.914 *** |
rice paddy | 22.95 *** | −7.623 *** | −3.344 *** | 0.6149 | −2.753 *** | 0.6401 | −5.35 *** | −8.3281 *** | −4.9361 *** | −5.0999 *** | −11.1975 *** | −6.0579 *** | −0.416 | −1.461 | −1.716 | −0.379 |
soybeans | 6.27 *** | −5.701 *** | −7.754 *** | −8.499 *** | −0.5283 | −5.727 *** | −159.6 *** | −17.0230 *** | −11.8793 *** | −22.2127 *** | −16.0486 *** | −11.6497 *** | −0.098 | −0.579 | −13.598 *** | −4.877 *** |
sugar beet | 22.86 *** | −4.651 *** | 0.8496 | 3.146 *** | −1.943 * | 5.677 *** | −1.989 * | −3.0189 *** | −0.6320 | −0.8616 | −6.6851 | −2.6102 *** | −0.457 | −1.223 | −2.091 | −0.298 |
sugarcane | 4.929 *** | −14.92 *** | −18.81 *** | −5.907 *** | −9.121 *** | −18.85 *** | −31.4 *** | −33.4893 *** | −23.2446 *** | −20.2902 *** | −34.1434 *** | −23.3187 *** | −0.349 | −0.776 | −13.691 *** | −6.653 *** |
sweet potatoes | 6.286 *** | −5.583 *** | −7.604 *** | −6.425 *** | −0.417 | −5.548 *** | −128.6 *** | −16.9563 *** | −11.7600 *** | −22.3700 *** | −15.7871 *** | −11.4838 *** | −0.418 | −1.878 | −13.668 *** | −4.915 *** |
tomatoes | 6.364 *** | −5.491 *** | −7.458 *** | −8.332 *** | −0.3327 | −5.377 *** | −170.7 *** | −16.6766 *** | −11.5351 *** | −21.9910 *** | −15.3768 *** | −11.2239 *** | −0.114 | −0.906 | −13.655 *** | −4.862 *** |
melons | 19.64 *** | −10.7 *** | −7.766 *** | 1.708 * | −5.967 *** | −4.529 *** | −0.06335 | −12.7084 *** | −9.7214 *** | −12.3801 *** | −15.1832 *** | −10.4664 *** | −0.321 | −1.277 | −18.693 *** | −5.889 *** |
wheat | 6.296 *** | −5.547 *** | −7.559 *** | −7.406 *** | −0.3843 | −5.496 *** | −143.6 *** | −16.9030 *** | −11.7077 *** | −22.3320 *** | −15.6852 *** | −11.4194 *** | −0.054 | −0.678 | −13.676 *** | −4.912 *** |
Pedroni | Kao | Westerlund | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel | Group | ModDF | DF | ADF | UnModDF | UnDF | Gt | Ga | Pt | Pa | ||||||
Production Price Index | v | rho | t | adf | rho | t | adf | |||||||||
apples | 5.542 *** | −5.5991 *** | −7.549 *** | −6.468 *** | −0.884 | −5.588 *** | −18.65 *** | −16.9516 *** | −11.8196 *** | −22.1182 *** | −15.9595 *** | −11.5849 *** | −1.473 *** | −7.010 *** | −17.345 *** | −7.476 *** |
bananas | 5.553 *** | −5.789 *** | −7.299 *** | −3.856 *** | −0.6951 | −5.287 *** | −18.7 *** | −16.6961 *** | −11.5670 *** | −21.9598 *** | −15.4680 *** | −11.2731 *** | −1.618 *** | −7.452 *** | −17.474 *** | −7.483 *** |
barley | 10.48 *** | −6.426 *** | −5.35 *** | −0.3188 | −2.675 ** | −3.4 *** | −1.427 | −6.7931 *** | −4.5291 *** | −5.3143 *** | −14.1519 *** | −7.5477 *** | −1.270 *** | −5.195 *** | −8.506 *** | −2.540 *** |
cassava | 18.39 *** | −4.534 *** | −1.227 | 1.861 * | −0.1841 | 2.083 ** | 1.676 * | −9.9457 *** | −7.0694 *** | −9.0382 *** | −11.7382 *** | −7.7017 *** | −1.824 *** | −8.868 *** | −19.005 *** | −6.136 *** |
Cucumbers and gherkins | 5.575 *** | −5.721 *** | −7.21 *** | −5.991 *** | −0.6356 | −5.185 *** | −19.09 *** | −16.6008 *** | −11.4711 *** | −21.8913 *** | −15.2791 *** | −11.1535 *** | −1.536 *** | −6.644 *** | −17.528 *** | −7.485 *** |
grapes | 5.575 *** | −5.735 *** | −7.22 *** | −3.157 *** | −0.6531 | −5.206 *** | −16.16 *** | −16.6002 *** | −11.4713 *** | −21.8907 *** | −15.2796 *** | −11.1539 *** | −1.651 *** | −7.928 *** | −17.524 *** | −7.483 *** |
maize | 5.237 *** | −15.51 *** | −18.27 *** | −11.02 *** | −9.726 *** | −18.41 *** | −7.827 *** | −32.9108 *** | −22.8842 *** | −19.8296 *** | −33.6355 *** | −22.9687 *** | −1.221 ** | −4.373 | −19.266 *** | −8.704 *** |
oil palm fruit | 16.88 *** | −6.026 *** | −3.977 *** | 0.8101 | −1.809 * | −2.053 ** | −0.1525 | 2.7273 *** | 0.0403 | −11.0577 *** | −22.3265 *** | −15.2179 *** | −1.701 *** | −8.178 *** | 1.642 | 1.630 |
onions dry | 5.545 *** | −5.917 *** | −7.462 *** | −6.881 *** | −0.8144 | −5.483 *** | −21.27 *** | −16.8632 *** | −11.7289 *** | −22.0663 *** | −15.7812 *** | −11.4720 *** | −1.299 *** | −6.057 *** | −17.393 *** | −7.481 *** |
oranges | 5.565 *** | −5.62 *** | −7.103 *** | −3.446 *** | −0.5384 | −5.058 *** | −15.72 *** | −16.4873 *** | −11.3639 *** | −21.8057 *** | −15.0734 *** | −11.0223 *** | −1.697 *** | −7.652 *** | −17.587 *** | −7.484 *** |
potatoes | 5.585 *** | −5.569 *** | −7.029 *** | −6.305 *** | −0.4917 | −4.966 *** | −20.79 *** | −16.5121 *** | −11.3167 *** | −22.0042 *** | −14.9419 *** | −10.9381 *** | −1.393 *** | −6.091 *** | −17.769 *** | −7.577 *** |
