A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems
Abstract
1. Introduction
- To conduct a systematic review of Mamdani, T-S, and Type-2 fuzzy controllers in PV systems, focusing on advanced MPPT techniques and hybrid architectures integrating AI.
- To examine and classify the main strategies reported in the literature while identifying the trends, strengths, and limitations of each paradigm.
- To highlight existing research gaps and propose recommendations for developing more robust and efficient control solutions.
- To suggest future directions, including adaptive control schemes, experimental validation in real-world environments, and deployment on high-performance embedded platforms.
- To provide a comprehensive reference for researchers and practitioners, thereby establishing a conceptual framework for optimizing the stability and efficiency of PV systems under dynamic operating conditions.
2. Theoretical Background
3. Materials and Methods
4. Mamdani Fuzzy Control Systems
Ref. | Fuzzy Rules | Membership Function | Simulation Platform | Main Contribution |
---|---|---|---|---|
[37] | 16, 25, 42 | Triangular | MatLab/Simulink | Adaptive MFLC P&O, fast response, stable, lower overshoot. |
[63] | 25 | Triangular | MatLab/Simulink | Modified MFLC P&O variable pitch size, minimal oscillations, fast response. |
[64] | 25 | Triangular | MatLab/Simulink | MFLC with PI control, oscillation reduction, minimal impulses. |
[65] | 49 | Triangular | MatLab/Simulink | Asymmetric MFLC in GMPP, low energy losses stationary and dynamic. |
[66] | 49 | Triangular | MatLab/Simulink | PI with MFLC, low energy losses, improved performance. |
[67] | 8 | Triangular | MatLab/Simulink | Reduced MFLC in rules, stability at high frequencies. |
[51] | 25 | Triangular Trapezoidal Gaussian Gbell | MatLab/Simulink | MFLC applying Gbell, high precision, stability at high frequencies. |
[68] | 25 | Triangular | MatLab/Simulink | Better rise time, better performance. |
[69] | 49 | Triangular Trapezoidal | MatLab/Simulink | MFLC and FPGA card, better efficiency in the PV system. |
[70] | 5 | Triangular | Matlab/Simulink y Experimental | Improved efficiency, stable even with variations. |
[71] | 25 | Triangular | MatLab/Simulink | Conversion efficiency DC–AC energy. |
[7] | 25 | Triangular | MatLab/Simulink | Reduction of oscillations, system stability. |
[72] | 25 | Triangular | MatLab/Simulink | Tracking efficiency GMPP, configuration TCT, maximum power. |
[73] | 25, 49 | Triangular | MatLab/Simulink | Optimizes MPPT, improves dynamic response, reduces THD factor. |
[74] | 25 | Triangular | MatLab/Simulink | MPPT tracking efficiency, lower oscillations |
[75] | 25 | Triangular | MatLab/Simulink | Convergence speed, reduction in ripples, high efficiency. |
[77] | 49 | Triangular | MatLab/Simulink | Voltage stability of the system, without oscillations in steady state. |
[76] | 20 | Triangular | MatLab/Simulink | Improved MPPT tracking speed, reduced oscillations. |
5. Takagi–Sugeno Fuzzy Controllers in Photovoltaic Systems
6. Type-2 Fuzzy Systems
7. Discussion
7.1. Critical Insights and Research Gaps
7.2. Limitations of Fuzzy Controllers in PV Systems
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony algorithm |
AI | Artificial Intelligence |
AIT2FAC | Adaptive Internal Type-2 Fuzzy Adaptive Control |
ANN | Artificial Neural Network |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
BIFRED | Boost-Integrated Flyback–Forward |
DSP | Digital Signal Processors |
DC–DC | Direct Current-to-Direct Current |
DOI | Digital Object Identifier |
EMS | Energy Management System |
EV | Electric Vehicle |
FA | Firefly Algorithm |
FL | Fuzzy Logic |
FLC | Fuzzy Logic Controller |
FLS | Fuzzy Logic System |
FOU | Footprint of Uncertainty |
FPGA | Field-Programmable Gate Array |
GA | Genetic Algorithm |
GMPP | Global Maximum Power Point |
GWO | Grey Wolf Optimization |
HIL | Hardware-in-the-Loop |
IEEE | Institute of Electrical and Electronics Engineers |
INC | Incremental Conductance |
IncCond | Incremental Conductance |
IoT | Internet of Things |
IT2FLS | Interval Type-2 Fuzzy Logic System |
IT2-TKS-FLC | Interval Type-2 Takagi–Sugeno–Kang Fuzzy Logic Controller |
KM | Karnik–Mendel algorithm |
LMI | Linear Matrix Inequality |
MFLC | Mamdani Fuzzy Logic Controller |
MLP | Multilayer Perception |
MPP | Maximum Power Point |
MPPT | Maximum Power Point Tracking |
MSE | Mean Squared Error |
OPAL-RT | Trusted Real-Time Simulation Solutions |
PI | Proportional–Integral |
PIC | Peripheral Interface Controller |
PID | Proportional–Integral–Derivative |
P&O | Perturb-and-Observe |
POESLLC | Positive-Output Elementary Super-Lift Luo Converter |
PQ | Active Power and Reactive Power |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PSO | Particle Swarm Optimization |
PV | Photovoltaic |
PVA | Apparent Volt-Ampere Power |
RMSE | Root Mean Square Error |
T1FLC | Type-1 Fuzzy Logic Controller |
T2FLC | Type-2 Fuzzy Logic Controller |
TCT | Total Cross-Tied |
THD | Total Harmonic Distortion |
TS FLC | Takagi–Sugeno Fuzzy Logic Controller |
T-S | Takagi–Sugeno |
References
- Pawar, B.; Batzelis, E.I.; Chakrabarti, S.; Pal, B.C. Grid-forming control for solar PV systems with power reserves. IEEE Trans. Sustain. Energy 2021, 12, 1947–1959. [Google Scholar] [CrossRef]
- Ali, A.I.M.; Mohamed, H.R.A. Improved P&O MPPT algorithm with efficient open-circuit voltage estimation for two-stage grid-integrated PV system under realistic solar radiation. Int. J. Electr. Power Energy Syst. 2022, 137, 107805. [Google Scholar]
