Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks
Abstract
:1. Introduction
2. Experimental Section
Topic | Databases | Keywords | # Articles Found | # Articles Included | Kappa |
---|---|---|---|---|---|
BMI | ScienceDirect, Scopus, OVID (All), EBSCO (All), Web of Science, and JSTOR | “brain machine interface” | 1,058 | 71 | 0.99 |
Social robotics | Science Direct, Compendex, IEEE, Communication Abstracts, Scopus, OVID(All), EBSCO(All), Academic One File, Web of Science, and JSTOR | “social robot” | 489 | 171 | 0.88 |
Neuroenhancement and cognitive enhancement | JSTOR, ScienceDirect, PubMed, EBSCO, Academic Search Complete, Web of Science and Scopus (Elsevier) | “neuro-enhancement”, “cognitive enhancement” | 361 for neuro-enhancement 1,022 for cognitive enhancement | 61 for neuro-enhancement 82 for cognitive enhancement | 0.90 for neuro-enhancement 0.79 for cognitive enhancement |
3. Limitation
4. Results
Theory | Core Measure of a Given Theory | Neuro-Enhancement | BMI for Enhancement Purposes | BMI for Restorative Purposes | Social Robotics |
---|---|---|---|---|---|
Theory of Reasoned Action (TRA) | Attitude Toward It (an individual’s positive or negative feeling about performing the target behavior) | n = 1 | n = 1 | n = 11 | n = 9 |
Subjective Norm the person’s perception that most people who are important to him think he should or should not perform the behavior in question | n = 1 | n = 1 | n = 4 | n = 2 | |
Technology acceptance model (TAM) | Perceived usefulness (increase job performance) | n = 2 | n = 1 | n = 2 | n = 7 |
Perceived ease of use | n = 2 | n = 1 | n = 2 | n = 1 | |
Subjective norm | n = 4 | n = 1 | n = 1 | ||
Motivational model | Extrinsic motivation (users want to perform an action because it’s perceived to achieve a valued outcome that is outside of the activity like jobs…) | n = 5 | n = 1 | n = 3 | n = 1 |
Intrinsic motivation (for no external reason but purely for the process of performing the activity per se) | n = 10 | n = 1 | |||
Theory of Planned behavior | Attitude towards behavior | n = 1 | n = 8 | ||
Subjective norm | n = 4 | n = 1 | n = 1 | ||
Perceived behavioral control (the perceived ease or difficulty of performing the behavior) (perception of internal and external constraints on behaviour) | n = 1 | n = 2 | |||
Model of Personal Computer (PC) utilization | Job fit | n = 8 | n = 2 | ||
Complexities | n = 3 | ||||
Long term consequences (pay-off in the future) | n = 19 | n = 13 | |||
Affect towards use (positive or negative feeling towards it) | n = 1 | n = 7 | |||
Social factors (internalization of the reference group subjective culture, and interpersonal arguments) | n = 3 | n = 2 | |||
Facilitating conditions Objective factors in the environment that observers agree make an act easy to accomplish | n = 5 | n = 1 | n = 13 | ||
Innovation Diffusion Theory | Relative advantage | n = 18 | n = 1 | n = 3 | |
Image (enhance one’s image) | n = 9 | n = 1 | n = 1 | ||
Visibility (one can see others using it) | n = 4 | ||||
Compatibility (Perceived as being consistent with the existing values needs and past experiences of potential adopters ) | n = 14 | ||||
Results demonstrability | n = 5 | ||||
Voluntariness of use | n = 4 | ||||
Social cognitive theory | Outcome expectations––Performance (consequences) | n = 10 | n = 1 | n = 2 | |
Outcome expectation personal Personal consequence such as esteem and sense of accomplishment | n = 10 | n = 1 | n = 1 | ||
Self-efficacy | n = 2 | n = 3 | |||
Affect (liking) | n = 1 | ||||
Anxiety | n = 1 | ||||
UTAUT | Performance Expectancy | n = 10 | |||