rice paddy | 14.96 *** | −4.815 *** | −2.328 ** | 4.376 *** | −0.9768 | 0.404 | 6.097 *** | −7.6812 *** | −4.8907 *** | −5.2249 *** | −10.4990 *** | −6.0283 *** | −1.695 *** | −7.183 *** | −12.295 *** | −3.395 *** |
soybeans | 5.534 *** | −6.005 *** | −7.573 *** | −7.005 *** | −0.8958 | −5.613 *** | −22.46 *** | −16.9743 *** | −11.8405 *** | −22.1314 *** | −15.9994 *** | −11.6101 *** | −1.426 *** | −5.938 *** | −17.340 *** | −7.479 *** |
sugar beet | 19.57 *** | −2.851 *** | 1.739 * | 3.634 *** | −1.434 | 5.918 *** | −1.528 | −2.8777 *** | −0.4092 | −0.4296 | −6.5545 *** | −2.4136 *** | −1.414 *** | −6.312 *** | −8.221 *** | −2.026 *** |
sugarcane | 5.275 *** | −15.88 *** | −18.87 *** | −9.685 *** | −10.04 *** | −19.05 *** | −4.555 *** | −33.4470 *** | −23.2091 *** | −20.2294 *** | −34.1002 *** | −23.2833 *** | −1.520 *** | −6.233 *** | −16.595 *** | −8.837 *** |
sweet potatoes | 5.525 *** | −5.854 *** | −7.406 *** | −5.737 *** | −0.7528 | −5.413 *** | −20 *** | −16.9077 *** | −11.7214 *** | 22.2889 *** | −15.7382 *** | −11.4444 *** | −1.557 *** | −6.667 *** | −17.494 *** | −7.546 *** |
tomatoes | 5.577 *** | −5.746 *** | −7.243 *** | −6.534 *** | −0.6604 | −5.225 *** | −20.78 *** | −16.6261 *** | −11.4955 *** | −21.9089 *** | −15.3266 *** | −11.1836 *** | −1.200 * | −5.436 *** | −17.513 *** | −7.484 *** |
melons | 13.57 *** | −8.727 *** | −7.205 *** | −0.3555 | −5.166 *** | −5.138 *** | 0.6627 | −12.8274 *** | −9.8385 *** | −12.3289 *** | −15.3214 *** | −10.5843 *** | −1.571 *** | −6.881 *** | −21.662 *** | −6.438 *** |
wheat | 5.535 *** | −5.824 *** | −7.363 *** | −7.114 *** | −0.7258 | −5.359 *** | −21.48 *** | −16.8545 *** | −11.6693 *** | −22.2513 *** | −15.6365 *** | −11.3802 *** | −1.210 ** | −5.171 *** | −17.523 *** | −7.547 *** |
Pedroni | Kao | Westerlund | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel | Group | ModDF | DF | ADF | UnModDF | UnDF | Gt | Ga | Pt | Pa | ||||||
Production Price Index | v | rho | t | adf | rho | t | adf | |||||||||
apples | 5.613 *** | −5.948 *** | −7.513 *** | −4.994 *** | −0.839 | −5.544 *** | −16.93 *** | −16.9551 *** | −11.8234 *** | −22.1251 *** | −15.9657 *** | −11.5894 *** | −1.812 *** | −9.778 *** | −16.266 *** | −6.156 *** |
bananas | 5.637 *** | −5.756 *** | −7.271 *** | −3.95 *** | −0.6586 | −5.252 *** | −21.35 *** | −16.6995 *** | −11.5707 *** | −21.9664 *** | −15.4740 *** | −11.2775 *** | −2.003 *** | −10.696 *** | −16.404 *** | −6.171 *** |
barley | 10.29 *** | −6.213 *** | −4.901 *** | −0.0405 | −2.288 ** | −2.821 *** | −0.227 | −6.8888 *** | −4.5744 *** | −5.3880 *** | −14.1649 *** | −7.5460 *** | −1.509 *** | −6.923 *** | −11.181 *** | −4.743 *** |
cassava | 17.43 *** | −4.764 *** | −1.771 * | 1.181 | −0.3627 | 1.449 | −1.447 | −9.9954 *** | −7.0867 *** | −9.0800 *** | −11.7174 *** | −7.6927 *** | −2.010 *** | −10.797 *** | −20.697 *** | −7.528 *** |
Cucumbers and gherkins | 5.654 *** | −5.677 *** | −7.175 *** | −5.118 | −0.5866 | −5.143 *** | −18.68 *** | −16.6041 *** | −11.4748 *** | −21.8979 *** | −15.2850 *** | −11.1578 *** | −1.737 *** | −9.034 *** | −16.462 *** | −6.177 *** |
grapes | 5.666 *** | −5.699 *** | −7.185 *** | −2.532 ** | −0.6118 | −5.162 *** | −13.71 *** | −16.6035 *** | −11.4750 *** | −21.8974 *** | −15.2856 *** | −11.1583 *** | −1.805 *** | −10.098 *** | −16.460 *** | −6.176 *** |
maize | 5.2 *** | −15.56 *** | −18.29 *** | −10.17 *** | −9.765 *** | −18.41 *** | −7.929 *** | −32.9089 *** | −22.8857 *** | −19.8331 *** | −33.6376 *** | −22.9706 *** | −1.388 *** | −5.619 *** | −20.660 *** | −8.229 *** |
oil palm fruit | 16.25 *** | −6.232 *** | −4.355 *** | 2.822 *** | −1.924* | −2.429 ** | 0.6559 | 2.6662 *** | −0.0388 | −11.1719 *** | −22.3311 *** | −15.2193 *** | −2.045 *** | −10.230 *** | 0.403 | 0.500 |
onions dry | 5.619 *** | −5.872 *** | −7.419 *** | −5.869 *** | −0.7653 | −5.429 *** | −20.57 *** | −16.8664 *** | −11.7326 *** | −22.0730 *** | −15.7871 *** | −11.4763 *** | −1.588 *** | −9.208 *** | −16.315 *** | −6.164 *** |
oranges | 5.658 *** | −5.587 *** | −7.077 *** | −2.608 ** | −0.502 | −5.029 *** | −11.84 *** | −16.4905 *** | −11.3674 *** | −21.8119 *** | −15.0790 *** | −11.0264 *** | −1.867 *** | −9.329 *** | −16.529 *** | −6.182 *** |