- Hassan, A.; Bass, O.; Masoum, M.A.S. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Rep. 2023, 9, 1535–1548. [Google Scholar] [CrossRef]
- Ketjoy, N.; Chamsa-ard, W.; Mensin, P. Analysis of factors affecting efficiency of inverters: Case study grid-connected PV systems in lower northern region of Thailand. Energy Rep. 2021, 7, 3857–3868. [Google Scholar] [CrossRef]
- Irshad, A.S.; Ludin, G.A.; Masrur, H.; Ahmadi, M.; Yona, A.; Mikhaylov, A.; Krishnan, N.; Senjyu, T. Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis. Renew. Energy 2023, 207, 714–730. [Google Scholar] [CrossRef]
- Venkateswari, R.; Sreejith, S. Factors influencing the efficiency of photovoltaic system. Renew. Sustain. Energy Rev. 2019, 101, 376–394. [Google Scholar] [CrossRef]
- Bouarroudj, N.; Abdelkrim, T.; Farhat, M.; Feliu-Batlle, V.; Benlahbib, B.; Boukhetala, D.; Boudjema, F. Fuzzy Logic Controller Based Maximum Power Point Tracking and its Optimal Tuning in Photovoltaic Systems. Serbian J. Electr. Eng. 2021, 18, 351–384. [Google Scholar] [CrossRef]
- Ilyas, A.; Khan, M.R.; Ayyub, M. FPGA based real-time implementation of fuzzy logic controller for maximum power point tracking of solar photovoltaic system. Optik 2022, 213, 164668. [Google Scholar] [CrossRef]
- de Lima, T.M.; Oliveira, J.A.C.B. FPGA-based Fuzzy Logic Controllers Applied to the MPPT of PV Panels—A Systematic Review. IEEE Trans. Fuzzy Syst. 2024, in press. [CrossRef]
- Arcos-Aviles, D.; Pacheco, D.; Pereira, D.; Garcia-Gutierrez, G.; Carrera, E.V.; Ibarra, A.; Ayala, P.; Martínez, W.; Guinjoan, F. A comparison of fuzzy-based energy management systems adjusted by nature-inspired algorithms. Appl. Sci. 2021, 11, 1663. [Google Scholar] [CrossRef]
- Masry, M.Z.E.; Mohammed, A.; Amer, F.; Mubarak, R. New hybrid MPPT technique including artificial intelligence and traditional techniques for extracting the global maximum power from partially shaded PV systems. Sustainability 2023, 15, 10884. [Google Scholar] [CrossRef]
- Zafar, M.H.; Khan, N.M.; Mirza, A.F.; Mansoor, M.; Akhtar, N.; Qadir, M.U.; Khan, N.A.; Moosavi, S.K.R. A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading condition. Sustain. Energy Technol. Assessments 2021, 47, 101367. [Google Scholar] [CrossRef]
- Abidi, H.; Sidhom, L.; Chihi, I. Systematic literature review and benchmarking for photovoltaic MPPT techniques. Energies 2023, 16, 3509. [Google Scholar] [CrossRef]
- Devarakonda, A.K.; Karuppiah, N.; Selvaraj, T.; Balachandran, P.K.; Shanmugasundaram, R.; Senjyu, T. A comparative analysis of maximum power point techniques for solar photovoltaic systems. Energies 2022, 15, 8776. [Google Scholar] [CrossRef]
- Katche, M.L.; Makokha, A.B.; Zachary, S.O.; Adaramola, M.S. A comprehensive review of maximum power point tracking (MPPT) techniques used in solar PV systems. Energies 2023, 16, 2206. [Google Scholar] [CrossRef]
- Rodríguez-Abreo, O.; Rodríguez-Reséndiz, J.; García-Cerezo, A.; García-Martínez, J.R. Fuzzy logic controller for UAV with gains optimized via genetic algorithm. Heliyon 2024, 10, e26363. [Google Scholar] [CrossRef]
- Rojas-Galván, R.; García-Martínez, J.R.; Cruz-Miguel, E.E.; Barra-Vázquez, O.A.; Olmedo-García, L.F.; Rodríguez-Reséndiz, J. Hunting search algorithm-based adaptive fuzzy tracking controller for an aero-pendulum. Technologies 2024, 12, 63. [Google Scholar] [CrossRef]
- Vinitha, J.; Ramadas, G.; Rani, P.U. PSO based fuzzy logic controller for load frequency control in EV charging station. J. Electr. Eng. Technol. 2024, 19, 193–208. [Google Scholar] [CrossRef]
- Zehra, S.S.; Ahmed, S.H.; Ahmad, I.; Grimaccia, F.; Niccolai, A.; Mussetta, M. A Grey Wolf-Driven Refinement of Fuzzy-Based Controller for Enhanced DC Microgrid Operation. In Proceedings of the 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Drir, N.; Barazane, L.; Loudini, M. Comparative study of maximum power point tracking methods of photovoltaic systems. In Proceedings of the CISTEM, Tunis, Tunisia, 3–6 November 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Rehman, T.u.; Qaisrani, M.A.; Shafiq, M.B.; Filali Baba, Y.; Aslfattahi, N.; Shahsavar, A.; Cheema, T.A.; Park, C.W. Global perspectives on advancing photovoltaic system performance—A state-of-the-art review. Renew. Sustain. Energy Rev. 2025, 207, 114889. [Google Scholar] [CrossRef]
- Hernández Mora, J.A.; Cortés Borray, A.F.; Balaguera Cañola, D.A.; Urueña Saavedra, M.A. Aplicación de los sistemas fotovoltaicos conectados a la red: Estado del arte. Tecnura 2014, 18, 157–172. [Google Scholar] [CrossRef]
- Roldán Rojas, J. Sistemas fotovoltaicos en Arquitectura y Urbanismo. Rev. Urban. 2005, 12, 45–61. [Google Scholar] [CrossRef]
- Carrera, L.A.I.; Molina-Santana, E.; Álvarez Alvarado, J.M.; García-Martínez, J.R.; Rodríguez-Reséndiz, J. Energy Efficiency Analysis of East-West Oriented Photovoltaic Systems for Buildings: A Technical-Economic-Environmental Approach. IEEE Access 2023, 11, 137660–137679. [Google Scholar] [CrossRef]
- Abou Jieb, Y.; Hossain, E. Photovoltaic Systems; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Ma, T.; Yang, H.; Lu, L. Solar photovoltaic system modeling and performance prediction. Renew. Sustain. Energy Rev. 2014, 36, 304–315. [Google Scholar] [CrossRef]