Effort Expectancy | n = 1 | ||||
Social Influence | n = 4 | ||||
Facilitating Conditions Age Gender, Experience, Voluntariness | n = 1 | n = 6 | |||
UTAUT2 | Performance Expectancy | n = 12 | |||
Effort Expectancy | n = 4 | ||||
Social Influence | n = 1 | ||||
Facilitating Conditions Age Gender Experience | n = 1 | ||||
Hedonistic Motivation | n = 13 | n = 1 | n = 2 | ||
Price Value | n = 3 | ||||
Habit | n = 3 | ||||
Behavioural Intention | n = 6 | ||||
Consumer choice | Social factors | n = 1 | n = 4 | ||
Family | |||||
Friends | |||||
Other people | |||||
Trends | |||||
Gender | |||||
Age | |||||
Entertainment | |||||
Environmental factors Lifestyle | n = 5 | n = 2 | |||
Personal factors | n = 3 | n = 1 | n = 2 | n = 3 | |
Needs | |||||
Wants | |||||
Likes | |||||
Time | |||||
Values | |||||
Emotion | |||||
Knowledge | |||||
Hobbies | |||||
Economic factors | n = 2 | n = 1 | |||
Affordability | |||||
Value for money | |||||
Psychological factors | n = 6 | n = 2 | |||
Planned buying | |||||
Impulse buying | |||||
To bribe award or encourage someone | |||||
Emotions | |||||
Celebration | |||||
Advertisement | |||||
Social determination theory | Intrinsic motivation | n = 9 | n = 1 | n = 6 | |
Competence | |||||
Autonomy | |||||
Relatedness | |||||
Interest | |||||
Enjoyment | |||||
Inherent satisfaction | |||||
External motivation | n = 11 | n = 1 | n = 1 | ||
Compliance | |||||
External rewards and punishment |
5. Discussion
5.1. Uses of Technology Acceptance Models
5.2. Modified Technology Acceptance Models
6. Conclusions
Acknowledgments
Conflict of Interest
References
- Sekiyama, K.; Fukuda, T. Toward Social Robotics. In Proceedings of AAAI 1997 Fall Symposium Series, Socially Intelligent Agents, Providence, Rhode Island, Cambridge, MA, USA, 8–10 November 1997; AAAI Press: Menlo Park, CA, USA, 1997; pp. 118–124. Available online: http://www.aaai.org/Papers/Symposia/Fall/1997/FS-97-02/FS97-02-028.pdf (accessed on 30 March 2013). [Google Scholar]
- Dautenhahn, K.; Billard, A. Studying Robot Social Cognition within A Developmental Psychology Framework. In Proceedings of the Third European Workshop on Advanced Mobile Robots (Eurobot’99), Zurich, Switzerland, 6–8 September 1999; IEEE: Palo Alto, CA, USA, 1999; pp. 187–194. [Google Scholar]
- Giron-Sierra, J.M.; Halawa, S.; Rodriguez-Sanchez, J.R.; Alcaide, S. A Social Robotics Experimental Project. In Proceedings of the 30th Annual Frontiers in Education Conference, Kansas City, MO, USA, 18–21 October 2000; pp. 1–18.
- Restivo, S. Bringing up and Booting up: Social Theory and the Emergence of Socially Intelligent Robots. In Proceedings of 2001 IEEE International Conference on Systems, Man and Cybernetics, Tuscon, AZ, USA, 7–10 October 2001; Institute of Electrical and Electronics Engineers Inc.: Palo Alto, CA, USA, 2001; pp. 2110–2117. [Google Scholar]
- Fong, T.; Nourbakhsh, I.; Dautenhahn, K. A survey of socially interactive robots. Robot. Auton. Syst. 2003, 42, 143–166. [Google Scholar] [CrossRef]
- Saunders, J.; Nehaniv, C.L.; Dautenhahn, K. An Experimental Comparison of Imitation Paradigms Used in Social Robotics. In Proceedings of RO-MAN 2004—The 13th IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama, Japan, 20–22 September 2004; Institute of Electrical and Electronics Engineers Inc.: Palo Alto, CA, USA, 2004; pp. 691–696. [Google Scholar]
- Dautenhahn, K.; Woods, S.; Kaouri, C.; Walters, M.L.; Kheng, L.K.; Werry, I. What is A Robot Companion––Friend, Assistant or Butler? In Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 1192–1197.