potatoes | 5.678 *** | −5.541 *** | −7.011 *** | −5.681 *** | −0.4596 | −4.945 *** | −21.57 *** | −16.5153 *** | −11.3204 *** | −22.0104 *** | −14.9478 *** | −10.9424 *** | −1.588 *** | −7.366 *** | −16.672 *** | −6.257 *** |
rice paddy | 14.41 *** | −4.809 *** | −2.552 ** | 3.029 *** | −1.173 | −0.04406 | 4.089 *** | −7.7290 *** | −4.8976 *** | −5.2221 *** | −10.5190 *** | −6.0215 *** | −1.829 *** | −9.196 *** | −14.587 *** | −5.348 *** |
soybeans | 5.604 *** | −5.962 *** | −7.536 *** | −5.881 *** | −0.8503 | −5.568 *** | −23.93 *** | −16.9777 *** | −11.8442 *** | −22.1382 *** | −16.0055 *** | −11.6146 *** | −1.583 *** | −6.999 *** | −16.258 *** | −6.156 *** |
sugar beet | 18.91 *** | −3.105 *** | 1.38 | 4.242 *** | −1.8 * | 5.572 *** | 0.3693 | −2.6622 *** | −0.2671 | −0.3601 | −6.2808 *** | −2.2710 ** | −1.362 *** | −6.814 *** | −7.365 ** | −2.869 *** |
sugarcane | 5.157 *** | −15.9 *** | −18.86 *** | −9.73 *** | −10.04 *** | −19 *** | −5.218 *** | −33.4464 *** | −23.2111 *** | −20.2330 *** | −34.1030 *** | −23.2857 *** | 1.801 *** | −9.007 *** | −17.728 *** | −8.348 *** |
sweet potatoes | 5.607 *** | −5.82 *** | −7.376 *** | −4.816 *** | −0.7155 | −5.377 *** | −22.35 *** | −16.9111 *** | −11.7251 *** | −22.2955 *** | −15.7443 *** | −11.4489 *** | −1.799 *** | −8.690 *** | −16.384 *** | −6.213 *** |
tomatoes | 5.647 *** | −5.702 *** | −7.203 *** | −6.012 *** | −0.6103 | −5.175 *** | −23.73 *** | −16.6295 *** | −11.4992 *** | −21.9155 *** | −15.3326 *** | −11.1879 *** | −1.373 *** | −7.209 *** | −16.446 *** | −6.176 *** |
melons | 12.74 *** | −7.774 *** | −6.479 *** | −0.04868 *** | −4.844 *** | −4.906 *** | 2.514 ** | −12.9433 *** | −9.9177 *** | −12.2694 *** | −15.4455 *** | −10.6616 *** | −1.846 *** | −9.151 *** | −27.786 *** | −10.852 *** |
wheat | 5.616 *** | −5.788 *** | −7.334 *** | −5.726 | −0.6872 | −5.327 *** | −23.05 *** | −16.8578 *** | −11.6730 *** | −22.2578 *** | −15.6425 *** | −11.3846 *** | −1.424 *** | −6.371 *** | −16.413 *** | −6.215 *** |
Corruption Indicator | CPI | Control of Corruption | Percentile Rank | |||
---|---|---|---|---|---|---|
Production Price Index | Zbar(Pval) | ZbarTilde(Pvar) | Zbar(Pval) | ZbarTilde(Pvar) | Zbar(Pval) | ZbarTilde(Pvar) |
apples | 0.377(0.709) | −0.415(0.678) | 1.821(0.068) | 0.737(0.461) | 2.110(0.034) | 0.967(0.333) |
bananas | 0.873(0.383) | −0.017(0.986) | 1.587(0.113) | 0.551(0.582) | 1.597(0.110) | 0.559(0.576) |
barley | 0.449(0.654) | −0.354(0.723) | 3.634(0.000) | 2.179(0.029) | 4.136(0.000) | 2.579(0.000) |
cassava | −0.853(0.393) | −1.389(0.165) | 1.587(0.112) | 0.551(0.581) | 2.469(0.000) | 1.253(0.210) |
cucumbers and gherkins | −0.455(0.649) | −1.073(0.283) | −0.009(0.992) | −0.718(0.472) | 1.147(0.251) | 0.201(0.840) |
grapes | 0.671(0.502) | −0.178(0.859) | 2.662(0.008) | 1.406(0.159) | 2.151(0.031) | 0.999(0.317) |
maize | 0.144(0.798) | −0.923(0.231) | 0.262(0.898) | 0.422(0.331) | 1.202(0.199) | 1.541(0.177) |
oil palm | 2.116(0.034) | 0.972(0.331) | 1.672(0.091) | 0.624(0.533) | 1.419(0.155) | 0.417(0.676) |
onions dry | 2.489(0.012) | 1.268(0.204) | 3.512(0.004) | 2.083(0.037) | 4.317(0.000) | 2.772(0.006) |
oranges | 2.841(0.004) | 1.547(0.121) | 1.538(0.124) | 0.513(0.608) | 0.976(0.329) | 0.064(0.448) |
potatoes | 0.241(0.809) | −0.519(0.603) | 1.704(0.088) | 0.644(0.514) | 2.661(0.008) | 1.404(0.160) |
rice paddy | 1.489(0.136) | 0.473(0.636) | 2.689(0.007) | 1.428(0.153) | 3.708(0.000) | 2.238(0.025) |
soybeans | 1.386(0.165) | 0.391(0.697) | 3.105(0.001) | 1.757(0.078) | 3.632(0.003) | 2.177(0.029) |
sugar beet | 2.713(0.007) | 1.446(0.148) | 1.722(0.081) | 0.658(0.511) | 1.206(0.227) | 0.247(0.804) |
sugarcane | 0.812(0.401) | −0.016(0.985) | 1.577(0.209) | 0.541(0.600) | 1.798(0.092) | 0.591(0.467) |
sweet potatoes | 0.533(0.593) | −0.287(0.774) | 1.796(0.072) | 0.718(0.473) | 1.424(0.154) | 0.421(0.674) |
tomatoes | 2.982(0.003) | 1.660(0.097) | 1.904(0.057) | 0.803(0.422) | 0.990(0.322) | 0.076(0.939) |
melons | 1.489(0.136) | 0.404(0.636) | 1.339(0.181) | 0.350(0.726) | 1.146(0.251) | 0.200(0.841) |
wheat | 0.307(0.719) | −0.467(0.640) | 3.720(0.102) | 2.247(0.025) | 3.491(0.001) | 2.067(0.039) |
Corruption Indicator | CPI | Control of Corruption | Percentile | |||
---|---|---|---|---|---|---|
Production Price Index | Zbar(Pval) | ZbarTilde(Pvar) | Zbar(Pval) | ZbarTilde(Pvar) | Zbar(Pval) | ZbarTilde(Pvar) |