- Salman, U.H.; Nawaf, S.F.; Salih, M.O. Studying and analyzing the performance of photovoltaic system by using fuzzy logic controller. Bull. Electr. Eng. Inform. 2022, 11, 1687–1695. [Google Scholar] [CrossRef]
- Chekenbah, H.; El Abderrahmani, A.; Aghanim, A.; Maataoui, Y.; Lasri, R. Solving problem of partial shading condition in a photovoltaic system through a self-adaptive fuzzy logic controller. Int. J. Tech. Phys. Probl. Eng. 2021, 13, 130–137. [Google Scholar]
- Dawan, P.; Sriprapha, K.; Kittisontirak, S.; Boonraksa, T.; Junhuathon, N.; Titiroongruang, W.; Niemcharoen, S. Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model. Energies 2020, 13, 351. [Google Scholar] [CrossRef]
- Mansouri, M.M.; Hadjeri, S.; Brahami, M. New Method of Detection, Identification, and Elimination of Photovoltaic System Faults in Real Time Based on the Adaptive Neuro-Fuzzy System. IEEE J. Photovoltaics 2021, 11, 798–806. [Google Scholar] [CrossRef]
- Salameh, T.; Farag, M.M.; Hamid, A.K.; Hussein, M. Adaptive Neuro-Fuzzy Inference System for Accurate Power Forecasting for On-Grid Photovoltaic Systems: A Case Study in Sharjah, UAE. Energy Convers. Manag. X 2025, 26, 100958. [Google Scholar] [CrossRef]
- Seshadri, G.; Marutheswar, G.V. A Novel Architecture for Series-Connected Photovoltaic Distributed System with Enhanced Power Quality Using Type-II Fuzzy Controller. Int. J. Intell. Eng. Syst. 2018, 11, 178–186. [Google Scholar] [CrossRef]
- Gani, A. Improving Dynamic Efficiency of Photovoltaic Generation Systems Using Adaptive Type-2 Fuzzy-Neural Network via EN 50530 Test Procedure. Int. J. Circuit Theory Appl. 2021, 49, 3922–3940. [Google Scholar] [CrossRef]
- Elsevier. Scopus—Abstract and Citation Database. Available online: https://www.scopus.com (accessed on 11 July 2025).
- van Eck, N.J.; Waltman, L. VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com (accessed on 11 July 2025).
- Laagoubi, T.; Bouzi, M.; Benchagra, M. MPPT & Power Factor Control for Grid Connected PV Systems with Fuzzy Logic Controllers. Int. J. Power Electron. Drive Syst. 2018, 9, 105–113. [Google Scholar] [CrossRef]
- Zainuri, M.A.A.M.; Azari, E.A.; Ibrahim, A.A.; Ayob, A.; Yusof, Y.; Radzi, M.A.M. Analysis of Adaptive Perturb and Observe-Fuzzy Logic Control Maximum Power Point Tracking for Photovoltaic Boost DC-DC Converter. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 201–210. [Google Scholar] [CrossRef]
- Samavat, T.; Nazari, M.; Ghalehnoie, M.; Azimi Nasab, M.; Zand, M.; Sanjeevikumar, P.; Khan, B. A Comparative Analysis of the Mamdani and Sugeno Fuzzy Inference Systems for MPPT of an Islanded PV System. Int. J. Energy Res. 2023, 2023, 7676113. [Google Scholar] [CrossRef]
- Mastacan, L.; Dosoftei, C.C. Temperature Fuzzy Control System with Mamdani Controller. In Proceedings of the 2018 International Conference on Electrical and Power Engineering (ICEPE), Brno, Czech Republic, 18–19 October 2018; pp. 352–356. [Google Scholar] [CrossRef]
- Prasetyo, B.; Aziz, F.S.; Handayani, A.N.; Priharta, A.; Bin Che Ani, A.I. Lux and current analysis on lab-scale smart grid system using Mamdani fuzzy logic controller. J. Mechatron. Electr. Power Veh. Technol. 2020, 11, 11–21. [Google Scholar] [CrossRef]
- Malar, A.J.G.; Kumar, C.A.; Saravanan, A.G. IoT based sustainable wind green energy for smart cities using fuzzy logic based fractional order darwinian particle swarm optimization. Measurement 2020, 166, 108208. [Google Scholar] [CrossRef]
- Lee, M.F.R.; Nugroho, A. Intelligent Energy Management System for Mobile Robot. Sustainability 2022, 14, 10056. [Google Scholar] [CrossRef]
- Yuan, Y.; Long, A.; Wu, Y.; Li, X. Closed-loop transcranial ultrasound stimulation with a fuzzy controller for modulation of motor response and neural activity of mice. J. Neural Eng. 2022, 19, 036046. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Plasencia, E.; Carrillo-Serrano, R.V.; Rivas-Araiza, E.A.; Toledano-Ayala, M. SCADA-Based Heliostat Control System with a Fuzzy Logic Controller for the Heliostat Orientation. Appl. Sci. 2019, 9, 2966. [Google Scholar] [CrossRef]
- Aldosary, A.; Ali, Z.M.; Alhaider, M.M.; Ghahremani, M.; Dadfar, S.; Suzuki, K. A modified shuffled frog algorithm to improve MPPT controller in PV system with storage batteries under variable atmospheric conditions. Control Eng. Pract. 2021, 112, 104831. [Google Scholar] [CrossRef]
- Guo, S.; Abbassi, R.; Jerbi, H.; Rezvani, A.; Suzuki, K. Efficient maximum power point tracking for a photovoltaic using hybrid shuffled frog-leaping and pattern search algorithm under changing environmental conditions. J. Clean. Prod. 2021, 297, 126573. [Google Scholar] [CrossRef]
- Khan, M.; Raza, M.A.; Jumani, T.A.; Mirsaeidi, S.; Ali, A.; Abbas, G.; Touti, E.; Alshahir, A. Modeling of intelligent controllers for solar photovoltaic system under varying irradiation conditions. Front. Energy Res. 2023, 11, 1288486. [Google Scholar] [CrossRef]
- da Rocha, M.V.; Sampaio, L.P.; da Silva, S.A.O. Comparative analysis of MPPT algorithms based on Bat algorithm for PV systems under partial shading condition. Sustain. Energy Technol. Assessments 2020, 40, 100761. [Google Scholar] [CrossRef]
- Dehghani, M.; Taghipour, M.; Gharehpetian, G.B.; Abedi, M. Optimized Fuzzy Controller for MPPT of Grid-connected PV Systems in Rapidly Changing Atmospheric Conditions. J. Mod. Power Syst. Clean Energy 2021, 9, 376–387. [Google Scholar] [CrossRef]
- Sreedhar, R.; Karunanithi, K.; Ramesh, S. Design, implementation and empirical analysis of a cascaded hybrid MPPT controller for grid tied solar photovoltaic systems under partial shaded conditions. Meas. Sens. 2024, 31, 100961. [Google Scholar] [CrossRef]