apples | 7.65(0.00) | 5.37(0.00) | 2.841(0.004) | 1.548(0.121) | 3.508(0.000) | 2.079(0.037) |
bananas | 5.13(0.00) | 3.37(0.00) | 2.720(0.006) | 1.452(0.146) | 1.891(0.058) | 0.793(0.428) |
barley | 13.53(0.00) | 11.64(0.00) | 5.55(0.00) | 3.705(0.002) | 7.020(0.000) | 4.872(0.000) |
cassava | 5.367(0.00) | 3.557(0.00) | 2.867(0.004) | 1.569(0.117) | 2.298(0.0215) | 1.117(0.264) |
cucumbers and gherkins | 9.413(0.00) | 6.775(0.000) | 4.398(0.000) | 2.787(0.000) | 2.623(0.009) | 1.375(0.169) |
grapes | 6.199(0.000) | 4.219(0.000) | 2.702(0.007) | 1.437(0.150) | 2.460(0.014) | 1.245(0.213) |
maize | 13.533(0.000) | 11.642(0.000) | 5.552(0.000) | 3.799(0.000) | 7.882(0.000) | 4.967(0.000) |
oil palm | 6.034(0.000) | 4.088(0.000) | 2.130(0.031) | 0.983(0.353) | 2.365(0.018) | 1.169(0.242) |
onions dry | 18.272(0.000) | 13.272(0.000) | 2.991(0.002) | 1.674(0.094) | 3.916(0.001) | 2.403(0.016) |
oranges | 6.098(0.000) | 4.137(0.000) | 0.971(0.331) | 0.061(0.951) | 0.642(0.521) | −0.200(0.841) |
potatoes | 11.04(0.00) | 8.067(0.000) | 5.919(0.000) | 3.996(0.000) | 6.393(0.000) | 4.373(0.000) |
rice paddy | 14.36(0.00) | 10.71(0.136) | 1.01(0.31) | 0.09(0.92) | 1.827(0.067) | 0.742(0.458) |
soybeans | 14.02(0.00) | 10.44(0.00) | 6.093(0.000) | 4.134(0.00) | 6.586(0.000) | 4.527(0.000) |
sugar beet | 6.74(0.00) | 4.65(0.00) | 3.639(0.000) | 2.183(0.002) | 2.987(0.003) | 1.664(0.096) |
sugarcane | 6.201(0.000) | 4.288(0.000) | 2.703(0.006) | 1.492(0.110) | 2.498(0.010) | 1.249(0.212) |
sweet potatoes | 7.58(0.00) | 5.32(0.00) | 5.27(0.000) | 3.48(0.000) | 4.954(0.000) | 3.208(0.001) |
tomatoes | 8.67(0.00) | 6.185(0.000) | 5.646(0.000) | 3.699(0.006) | 4.236(0.000) | 2.698(0.008) |
melons | 16.797(0.00) | 12.648(0.000) | 4.076(0.001) | 2.492(0.012) | 1.974(0.04) | 0.858(0.391) |
wheat | 144.5(0.000) | 114.2(0.000) | 4.939(0.000) | 3.217(0.000) | 5.165(0.000) | 3.398(0.000) |
CPI | Control of Corruption | Percentile Rank | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FMOLS | DOLS | CCR | FMOLS | DOLS | CCR | FMOLS | DOLS | CCR | ||||||||||
Beta | Tstat | Beta | Tstat | Beta | Tstat | Beta | Tsat | Beta | Tstat | Beta | Tstat | Beta | Tstat | Beta | Tstat | Beta | Tstat | |
apples | 14.59 | 11.74 | −237.57 | 53.73 | 151.06 | 5.83 | 1.17 | −4.96 | 1.79 | −12.50 | 1.74 | −3.62 | 34.48 | −5.08 | −6.08 | −1.46 | 59.85 | −3.95 |
bananas | 368.82 | 11.61 | 1087.95 | 52.69 | 434.34 | 8.14 | −0.21 | −2.62 | −3.38 | −7.68 | −0.84 | −1.77 | 20.83 | −3.41 | 32.72 | −3.27 | 6.76 | −3.68 |
barley | 227.96 | 20.37 | 495.29 | 87.80 | 341.90 | 12.63 | −1.17 | −1.61 | −2.11 | −2.56 | −1.42 | −0.79 | −36.27 | 1.14 | −60.70 | −5.73 | −36.29 | 1.21 |
cassava | −426.71 | 10.67 | −452.36 | 33.90 | −287.92 | 7.77 | −0.00 | −3.36 | −0.83 | −4.65 | 0.26 | −2.73 | −19.98 | −0.35 | −27.25 | −2.95 | −22.12 | 0.06 |
cucumbers and gherkins | 91.48 | 16.13 | 193.68 | 94.23 | 87.19 | 8.19 | −0.14 | 0.09 | −2.09 | −6.62 | −0.13 | 1.03 | −1.67 | 1.16 | −102.10 | 0.44 | 4.36 | 1.01 |
grapes | −72.45 | 7.01 | 243.38 | 45.41 | −97.56 | 3.45 | −0.49 | −4.90 | 3.17 | −13.67 | −1.11 | −4.36 | −20.74 | −7.43 | 104.13 | −13.73 | −50.11 | −7.44 |
maize | −0.40 | 0.13 | 0.37 | 0.15 | −0.61 | 0.22 | 0.00 | 0.01 | −0.00 | 0.02 | 0.00 | 0.01 | −0.01 | 0.02 | −0.02 | 0.02 | −0.01 | 0.03 |
oil palm fruit | 259.41 | 5.41 | 695.23 | 19.14 | 328.83 | 4.36 | 0.48 | 2.02 | 0.21 | 0.70 | −0.22 | 1.52 | 24.21 | 2.93 | −7.38 | 3.07 | 3.89 | 2.25 |
onions dry | −92.10 | 17.37 | 226.35 | 79.93 | −221.35 | 10.20 | 0.46 | −1.48 | 3.29 | 3.20 | 0.42 | −1.15 | −2.07 | 0.85 | 75.85 | 1.45 | −8.80 | 0.19 |
oranges | 115.19 | 15.50 | −487.32 | 44.41 | 138.59 | 10.19 | −0.47 | −4.34 | −0.97 | −10.25 | −0.69 | −3.22 | 17.72 | −4.09 | −27.53 | −10.48 | 35.28 | −3.91 |
potatoes | 31.64 | 20.26 | −161.44 | 99.16 | 99.90 | 12.18 | −0.05 | −2.66 | −1.25 | −17.55 | −0.09 | −2.89 | 0.62 | −1.52 | −33.33 | −14.74 | 2.78 | −2.55 |
rice paddy | −143.01 | 17.47 | −123.68 | 61.22 | −160.71 | 11.98 | −0.22 | 0.69 | 0.27 | −7.84 | −0.30 | 0.66 | −15.65 | −1.62 | 0.33 | −7.99 | −22.85 | −1.46 |
soybeans | −25.31 | 19.35 | 1286.36 | 74.59 | −127.50 | 12.57 | 0.68 | −11.82 | −0.82 | −15.55 | 0.99 | −8.89 | 8.59 | −8.54 | −21.76 | −16.44 | 11.85 | −6.95 |
sugar beet | −328.38 | −0.71 | 206.26 | 24.44 | −241.55 | −3.34 | −1.09 | 6.50 | −2.00 | 15.13 | −1.92 | 6.06 | −55.01 | 7.22 | −96.87 | 8.32 | −93.12 | 7.42 |
sugarcane | −0.69 | 0.21 | 0.45 | 0.24 | −0.95 | 0.25 | 0.00 | 0.26 | −0.00 | 0.22 | 0.00 | 0.21 | 0.01 | 0.21 | −0.06 | 0.01 | 0.02 | 0.03 |
sweet potatoes | 80.27 | 13.42 | 137.03 | 51.36 | 94.49 | 8.93 | −1.56 | −2.51 | −2.87 | −9.58 | −1.56 | −1.80 | −52.72 | −9.51 | −7.49 | −9.82 | −68.08 | −8.39 |
tomatoes | −45.05 | 22.90 | −320.36 | 112.83 | −52.93 | 13.58 | −0.10 | 0.73 | −0.20 | 1.21 | −0.01 | 0.96 | 1.46 | 5.15 | −6.21 | 0.30 | 4.03 | 3.95 |
melons | 101.99 | 15.78 | 867.22 | 68.32 | −19.64 | 9.91 | −0.02 | 1.30 | 0.66 | −4.42 | 0.31 | 1.04 | 10.79 | −0.71 | 17.73 | −4.13 | 22.68 | −0.97 |
wheat | 106.90 | 11.10 | 59.98 | 107.94 | 116.31 | 3.29 | −0.60 | −3.43 | −3.08 | −8.88 | −0.43 | −2.18 | −13.01 | −13.82 | −79.51 | −7.90 | −2.36 | −12.46 |
Estimation Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|
CPI | Control of Corruption | Percentile Rank | |||||||
FMOLS | DOLS | CCR | FMOLS | DOLS | CCR | FMOLS | DOLS | CCR | |
Country_ID | Beta | Beta | Beta | Beta | Beta | Beta | Beta | Beta | Beta |
Angola | 1430.59 (1596.44) | 5292.97 (4185.87) | 2323.09 (2340.39) | 5.20 (4.81) | 41.88 ** (18.98) | 8.80 (7.70) | 347.01 * (213.71) | 777.43 (630.30) | 504.47 * (311.76) |
Argentina | 0.10 (0.09) | 0.31 (0.27) | 0.10 (0.10) | −0.00 * (0.00) | 0.00 (0.00) | −0.00 * (0.00) | −0.05 * (0.03) | 0.05 (0.05) | −0.05 * (0.04) |
Armenia | −0.01 (0.03) | 0.42 *** (0.10) | −0.02 (0.04) | −0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | −0.03 (0.05) | 0.00 (0.03) | −0.03 (0.05) |
Australia | −0.01 (0.15) | 0.76 *** (0.27) | −0.08 (0.23) | 0.00 (0.00) | 0.00 ** (0.00) | 0.00 (0.00) | 0.01 * (0.01) | 0.04 ** (0.02) | 0.01 (0.01) |
Austria | 0.11 (0.10) | 2.17 *** (0.18) | −0.02 (0.16) | −0.00 (0.00) | −0.01 *** (0.00) | 0.00 (0.00) | −0.01 (0.01) | −0.14 *** (0.01) | 0.01 (0.02) |
Azerbaijan | −0.01 (0.06) | 0.15 ** (0.09) | −0.02 (0.07) | −0.00 (0.00) | −0.00 (0.00) | −0.00 (0.00) | −0.01 (0.03) | −0.01 (0.06) | −0.01 (0.03) |
Belarus | 0.28 *** (0.02) | 0.37 *** (0.02) | 0.28 *** (0.03) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.12 *** (0.01) | 0.20 *** (0.01) | 0.12 *** (0.01) |
Belgium | 0.12 ** (0.07) | 1.91 *** (0.33) | 0.03 (0.10) | 0.00 (0.00) | 0.00 *** (0.00) | 0.00 (0.00) | 0.01 (0.01) | 0.04 *** (0.01) | 0.01 (0.01) |
Bolivia (Plurinational State of) | 0.27 *** (0.04) | 0.52 *** (0.05) | 0.25 *** (0.06) | −0.00 (0.00) | 0.00 (0.00) | −0.00 (0.00) | −0.00 (0.01) | −0.02 (0.02) | −0.01 (0.01) |
Botswana | −1432.66 (3509.61) | −0.00015 *** (2279.56) | −373.40 (4269.56) | 13.62 *** (5.08) | 45.97 *** (9.08) | 9.47 * (6.79) | 302.49 ** (173.93) | 731.28 *** (191.75) | 263.71 (231.95) |
Brazil | 0.11 *** (0.04) | 0.30 *** (0.02) | 0.10 ** (0.05) | 0.00 (0.00) | −0.00 (0.00) | 0.00 (0.00) | 0.03 (0.04) | 0.01 (0.06) | 0.03 (0.04) |
Bulgaria | 0.00 (0.05) | 0.07 (0.12) | 0.00 (0.05) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.03 *** (0.00) | −0.04 *** (0.01) | −0.03 *** (0.00) |
Burkina Faso | −1153.99 (2730.79) | −5462.84 (8503.54) | −2668.68 (4279.11) | 6.10 (9.76) | 0.15 (34.59) | 11.65 (17.35) | 237.95 (410.72) | −121.91 (1435.46) | 529.82 (727.72) |
Cameroon | 2312.75 ** (1277.85) | 799.81 (3201.79) | 3333.54 ** (1701.93) | −7.44 *** (2.72) | −0.99 (11.44) | −11.04 *** (3.87) | 20.86 (94.20) | 415.14 * (267.37) | 49.69 (139.93) |
Canada | 0.48 *** (0.19) | 2.12 *** (0.20) | 0.02 (0.36) | 0.00 (0.00) | −0.00 *** (0.00) | 0.00 (0.00) | 0.01 ** (0.00) | 0.00 (0.01) | 0.00 (0.01) |
Chile | 0.55 *** (0.07) | 0.65 *** (0.05) | 0.54 *** (0.08) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.06 *** (0.00) | −0.08 *** (0.01) | −0.05 *** (0.00) |
China | −0.17 *** (0.04) | −0.14 ** (0.07) | −0.17 *** (0.05) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.05 *** (0.01) | −0.05 *** (0.01) | −0.05 *** (0.01) |
Colombia | 0.31 *** (0.04) | 0.43 *** (0.03) | 0.30 *** (0.04) | −0.00 ** (0.00) | −0.00 *** (0.00) | −0.00 ** (0.00) | −0.05 ** (0.02) | −0.07 *** (0.01) | −0.05 ** (0.02) |
Costa Rica | −1743.69 (2538.86) | 1854.67 (6896.63) | −2705.73 (3871.10) | 3.68 (7.77) | 8.41 (15.09) | 0.92 (11.84) | 84.82 (188.54) | 180.34 (258.03) | −14.57 (285.64) |
Cote d’Ivoire | −171.06 (2166.86) | −226.96 (4011.27) | 138.48 (2474.20) | −0.01 (0.07) | −0.43 *** (0.12) | −0.02 (0.09) | 0.30 *** (0.12) | 0.73 *** (0.27) | 0.26 ** (0.15) |