- Sutikno, T.; Subrata, A.C.; Elkhateb, A. Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System. IEEE Access 2021, 9, 109157–109165. [Google Scholar] [CrossRef]
- Chouksey, L.; Pattanaik, P.A.; Saket, R. Maximum power point tracking of photovoltaic system using two input and two output fuzzy system. In Power Electronics and Renewable Energy Systems: Proceedings of ICPERES 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 245–253. [Google Scholar]
- Cheng, P.C.; Peng, B.R.; Liu, Y.H.; Cheng, Y.S.; Huang, J.W. Optimization of a fuzzy-logic-control-based MPPT algorithm using the particle swarm optimization technique. Energies 2015, 8, 5338–5360. [Google Scholar] [CrossRef]
- Shiau, J.K.; Wei, Y.C.; Lee, M.Y. Fuzzy controller for a voltage-regulated solar-powered MPPT system for hybrid power system applications. Energies 2015, 8, 3292–3312. [Google Scholar] [CrossRef]
- Kamalakar, P.; Kumar, B.S.; Upendar, J. Performance Enhancement of Hybrid-Type Full-Bridge DC/DC Converter with Fuzzy MPPT for Efficient Photovoltaic Power Extraction. SSRG Int. J. Electr. Electron. Eng. 2024, 11, 291–301. [Google Scholar]
- Sutikno, T.; Subrata, A.C.; Jusoh, A. A New FL-MPPT High Voltage DC-DC Converter for PV Solar Application. Distrib. Gener. Altern. Energy J. 2022, 37, 1527–1548. [Google Scholar] [CrossRef]
- Tapia, C.; Ulloa, D.; Pacheco-Cunduri, M.; Hernández-Ambato, J.; Rodríguez-Flores, J.; Herrera-Perez, V. Optimal Fuzzy-Based Energy Management Strategy to Maximize Self-Consumption of PV Systems in the Residential Sector in Ecuador. Energies 2022, 15, 5165. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Y.; Li, B.; Hao, J. A Collaborative Fuzzy Control Strategy of Aggregated Regenerative Electric Heaters for Real-Time Energy Balance in Micro-Grid. IEEE Access 2019, 7, 79388–79399. [Google Scholar] [CrossRef]
- Khan, M.R.; Motakabber, S.M.A.; Alam, A.Z.; Wafa, S.A.F. Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System. IUM Eng. J. 2022, 23, 138–153. [Google Scholar] [CrossRef]
- Ahmed, W.; Sheikh, J.A.; Kouzani, A.Z.; Mahmud, M.A.P. The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study. Sustainability 2020, 12, 8351. [Google Scholar] [CrossRef]
- Sarita, S.; Reddy, S.S.; Sujatha, P. Control strategies for power quality enrichment in Distribution network using UPQC. Mater. Today Proc. 2023, 80, 2872–2882. [Google Scholar] [CrossRef]
- Peyghami, S.; Palensky, P.; Fotuhi-Firuzabad, M.; Blaabjerg, F. System-level design for reliability and maintenance scheduling in modern power electronic-based power systems. IEEE Open Access J. Power Energy 2020, 7, 414–429. [Google Scholar] [CrossRef]
- Krim, S.A.; Krim, F.; Afghoul, H.; Abdelmalek, F. An Improved Perturb and Observe MPPT for Photovoltaic Systems Using Fuzzy Step Size. WSEAS Trans. Power Syst. 2024, 19, 105–114. [Google Scholar] [CrossRef]
- Slamet; Rijanto, E.; Nugroho, A.; Ghani, R.A. A Robust Maximum Power Point Tracking Control for PV Panel using Adaptive PI Controller Based on Fuzzy Logic. TELKOMNIKA Telecommun. Comput. Electron. Control 2020, 18, 2999–3010. [Google Scholar] [CrossRef]
- Verma, P.; Garg, R.; Mahajan, P. Asymmetrical fuzzy logic control-based MPPT algorithm for stand-alone photovoltaic systems under partially shaded conditions. Sci. Iran. 2020, 27, 3162–3174. [Google Scholar] [CrossRef]
- Giurgi, G.I.; Szolga, L.A.; Giurgi, D.V. Benefits of Fuzzy Logic on MPPT and PI Controllers in the Chain of Photovoltaic Control Systems. Appl. Sci. 2022, 12, 2318. [Google Scholar] [CrossRef]
- Farah, L.; Haddouche, A.; Haddouche, A. Comparison between proposed fuzzy logic and ANFIS for MPPT control for photovoltaic system. Int. J. Power Electron. Drive Syst. 2020, 11, 1065–1073. [Google Scholar] [CrossRef]
- El-Khatib, M.F.; Sabry, M.N.; Abu El-Sebah, M.I.; Maged, S.A. Experimental Modeling of a New Multi-Degree-of-Freedom Fuzzy Controller Based Maximum Power Point Tracking from a Photovoltaic System. Appl. Syst. Innov. 2022, 5, 114. [Google Scholar] [CrossRef]
- Ilyas, A.; Ayyub, M.; Khan, M.R. Modelling and simulation of MPPT techniques for solar photovoltaic system using genetic algorithm optimised fuzzy logic controller. Int. J. Energy Technol. Policy 2020, 16, 174–195. [Google Scholar] [CrossRef]
- Bouarroudj, N.; Benlahbib, B.; Houam, Y.; Sedraoui, M.; Feliu-Batlle, V.; Abdelkrim, T.; Boukhetala, D.; Boudjema, F. Fuzzy based incremental conductance algorithm stabilized by an optimal integrator for a photovoltaic system under varying operating conditions. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 47, 9682–9707. [Google Scholar] [CrossRef]
- Mohd Taib, N.S.; Mohammad Noor, S.Z.; Musa, S.; Abd Aziz, P.D. Fuzzy logic control based MPPT for standalone photovoltaic system with battery storage. Int. J. Power Electron. Drive Syst. 2023, 14, 2527–2536. [Google Scholar] [CrossRef]
- Naick, B.K.; Chatterjee, K.; Chatterjee, T.K. Fuzzy Logic Controller Based Maximum Power Point Tracking Technique for Different Configurations of Partially Shaded Photovoltaic System. Arch. Electr. Eng. 2018, 67, 307–320. [Google Scholar] [CrossRef]
- Mehmood, F.; Ashraf, N.; Alvarez, L.; Malik, T.N.; Qureshi, H.K.; Kamal, T. Grid integrated photovoltaic system with fuzzy based maximum power point tracking control along with harmonic elimination. Trans. Emerg. Telecommun. Technol. 2020, 31, e3856. [Google Scholar] [CrossRef]