Croatia | −0.33 *** (0.09) | −1.50 ** (0.76) | −0.35 *** (0.10) | −0.00 (0.00) | −0.01 *** (0.00) | −0.00 (0.00) | −0.02 (0.02) | −0.17 *** (0.02) | −0.03 (0.03) |
Czechia | 0.02 (0.03) | −0.02 (0.03) | 0.04 (0.04) | −0.00 (0.00) | 0.00 *** (0.00) | −0.00 (0.00) | 0.00 (0.01) | 0.06 *** (0.01) | 0.00 (0.01) |
Denmark | −0.65 *** (0.12) | −1.32 *** (0.49) | −0.68 *** (0.13) | 0.00 ** (0.00) | 0.00 *** (0.00) | 0.00 ** (0.00) | 0.02 ** (0.01) | 0.01 * (0.01) | 0.02 * (0.01) |
Ecuador | 0.19 *** (0.07) | 0.41 *** (0.04) | 0.18 ** (0.09) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 ** (0.00) | 0.03 *** (0.01) | 0.07 *** (0.01) | 0.03 *** (0.01) |
Egypt | 0.18 ** (0.09) | 0.89 *** (0.05) | −0.03 (0.22) | 0.00 * (0.00) | 0.00 (0.00) | 0.00 * (0.00) | 0.02 (0.02) | 0.01 (0.04) | 0.03 (0.03) |
El Salvador | −980.42 (1771.66) | −4661.50 (4705.99) | −941.56 (2311.20) | −5.88 (6.42) | −21.29 * (15.60) | −5.90 (9.28) | −326.45 (328.47) | −1448.66 ** (778.05) | −328.60 (473.70) |
Estonia | 0.04 (0.14) | 0.42 * (0.26) | 0.01 (0.21) | 0.00 (0.00) | 0.01 *** (0.00) | 0.00 * (0.00) | 0.03 (0.04) | 0.10 *** (0.02) | 0.03 (0.05) |
Ethiopia | −378.07 (2131.88) | 670.65 (5882.67) | −957.75 (3562.91) | 4.15 (9.74) | 4.19 (34.12) | 0.59 (16.87) | 316.07 (434.54) | 350.71 (1462.57) | 156.29 (753.07) |
Finland | 0.15 (0.23) | 2.93 *** (0.25) | −0.13 (0.44) | −0.00 (0.00) | −0.01 *** (0.00) | −0.00 (0.00) | −0.01 (0.01) | −0.03 *** (0.01) | −0.01 (0.01) |
France | 0.43 *** (0.11) | 1.67 *** (0.11) | 0.31 * (0.20) | 0.00 (0.00) | −0.00 (0.00) | 0.00 (0.00) | 0.01 (0.02) | 0.02 (0.02) | 0.01 (0.02) |
Germany | 0.06 (0.11) | 3.04 *** (0.24) | −0.10 (0.15) | 0.00 (0.00) | 0.00 * (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.05 *** (0.00) | −0.01 (0.01) |
Ghana | 3212.17 ** (1706.82) | 9146.90 *** (1019.60) | 3286.29 * (2094.11) | 8.59* (5.54) | 7.63 (6.42) | 8.88 (7.28) | 459.69 *** (167.89) | 337.19 (384.00) | 469.17 ** (222.91) |
Greece | −0.18 (0.13) | 0.73 *** (0.24) | −0.28 (0.25) | −0.00 (0.00) | −0.02 *** (0.00) | −0.01 * (0.01) | −0.14* (0.11) | −0.64 *** (0.06) | −0.31 ** (0.17) |
Hong Kong | 2089.02 (4726.85) | −0.00012 * (8053.86) | 5390.38 (7095.35) | −13.76 ** (7.60) | 32.88 ** (16.36) | −20.66* (12.50) | −200.87 *** (57.32) | −12.39 (161.30) | −189.52 ** (94.27) |
Hungary | 0.04 (0.07) | 0.58 *** (0.08) | −0.01 (0.10) | −0.00 (0.00) | −0.01 *** (0.00) | 0.00 (0.00) | −0.01 (0.04) | −0.18 *** (0.02) | 0.01 (0.06) |
Iceland | −8224.11 ** (4891.65) | 6532.34 (10250.40) | −0.00011 ** (5548.67) | 55.93 * (34.76) | 24.04 (72.64) | 74.53 ** (41.22) | 600.87 ** (348.97) | 411.28 (694.44) | 822.60 ** (425.68) |
India | 0.33 *** (0.05) | 0.65 *** (0.06) | 0.31 *** (0.08) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.02) | 0.07 (0.06) | 0.02 (0.02) |
Indonesia | −154.99 (1726.91) | −2484.51 (5016.34) | −120.42 (2369.85) | −14.47 (31.88) | −108.00 * (74.94) | −18.92 (43.77) | −673.85 (1359.47) | −4367.71 * (3266.52) | −815.02 (1830.88) |
Ireland | 0.30 ** (0.14) | 1.34 *** (0.24) | 0.22 (0.23) | 0.00 ** (0.00) | 0.00 *** (0.00) | 0.00 * (0.00) | 0.02 *** (0.01) | 0.04 *** (0.01) | 0.03 ** (0.01) |
Israel | 0.18 ** (0.09) | 0.89 *** (0.11) | 0.12 (0.13) | −0.00 ** (0.00) | −0.00 *** (0.00) | −0.00 * (0.00) | −0.06 *** (0.03) | −0.10 *** (0.03) | −0.08 *** (0.03) |
Italy | 0.16 * (0.10) | 1.22 *** (0.06) | −0.03 (0.17) | −0.00 (0.00) | −0.01 *** (0.00) | 0.00 (0.00) | −0.06 (0.07) | −0.24 *** (0.05) | −0.06 (0.12) |
Japan | −0.45 * (0.28) | 3.36 *** (0.35) | −0.61 ** (0.32) | −0.00 (0.00) | 0.01 ** (0.00) | −0.01 ** (0.00) | −0.05 ** (0.02) | 0.16 *** (0.07) | −0.06 *** (0.02) |
Jordan | 0.35 *** (0.06) | 0.76 *** (0.03) | 0.31 *** (0.08) | −0.00 (0.00) | −0.00 * (0.00) | −0.00 (0.00) | −0.00 (0.00) | −0.01 (0.01) | −0.00 (0.00) |
Kazakhstan | 0.25 *** (0.02) | 0.34 *** (0.01) | 0.24 *** (0.02) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.10 *** (0.01) | 0.12 *** (0.01) | 0.10 *** (0.02) |
Kenya | 0.16 *** (0.04) | 0.41 *** (0.03) | 0.14 *** (0.05) | 0.00 (0.00) | 0.00 ** (0.00) | 0.00 (0.00) | −0.01 (0.01) | −0.02 ** (0.01) | −0.01 (0.01) |
Latvia | 0.28 *** (0.05) | 0.60 *** (0.05) | 0.28 *** (0.07) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.03 ** (0.01) | 0.05 *** (0.01) | 0.03 ** (0.01) |