- Lagudu, J.V.; Vulasala, G.; Narayana, S.S. Maximum Energy Harvesting in Solar Photovoltaic System using Fuzzy Logic Technique. Int. J. Ambient Energy 2018, 42, 131–139. [Google Scholar] [CrossRef]
- Zand, A.S.; Mobayen, S.; Zad, H.; Molashahi, H.; Nasiri, M.; Fekih, A. Optimized Fuzzy Controller Based on Cuckoo Optimization Algorithm for Maximum Power-Point Tracking of Photovoltaic Systems. IEEE Access 2022, 10, 71699–71716. [Google Scholar] [CrossRef]
- Bhukya, L.; Annamraju, A.; Srikanth, N.V. A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids. Int. J. Hydrogen Energy 2021, 46, 10653–10665. [Google Scholar] [CrossRef]
- Attia, H.A.; del Ama, F.G. Stand-alone PV system with MPPT function based on fuzzy logic control for remote building applications. Int. J. Power Electron. Drive Syst. 2019, 10, 842–851. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- MathWorks. Mamdani and Sugeno Fuzzy Inference Systems. Fuzzy Logic Toolbox Documentation. 2022. Available online: https://www.mathworks.com/help/fuzzy/fuzzy-inference-systems.html (accessed on 15 June 2025).
- Precup, R.E.; Nguyen, A.T.; Blažič, S. A survey on fuzzy control for mechatronics applications. Int. J. Syst. Sci. 2024, 55, 771–813. [Google Scholar] [CrossRef]
- Dong, B.T.; Nguyen, T.V.A. Robust Fault-Tolerant Tracking Control for Nonlinear Systems Using a Takagi-Sugeno Fuzzy Model Based on a State and Fault Fuzzy Observer. Int. J. Robust Nonlinear Control 2025, 35, 6207–6229. [Google Scholar] [CrossRef]
- Wang, H.O.; Tanaka, K. An LMI-based approach to control of nonlinear systems via fuzzy model. IEEE Trans. Fuzzy Syst. 2001, 9, 601–615. [Google Scholar]
- Liu, F.; Li, R.; Li, Y.; Yan, R.; Saha, T. Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting. IET Renew. Power Gener. 2017, 11, 1281–1287. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. MPPT techniques for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 25, 793–813. [Google Scholar] [CrossRef]
- Oubella, M.; Ajaamoum, M.; Bouachrine, B. Low cost microcontroller implementation of Takagi–Sugeno fuzzy MPPT controller for photovoltaic systems. Int. J. Electr. Comput. Eng. Syst. 2022, 13, 971–981. [Google Scholar] [CrossRef]
- Hadjidj, N.; Benbrahim, M.; Ounnas, D.; Mouss, L.H. Global maximum power point tracking method for photovoltaic systems using Takagi–Sugeno fuzzy models and ANFIS approach. Electr. Eng. Electromechanics 2025, 1, 3–8. [Google Scholar] [CrossRef]
- Palaniswamy, A.M.; Srinivasan, K. Takagi-Sugeno fuzzy approach for power optimization in standalone photovoltaic systems. Sol. Energy 2016, 139, 213–220. [Google Scholar] [CrossRef]
- Kamal, E.; Aitouche, A.; Bouamama, B.O. Robust takagi-sugeno fuzzy control of pv system. In Proceedings of the 2016 International Conference on Control, Decision and Information Technologies (CoDIT), Saint Julian’s, Malta, 6–8 April 2016; pp. 52–58. [Google Scholar]
- Aboulkassim, A.; Kririm, S.; El Hanafi, A.; Ben Hmamou, D. New fuzzy control design for photovoltaic system using LMI technique. E3s Web Conf. 2023, 469, 00089. [Google Scholar] [CrossRef]
- Saidi, K.; Maamoun, M.; Bounekhla, M. A new high performance variable step size perturb-and-observe MPPT algorithm for photovoltaic system. Int. J. Power Electron. Drive Syst. 2019, 10, 1662. [Google Scholar] [CrossRef]
- Chaibi, R.; Bachtiri, R.E.; Hammoumi, K.E.; Yagoubi, M. Photovoltaic System’s MPPT Under Partial Shading Using T-S Fuzzy Robust Control. IFAC PapersOnLine 2022, 55, 214–221. [Google Scholar] [CrossRef]
- Asif.; Ahmad, W.; Qureshi, M.B.; Khan, M.M.; Fayyaz, M.A.B.; Nawaz, R. Optimizing Large-Scale PV Systems with Machine Learning: A Neuro-Fuzzy MPPT Control for PSCs with Uncertainties. Electronics 2023, 12, 1720. [Google Scholar] [CrossRef]
- Pidikiti, T.; Shreedevi.; Gireesha, B.; Subbarao, M.; Krishna, V.M. Design and control of Takagi-Sugeno-Kang fuzzy based inverter for power quality improvement in grid-tied PV systems. Meas. Sens. 2023, 25, 100638. [Google Scholar] [CrossRef]
- Ben Safia, Z.; Allouche, M.; Chaabane, M. Renewable energy management of a hybrid water pumping system (photovoltaic/wind/battery) based on Takagi–Sugeno fuzzy model. Optim. Control Appl. Methods 2023, 44, 373–390. [Google Scholar] [CrossRef]
- Basu, A.; Singh, M. Design and Real Time Digital Simulator Implementation of a Takagi–Sugeno Fuzzy Controller for Battery Management in Photovoltaic Energy System Application. Int. J. Eng. 2022, 35, 2275–2282. [Google Scholar] [CrossRef]
- Ozcan, O.F.; Kilic, H.; Ozguven, O.F. A unified robust hybrid optimized Takagi–Sugeno fuzzy control for hydrogen fuel cell-integrated microgrids. Int. J. Hydrogen Energy 2025, 143, 1279–1294. [Google Scholar] [CrossRef]
- Mittal, K.; Jain, A.; Vaisla, K.S.; Castillo, O.; Kacprzyk, J. A comprehensive review on type 2 fuzzy logic applications: Past, present and future. Eng. Appl. Artif. Intell. 2020, 95, 103916. [Google Scholar] [CrossRef]
- Guler, N.; Ismail, Z.; Hazem, Z.B.; Naik, N. Adaptive fuzzy logic controller-based intelligent energy management system scheme for hybrid electric vehicles. IEEE Access 2024, 12, 173441–173454. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Y.; Shi, Y.; Chen, G. A Type-2 Fuzzy Review Topic-Based Model for Personalized Recommendation. Electron. Commer. Res. 2024. [Google Scholar] [CrossRef]
- Soltani, S.; Kouhanjani, M.J. Fuzzy logic type-2 controller design for MPPT in photovoltaic system. In Proceedings of the 2017 Conference on Electrical Power Distribution Networks (EPDC), Semnan, Iran, 19–20 April 2017; pp. 149–155. [Google Scholar]
- Gheibi, A.; Mohammadi, S.M.A.; Maghfoori, M. Maximum power point tracking of photovoltaic generation based on the type-2 fuzzy logic control method. Energy Procedia 2011, 12, 538–546. [Google Scholar] [CrossRef]
- Altin, N. The type-2 fuzzy logic controller-based maximum power point tracking algorithm and the quadratic boost converter for PV system. J. Electron. Mater. 2018, 47, 4475–4485. [Google Scholar] [CrossRef]
- Kayisli, K. Super twisting sliding mode-type 2 fuzzy MPPT control of solar PV system with parameter optimization under variable irradiance conditions. Ain Shams Eng. J. 2023, 14, 101950. [Google Scholar] [CrossRef]
- Pérez-Briceño, C.; Ponce, P.; Mei, Q.; Robinson, F.A. A Type-2 Fuzzy Logic Expert System for AI Selection in Solar Photovoltaic Applications Based on Data and Literature-Driven Decision Framework. Processes 2025, 13, 1524. [Google Scholar] [CrossRef]
- Shadoul, M.; Yousef, H.; Al Abri, R.; Al-Hinai, A. Adaptive interval type-2 fuzzy tracking control of PV grid-connected inverters. IEEE Access 2021, 9, 130853–130861. [Google Scholar] [CrossRef]
- Tsai, C.C.; Huang, C.C. Interval type-2 fuzzy maximum power point tracking for solar photovoltaic power charging systems. In Proceedings of the 2015 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2015; pp. 1353–1358. [Google Scholar]
- Farajdadian, S.; Hosseini, S.M.H. Optimization of fuzzy-based MPPT controller via metaheuristic techniques for stand-alone PV systems. Int. J. Hydrogen Energy 2019, 44, 25457–25472. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pachauri, R.K.; Choudhury, S.; Minai, A.F.; Alotaibi, M.A.; Malik, H.; Márquez, F.P.G. Role of metaheuristic approaches for implementation of integrated MPPT-PV systems: A comprehensive study. Mathematics 2023, 11, 269. [Google Scholar] [CrossRef]
- Verma, P.; Alam, A.; Sarwar, A.; Tariq, M.; Vahedi, H.; Gupta, D.; Ahmad, S.; Mohamed, A.S.N. Meta-heuristic optimization techniques used for maximum power point tracking in solar PV system. Electronics 2021, 10, 2419. [Google Scholar] [CrossRef]
- Maroua, B.; Zarour, L.; Benbouhenni, H.; Elbarbary, Z.M.S.; Colak, I.; Alammer, M.M. Genetic algorithm type-2 fuzzy logic controller of microgrid system with a fractional-order technique. Sci. Rep. 2025, 15, 6318. [Google Scholar]
- Mishra, V.L.; Chauhan, Y.K.; Verma, K.S. A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array. Energy Convers. Manag. 2022, 269, 116099. [Google Scholar] [CrossRef]
- Rezk, H.; Harrag, A. A robust type-2 fuzzy logic-based maximum power point tracking approach for thermoelectric generation systems. Int. J. Energy Res. 2021, 45, 18066–18080. [Google Scholar] [CrossRef]
- Mohamed, R.G. Optimal type-2 fuzzy logic control for sizing and control of grid-connected PV system with battery. In Proceedings of the 2023 24th International Middle East Power System Conference (MEPCON), Mansoura, Egypt, 19–21 December 2023; pp. 1–6. [Google Scholar]
- Amine, H.M.; Abdelaziz, H.; Najib, E. Maximum power point tracking using IT2FL Tuned with GA. Energy Procedia 2015, 83, 399–407. [Google Scholar] [CrossRef]
- Kececioglu, O.F. Design of type-2 fuzzy logic controller optimized with firefly algorithm for maximum power point tracking of photovoltaic system based on super lift Luo converter. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2994. [Google Scholar] [CrossRef]
- Maroua, B.; Zarour, L.; Benbouhenni, H.; Mehazzem, F.; Debdouche, N.; Colak, I. Robust type-2 fuzzy logic control microgrid-connected photovoltaic system with battery energy storage through multi-functional voltage source inverter using direct power control. Energy Rep. 2024, 11, 3117–3134. [Google Scholar] [CrossRef]
- Rojas-Galván, R.; García-Martínez, J.R.; Cruz-Miguel, E.E.; Álvarez-Alvarado, J.M.; Rodríguez-Reséndiz, J. Performance comparison of bio-inspired algorithms for optimizing an ANN-based MPPT forecast for PV systems. Biomimetics 2024, 9, 649. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q. Forecasting of short-term photovoltaic power generation using combined interval type-2 Takagi–Sugeno–Kang fuzzy systems. Int. J. Electr. Power Energy Syst. 2022, 140, 108002. [Google Scholar] [CrossRef]
- Ren, Y.; Wen, Y.; Liu, F.; Zhang, Y.; Zhang, Z. Deep convolution IT2 fuzzy system with adaptive variable selection method for ultra-short-term wind speed prediction. Energy Convers. Manag. 2024, 309, 118420. [Google Scholar] [CrossRef]
- Almaraashi, M.S. A practical design of interval type-2 fuzzy logic systems with application to solar radiation prediction. Cogent Eng. 2024, 11, 2395426. [Google Scholar] [CrossRef]
- Almaraashi, M.; Abdulrahim, M.; Hagras, H. A life-long learning XAI metaheuristic-based type-2 fuzzy system for solar radiation modeling. IEEE Trans. Fuzzy Syst. 2023, 32, 2102–2115. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Fadali, M.S.; Evrenosoglu, C.Y. Solar power prediction using interval type-2 TSK modeling. IEEE Trans. Sustain. Energy 2012, 4, 333–339. [Google Scholar] [CrossRef]
- Balasundar, C.; Sundarabalan, C.K.; Srinath, N.S.; Sharma, J.; Guerrero, J.M. Interval type-2 fuzzy logic-based power sharing strategy for hybrid energy storage system in solar powered charging station. IEEE Trans. Veh. Technol. 2021, 70, 12450–12461. [Google Scholar]