Lithuania | 0.27 *** (0.08) | 0.63 *** (0.13) | 0.26 *** (0.10) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.02 *** (0.01) | 0.05 *** (0.02) | 0.02 *** (0.01) |
Luxembourg | 0.40 *** (0.12) | 2.25 *** (0.25) | 0.38 ** (0.19) | 0.00 (0.00) | 0.01 *** (0.00) | 0.00 (0.00) | 0.03 * (0.02) | 0.10 *** (0.01) | 0.03 * (0.02) |
Malawi | 1593.53 (1558.21) | 8083.53 *** (1472.39) | 3673.39 (3163.77) | 2.23 (4.56) | 87.48 *** (22.26) | −5.37 (9.48) | 70.67 (243.01) | 3556.31 *** (1102.23) | −371.83 (497.85) |
Malaysia | −252.47 (2886.00) | 11365.63 *** (4423.05) | −2092.92 (4473.42) | 1.46 (3.55) | −11.82 (15.30) | 3.23 (6.34) | 30.66 (197.05) | −775.33 ** (364.82) | 72.89 (355.44) |
Mauritius | 1144.22 (2781.87) | −5009.12 (4757.75) | 3331.42 (4311.74) | −1.27 (3.35) | 5.77 (5.53) | −5.76 (5.35) | 39.34 (92.25) | 496.59 (391.66) | −126.57 (147.02) |
Mexico | 0.11 *** (0.03) | 0.44 *** (0.04) | 0.09 ** (0.04) | −0.00 ** (0.00) | −0.01 *** (0.00) | −0.00 ** (0.00) | −0.16 ** (0.08) | −0.44 *** (0.01) | −0.17 * (0.10) |
Morocco | −0.09 (0.09) | 0.79 *** (0.12) | −0.16 * (0.12) | −0.00 (0.00) | −0.00 (0.00) | 0.00 (0.00) | 0.01 (0.04) | 0.00 * (0.04) | 0.02 (0.08) |
Mozambique | −1160.74 (1173.71) | −4288.43 * (2883.68) | −2142.65 (2035.81) | 11.07 (14.51) | 32.74 (30.02) | 21.01 (25.13) | 485.46 (655.35) | 1516.94 (1431.56) | 943.15 (1127.12) |
Namibia | −719.99 (3246.21) | 477.84 (9865.82) | −889.47 (4184.38) | −15.33 *** (5.47) | 24.16* (14.69) | −15.31 ** (7.03) | −514.10 *** (77.78) | −5.04 (409.92) | −518.93 *** (100.43) |
Netherlands | 0.40 *** (0.07) | 1.25 *** (0.08) | 0.33 *** (0.11) | −0.00 (0.00) | −0.00 *** (0.00) | −0.00 (0.00) | −0.00 (0.00) | −0.01 *** (0.00) | −0.00 (0.00) |
New Zealand | 0.22 (0.20) | 1.86 *** (0.43) | 0.12 (0.29) | 0.00 (0.00) | −0.00 *** (0.00) | 0.00 (0.00) | 0.01 (0.01) | 0.02 *** (0.01) | 0.01 (0.01) |
Nigeria | −369.60 (1788.59) | −5233.16 (6213.23) | 337.84 (2843.63) | 19.38* (14.49) | 87.32 ** (47.29) | 29.94 (23.13) | 516.85 (540.48) | 2884.43 *** (1192.88) | 769.70 (890.44) |
Norway | 0.10 (0.23) | 1.73 *** (0.26) | −0.18 (0.42) | 0.00 (0.00) | 0.00 *** (0.00) | 0.00 (0.00) | 0.02 (0.01) | 0.06 *** (0.01) | 0.01 (0.02) |
Peru | −0.27 *** (0.09) | 0.96 *** (0.36) | −0.26 *** (0.09) | 0.00 (0.00) | −0.01 *** (0.00) | 0.01 ** (0.00) | 0.08 (0.08) | −0.31 *** (0.12) | 0.34 ** (0.18) |
Philippines | 4695.61 *** (1855.52) | 7122.28 *** (491.97) | 5835.36 *** (2218.88) | 15.14 *** (5.50) | 28.15 *** (11.45) | 23.05 *** (7.74) | 531.83 ** (253.33) | 1023.98 ** (475.36) | 868.51 *** (360.58) |
Poland | 0.18 *** (0.06) | 0.83 *** (0.14) | 0.16 ** (0.09) | 0.00 (0.00) | 0.01 *** (0.00) | 0.00 (0.00) | 0.01* (0.01) | 0.10 *** (0.02) | 0.01 (0.01) |
Portugal | −0.23 * (0.14) | 2.91 *** (0.39) | −0.33 ** (0.17) | 0.00 * (0.00) | −0.01 *** (0.00) | 0.01 *** (0.00) | 0.03 (0.03) | −0.19 *** (0.05) | 0.21 ** (0.10) |
Republic of Korea | −0.06 *** (0.02) | −0.12 *** (0.01) | −0.08 *** (0.03) | −0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | −0.02* (0.02) | −0.03 *** (0.01) | −0.02 (0.02) |
Republic of Moldova | 0.13 *** (0.05) | 0.44 *** (0.04) | 0.12 ** (0.07) | −0.00 (0.00) | 0.00 (0.00) | −0.00 (0.00) | −0.02* (0.01) | −0.02 (0.03) | −0.02 (0.02) |
Romania | 0.28 *** (0.05) | 0.68 *** (0.12) | 0.27 *** (0.07) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.00 *** (0.00) | 0.13 *** (0.03) | 0.19 *** (0.02) | 0.14 *** (0.03) |
Russian Federation | 0.22 *** (0.04) | 0.35 *** (0.03) | 0.21 *** (0.05) | −0.00 (0.00) | 0.00 (0.00) | −0.00 (0.00) | −0.03 (0.03) | −0.03 (0.02) | −0.03 (0.04) |
Senegal | 723.19 (2982.32) | −0.00014 *** (3659.65) | 3568.95 (4764.80) | 3.12 (14.67) | −122.23 *** (25.97) | 23.61 (29.48) | 81.17 (583.66) | −5034.26 *** (871.95) | 902.10 (1173.70) |
Singapore | 9025.42 ** (4484.05) | 11,093.92 ** (5186.71) | 12,805.86 ** (5945.78) | −13.41 *** (4.56) | −5.67 (9.03) | −19.12 *** (6.00) | −3.95 (40.32) | 94.43 ** (49.18) | 2.48 (61.33) |
Slovakia | 0.03 ** (0.01) | 0.14 ** (0.07) | 0.08 *** (0.03) | −0.00 (0.00) | −0.01 ** (0.00) | 0.00 (0.00) | −0.01 (0.02) | −0.22 ** (0.12) | −0.00 (0.07) |
Slovenia | 0.10 * (0.07) | 1.08 *** (0.17) | 0.07 (0.09) | −0.00 ** (0.00) | −0.00 *** (0.00) | −0.00 * (0.00) | −0.03 *** (0.01) | −0.10 *** (0.02) | −0.03 * (0.02) |