- Belhadj, S.M.; Meliani, B.; Benbouhenni, H.; Zaidi, S.; Elbarbary, Z.M.S.; Alammer, M.M. Control of multi-level quadratic DC-DC boost converter for photovoltaic systems using type-2 fuzzy logic technique-based MPPT approaches. Heliyon 2025, in press. [CrossRef]
- Kumar, R.T.; Rajan, C.C.A. Novel DC to DC boost integrated BIFRED converter for type-2 MPPT fuzzy-based PV/EV application. In Proceedings of the 2023 International Conference on Energy, Materials and Communication Engineering (ICEMCE), Madurai, India, 14–15 December 2023; pp. 1–6. [Google Scholar]
- Rinesh, S.; Arun, M.; Kumar, S.N.; Prajitha, C.; Kumar, A.P.S. Evaluating the type-2 fuzzy logic controller with multilayer perceptrons for optimal tracking of solar photovoltaic systems. Int. J. Low Carbon Technol. 2025, 20, 394–403. [Google Scholar] [CrossRef]
- Khavari, F.; Ghamari, S.M.; Abdollahzadeh, M.; Mollaee, H. Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter. IET Control Theory Appl. 2023, 17, 1132–1143. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Hong, W.C. Sustainability evaluation of modern photovoltaic agriculture based on interval type-2 fuzzy AHP-TOPSIS and least squares support vector machine optimized by fireworks algorithm. Energy Eng. 2022, 119, 163. [Google Scholar] [CrossRef]
- Makhloufi, S.; Abdessemed, R. Type-2 fuzzy logic optimum PV/inverter sizing ratio for grid-connected PV systems: Application to selected Algerian locations. J. Electr. Eng. Technol. 2011, 6, 731–741. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Rathinasamy, S. Energy management in photovoltaic battery hybrid systems: A novel type-2 fuzzy control. Int. J. Hydrogen Energy 2020, 45, 20970–20982. [Google Scholar] [CrossRef]
- Altin, N. Single-phase grid interactive PV system with MPPT capability based on type-2 fuzzy logic systems. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012; pp. 1–6. [Google Scholar]
- Gani, A.; Sekkeli, M. Experimental evaluation of type-2 fuzzy logic controller adapted to real environmental conditions for maximum power point tracking of solar energy systems. Int. J. Circuit Theory Appl. 2022, 50, 4131–4145. [Google Scholar] [CrossRef]
- Kumar, C.S.; Kamaraja, A.S.; Kumar, K.K.; Bhuvanesh, A. Performance evaluation of solar-combined boosting topology for EV battery charger using interval type-2 fuzzy controller. Electr. Eng. 2024, 106, 2325–2345. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Chen, P.S.; Hsu, C.C.; Li, J.Y.; Chen, J.F.; Lin, C.L. Novel maximum power point tracker for PV systems using interval type-2 fuzzy logic controller. In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017–ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 1505–1507. [Google Scholar]
- Prastyawan, A.B.; Efendi, M.Z.; Murdianto, F.D. MPPT full bridge converter using fuzzy type-2. J. Adv. Res. Electr. Eng. 2021, 5, 120–127. [Google Scholar] [CrossRef]
- Singh, P.; Mangu, B.; Saho, S. A new dragonfly optimized fuzzy logic-based MPPT technique for photovoltaic systems. Int. J. Electr. Electron. Res. 2023, 11, 1097–1102. [Google Scholar] [CrossRef]
- García-Gutiérrez, G.; Arcos-Aviles, D.; Carrera, E.V.; Guinjoan, F.; Ibarra, A.; Ayala, P. The Cuckoo Search algorithm applied to fuzzy logic control parameter optimization. In Applications of Cuckoo Search Algorithm and Its Variants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–206. [Google Scholar]
- Berrazouane, S.; Mohammedi, K. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system. Energy Convers. Manag. 2014, 78, 652–660. [Google Scholar] [CrossRef]
- Boukezata, B.; Chaoui, A.; Gaubert, J.P.; Boutalbi, O. An enhanced control scheme for multifunctional grid connected PV system using fuzzy and predictive direct power control. Bull. Electr. Eng. Inform. 2024, 13, 853–864. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, F.; Wang, X.; Zhang, J. An efficient fuzzy logic control algorithm for photovoltaic maximum power point tracking under partial shading condition. J. Frankl. Inst. 2019, 357, 3135–3149. [Google Scholar] [CrossRef]
Data Base | Search String |
---|---|
Scopus | TITLE-ABS-KEY ((“fuzzy logic controller” OR “fuzzy logic control” OR “fuzzy control” OR “Type 2 fuzzy” OR “Type-2 fuzzy” OR “Type-II fuzzy” OR “Type 3 fuzzy” OR “fuzzy system*”) AND (“photovoltaic*” OR “PV” OR “solar energy” OR “mppt” OR “maximum power point tracking”)) AND PUBYEAR >2014 AND (DOCTYPE (“ar”) OR DOCTYPE (“re”)) AND (SUBJAREA (“ENGI” OR “ENER”)) |
Inclusion criteria | Reviewed and accepted publications
Areas related to energy and engineering. Academic journals, conference papers, and reviews Publications between 2015 and mid-2025 |
Exclusion criteria | Book chapters, technical reports, and articles under review
Publications that could not be accessed Articles without DOI |
Language | English |
Ref. | Fuzzy Rules | Membership Function | Simulation Platform | Main Contribution |
---|---|---|---|---|
[85] | 25 | Triangular/Trapezoidal | MATLAB/Simulink | MPPT on low-cost PIC; reduced ripples and cost-effective implementation |
[86] | 4 | Linear | MATLAB/Simulink | GMPPT under shading; faster convergence and minimal overshoot |
[89] | 4 | Linear | MATLAB/Simulink | LMI-based TS state feedback; minimized ripples and ensured stability |
[90] | 25 | Triangular/Trapezoidal | MATLAB/Simulink | Variable step P&O; no steady-state oscillations |
[91] | 4 | Linear | MATLAB/Simulink | Robust H-infinity TS control; reliable MPPT under partial shading |