South Africa | 0.38 *** (0.05) | 0.61 *** (0.03) | 0.37 *** (0.06) | −0.00 *** (0.00) | −0.01 *** (0.00) | −0.00 *** (0.00) | −0.16 *** (0.04) | −0.16 *** (0.01) | −0.17 *** (0.04) |
Spain | 0.10 (0.12) | 2.10 *** (0.18) | −0.07 (0.19) | −0.00 (0.00) | −0.03 *** (0.00) | 0.00 (0.01) | −0.07 (0.10) | −0.58 *** (0.06) | −0.12 (0.17) |
Sweden | 0.34 *** (0.13) | 1.99 *** (0.15) | 0.18 (0.20) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.01 *** (0.00) | 0.00 (0.00) |
Switzerland | −0.04 (0.20) | 1.81 *** (0.54) | −0.15 (0.33) | 0.00 (0.00) | −0.00 (0.00) | −0.00 (0.00) | 0.01 *** (0.01) | 0.02 *** (0.00) | 0.02 ** (0.01) |
Taiwan | 503.92 (3218.16) | −9542.33 ** (4385.26) | 2946.65 (4410.63) | 1.10 (8.63) | −31.26 * (19.55) | 14.29 (12.59) | 31.40 (114.86) | −846.07 ** (452.03) | 312.82 ** (169.82) |
Thailand | 154.35 (2267.22) | 9164.14 * (5722.67) | 451.60 (2097.71) | 9.24 (12.04) | −12.20 (25.00) | 9.89 (12.53) | 491.46 (604.66) | −690.79 (1477.07) | 613.56 (731.39) |
Tunisia | 0.02 (0.03) | 0.99 *** (0.05) | 0.00 (0.04) | −0.00 (0.00) | −0.00 *** (0.00) | 0.00 (0.00) | 0.01 (0.04) | −0.04 ** (0.03) | 0.01 (0.05) |
Turkey | 0.20 *** (0.07) | 0.49 *** (0.13) | 0.20 ** (0.09) | 0.00 * (0.00) | 0.00 * (0.00) | 0.00 * (0.00) | 0.09 ** (0.05) | 0.11 * (0.07) | 0.09 ** (0.06) |
Uganda | −2557.22 ** (1217.90) | −6165.29 *** (351.11) | −3252.83 ** (1557.02) | 23.98 ** (14.34) | 55.40 *** (5.81) | 30.14 ** (17.66) | 1014.21 ** (501.61) | 2120.34 *** (159.47) | 1213.87 ** (614.77) |
Ukraine | 0.18 *** (0.02) | 0.33 *** (0.02) | 0.18 *** (0.02) | 0.00 * (0.00) | 0.00 (0.00) | 0.00 * (0.00) | 0.02 * (0.01) | 0.01 (0.02) | 0.02 * (0.01) |
United Kingdom of Great Britain and Northern Ireland | 0.34 *** (0.08) | 1.76 *** (0.13) | 0.21* (0.13) | −0.00 (0.00) | −0.00 (0.00) | −0.00 (0.00) | −0.01 (0.01) | −0.02 * (0.01) | −0.00 (0.01) |
United Republic of Tanzania | −2772.60 *** (1020.73) | −6343.91 *** (1207.91) | −2943.30 ** (1303.86) | −4.16 (8.43) | −7.11 (21.68) | −6.35 (10.71) | −178.14 (372.07) | −354.41 (1476.10) | −272.15 (469.63) |
United States of America | −0.03 (0.03) | −0.16 *** (0.01) | −0.02 (0.03) | −0.00 (0.00) | −0.01 *** (0.00) | −0.00 (0.00) | 0.01 (0.02) | −0.06 ** (0.04) | 0.02 (0.02) |
Uzbekistan | −2197.27 * (1350.77) | 343.73 (2635.36) | −2598.15 ** (1516.11) | −4.53 (5.69) | −12.78 (12.87) | −1.29 (7.11) | −378.14 ** (172.57) | −838.89 ** (399.73) | −298.68 * (218.00) |
Venezuela (Bolivarian Republic of) | −313.63 (999.45) | −3940.23 *** (1223.42) | −311.81 (1000.51) | −1.12 (31.55) | 66.44 ** (31.99) | −2.97 (35.73) | −488.13 (786.01) | 1713.22 *** (622.73) | −518.45 (816.48) |
Vietnam | 1312.86 (1865.61) | −4968.46 *** (1920.40) | 2293.69 (2261.16) | 8.55 * (5.73) | −31.35 *** (2.31) | 17.58 ** (8.12) | 222.81 (203.76) | −1542.48 *** (218.57) | 647.24 ** (301.62) |
Yugoslavia | −35.05 ** (15.99) | 0.07 ** (0.04) | −48.14 ** (23.19) | −0.32 *** (0.09) | −0.58 *** (0.22) | −0.34 *** (0.13) | 0.03 (0.23) | 0.22 (0.27) | 0.17 (0.33) |
Zambia | −2274.29 (2072.72) | 7222.26 (5680.93) | −3485.33 * (2439.89) | −5.35 (6.36) | −26.11 (22.97) | −18.21 ** (10.85) | −18.86 (286.52) | −1117.25 (1073.92) | −301.83 (520.45) |
Zimbabwe | −0.00 *** (0.00) | −0.00 * (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) | −0.00 *** (0.00) |
Panel Mean | 14.59 | −237.57 | 151.06 | 1.17 | 1.79 | 1.74 | 34.48 | −6.08 | 59.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, P.; Martinho, V.J.P.D.; Mourao, P. Corruption and Inflation in Agricultural Production: The Problem of the Chicken and the Egg. Economies 2022, 10, 268. https://doi.org/10.3390/economies10110268
Peixoto P, Martinho VJPD, Mourao P. Corruption and Inflation in Agricultural Production: The Problem of the Chicken and the Egg. Economies. 2022; 10(11):268. https://doi.org/10.3390/economies10110268
Chicago/Turabian StylePeixoto, Paulo, Vítor João Pereira Domingues Martinho, and Paulo Mourao. 2022. "Corruption and Inflation in Agricultural Production: The Problem of the Chicken and the Egg" Economies 10, no. 11: 268. https://doi.org/10.3390/economies10110268
APA StylePeixoto, P., Martinho, V. J. P. D., & Mourao, P. (2022). Corruption and Inflation in Agricultural Production: The Problem of the Chicken and the Egg. Economies, 10(11), 268. https://doi.org/10.3390/economies10110268