[92] | ∼15 | Triangular | MATLAB | ANFIS-based MPPT; robust against uncertainties and fast convergence |
[93] | 4 | Linear | MATLAB/Simulink | Grid-tied inverter with TS-fuzzy MPPT and improved PQ; no DC–DC needed |
[94] | ∼4 | Trapezoidal | MATLAB/Simulink | Decentralized fuzzy control in PV/wind/pump system with MPPT and flow regulation |
[95] | 2 | Linear | MATLAB/OPAL-RT | TS gain-scheduled control for bidirectional DC–DC converter; real-time validation |
Ref. | Strategy/Contribution | Application Domain | Key Results and Features |
---|---|---|---|
[125] | Type-2 MPPT with BIFRED converter | PV–EV integration | Achieved 96.6% tracking efficiency; better dynamic voltage regulation. |
[127] | T2FLC adaptive backstepping optimized with ALO | Buck converter voltage regulation | Robust under parametric variation, voltage noise, and load changes; adaptive gains; validated experimentally. |
[128] | IT2-Fuzzy AHP-TOPSIS + LS-SVM (FWA-optimized) | Sustainability assessment in PV agriculture | Accurate multi-criteria prediction of PVA sustainability; integrated fuzzy weighting and machine learning |
[129] | IT2FLS-based optimization of PV/inverter sizing ratio | Grid-connected PV systems | Optimal sizing under uncertainty; improved energy yield in diverse climates. |
[130] | Adaptive IT2FNN-based controller for PV-battery hybrid energy management | Robust control under dynamic uncertainties | Estimates dynamics and disturbances; ensures stable PV/load regulation via Lyapunov-based adaptive control. |
[131] | IT2FLS-based MPPT and inverter control for grid-connected PV | Single-phase PV inverter with grid interaction | Implemented IT2FLS for both MPPT and inverter stage; improved waveform quality, reduced THD, and enhanced tracking stability under dynamic solar conditions. |
[132] | Hybrid AIC + IT2 A2-C0 TSK FLC | MPPT under real outdoor conditions | Improved power tracking under rapid irradiance and temperature changes; validated on 10 kWp PV system with dSPACE1104 controller. |
[106] | PI-like IT2FLC for MPPT using Newton–Raphson | PV battery charging with DC–DC buck converter | Enhanced MPPT stability and accuracy over PI and T1FLC; effective under varying irradiance using current feedback. |
[133] | IT2FLS with improved A-Source converter for EV charging | PV-powered battery charging | Enhanced efficiency and voltage gain; reduced ripple and overshoot under dynamic conditions |
[134] | IT2FLC with flyback converter and noise-filtering MPPT | PV MPPT under noisy conditions | Achieved 99.07% efficiency; outperformed INC and T1FLC with better stability and noise immunity |
[135] | MPPT with Type-2 FLC and full-bridge converter | DC nano-grid PV system | Achieved up to 91.4% accuracy vs. 80.6% with T1FLC; better ripple suppression and stability under irradiance and temperature variations |
Controller | Main Advantages | Main Disadvantages | Observations in MPPT | Power Management |
---|---|---|---|---|
MFLC | High interpretability of rules and outputs. | Centroid-based defuzzification is computationally intensive, limiting use in low-power hardware. | Provides smooth control but struggles with fast irradiance variations, leading to oscillations around the MPP. | Moderate; ensures stable operation but limited efficiency under fast transients. |
T-S FLC | Efficient implementation; avoids complex defuzzification through linear or constant consequents. | Performance is highly dependent on the quality of the rule base and parameterization of consequents. | Suitable for real-time execution; however, poor rule design can reduce accuracy below that of heuristic or hybrid methods. | High; enables efficient tracking with reduced computational load, good balance between speed and stability. |
T2FLC | Explicitly models uncertainty (FOU) for improved robustness against noise, parameter drift, and environmental fluctuations. | Requires type reduction and defuzzification, which increase execution time and computational cost. | Enhances dynamic tracking under fluctuating irradiance, but real-time deployment is challenging without hardware accelerators or optimized algorithms. | Very high; excels in managing power under uncertainty, but penalized by long execution times in embedded hardware. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Martínez, R.; García-Martínez, J.R.; Rojas-Galván, R.; Álvarez-Alvarado, J.M.; Gozález-Lee, M.; Rodríguez-Reséndiz, J. A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems. Technologies 2025, 13, 422. https://doi.org/10.3390/technologies13090422
Vidal-Martínez R, García-Martínez JR, Rojas-Galván R, Álvarez-Alvarado JM, Gozález-Lee M, Rodríguez-Reséndiz J. A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems. Technologies. 2025; 13(9):422. https://doi.org/10.3390/technologies13090422
Chicago/Turabian StyleVidal-Martínez, Rodrigo, José R. García-Martínez, Rafael Rojas-Galván, José M. Álvarez-Alvarado, Mario Gozález-Lee, and Juvenal Rodríguez-Reséndiz. 2025. "A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems" Technologies 13, no. 9: 422. https://doi.org/10.3390/technologies13090422
APA StyleVidal-Martínez, R., García-Martínez, J. R., Rojas-Galván, R., Álvarez-Alvarado, J. M., Gozález-Lee, M., & Rodríguez-Reséndiz, J. (2025). A Review of Mamdani, Takagi–Sugeno, and Type-2 Fuzzy Controllers for MPPT and Power Management in Photovoltaic Systems. Technologies, 13(9), 422. https://doi.org/10.3390/technologies13090422