- Sparrow, R.; Sparrow, L. In the hands of machines? The future of aged care. Minds Mach. 2006, 16, 141–161. [Google Scholar] [CrossRef]
- Tapus, A.; Mataric, M.J.; Scasselati, B. Socially assistive robotics [Grand challenges of robotics]. IEEE Robot. Automat. 2007, 14, 35–42. [Google Scholar]
- Turkle, S. Authenticity in the age of digital companions. Interact. Stud. 2007, 8, 501–517. [Google Scholar]
- Ham, J.; Bokhorst, R.; Cuijpers, R.; van der Pol, D.; Cabibihan, J.J. Making Robots Persuasive: The Influence of Combining Persuasive Strategies (Gazing and Gestures) by A Storytelling Robot on Its Persuasive Power. In Proceedings of the 3rd International Conference on Social Robotics, Amsterdam, The Netherlands, 24–25 November 2011; Springer Verlag: Heidelberg, Germany, 2011; pp. 71–83. [Google Scholar]
- Dougherty, E.G.; Scharfe, H. Initial Formation of Trust: Designing an Interaction with Geminoid-DK to Promote a Positive Attitude for Cooperation. In Proceedings of the 3rd International Conference on Social Robotics, Amsterdam, The Netherlands, 24–25 November 2011; Springer-Verlag: Heidelberg, Germany, 2011; pp. 95–103. [Google Scholar]
- Fink, J.; Bauwens, V.; Mubin, O.; Kaplan, F.; Dillenbourg, P. People’s Perception of Domestic Service Robots: Same Household, Same Opinion? In Proceedings of the 3rd International Conference on Social Robotics, Amsterdam, The Netherlands, 24–25 November 2011; Springer-Verlag: Heidelberg, Germany, 2011; pp. 204–213. [Google Scholar]
- Ferguson, M.; Webb, N.; Strzalkowski, T. Nelson: A Low-Cost Social Robot for Research and Education. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, Dallas, TX, USA, 9–12 March 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 225–229. [Google Scholar]
- Gruebler, A.; Berenz, V.; Suzuki, K. Coaching Robot Behavior Using Continuous Physiological Affective Feedback. In Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled, Slovenia, 26–28 October 2011; pp. 466–471.
- Prado, J.A.; Simplicio, C.; Lori, N.F.; Dias, J. Visuo-auditory multimodal emotional structure to improve human-robot-interaction. Int. J. Soc. Robot. 2012, 4, 29–51. [Google Scholar] [CrossRef]
- Donoghue, J.P. Bridging the brain to the world: A perspective on neural interface systems. Neuron 2008, 60, 511–521. [Google Scholar] [CrossRef]
- Brain Machine Interface: BMI (Cyborg Soldiers). 2008. Available online: http://www.staticbrain.com/archive/brain-machine-interface-bmi-cyborg-soldiers/ (accessed on 30 March 2013).
- Rudolph, A. Military: Brain machine could benefit millions. Nature 2003, 424, 369–369. [Google Scholar] [CrossRef]
- Zeigler, B.P. The brain-machine disanalogy revisited. Biosystems 2002, 64, 127–140. [Google Scholar] [CrossRef]
- Pratt School of Engineering Duke University Darpa to Support Development of Human Brain-Machine Interface. Available online: http://www.pratt.duke.edu/pratt_press/web.php?sid=4&iid=2 (accessed on 30 January 2013).
- Mussa-Ivaldi, F.A.; Miller, L.E. Brain-machine interfaces: Computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 2003, 26, 329–334. [Google Scholar] [CrossRef]
- Wetware the Status of Brain-Machine Interfaces. Available online: http://wetware.hjalli.com/000124.shtml (accessed on 30 January 2013).
- Patil, P.G.; Turner, D.A. The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 2008, 5, 137–146. [Google Scholar] [CrossRef]
- Bostrom, N.; Sandberg, A. Cognitive enhancement: Methods, ethics, regulatory challenges. Sci. Eng. Ethics 2009, 15, 311–341. [Google Scholar] [CrossRef]
- Yokoi, H. Cyborg (Brain-machine/computer interface). Adv. Robot. 2009, 23, 1451–1454. [Google Scholar] [CrossRef]
- Guenther, F.H.; Brumberg, J.S.; Wright, E.J.; Nieto-Castanon, A.; Tourville, J.A.; Panko, M.; Law, R.; Siebert, S.A.; Bartels, J.L.; Andreasen, D.S. A wireless brain-machine interface for real-time speech synthesis. PLoS ONE 2009, 4, e8218. [Google Scholar] [CrossRef] [Green Version]
- Menon, C.; de Negueruela, C.; Millán, J.R.; Tonet, O.; Carpi, F.; Broschart, M.; Ferrez, P.; Buttfield, A.; Tecchio, F.; Sepulveda, F. Prospects of brain-machine interfaces for space system control. Acta Astronaut. 2009, 64, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, M.A.; Tate, A.J.; Hanson, T.L.; Li, Z.; O’Doherty, J.E.; Winans, J.A.; Ifft, P.J.; Zhuang, K.Z.; Fitzsimmons, N.A.; Schwarz, D.A. Future developments in brain-machine interface research. Clinics 2011, 66, 25–32. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Sanchez, J.C. A symbiotic brain-machine interface through value-based decision making. PLoS ONE 2011, 6, e14760. [Google Scholar] [CrossRef]
- Martin, A.R.; Sankar, T.; Lipsman, N.; Lozano, A.M. Brain-machine interfaces for motor control: A guide for neuroscience clinicians. Can. J. Neurol. Sci. 2012, 39, 11–22. [Google Scholar]
- Shyamkumar, P.; Oh, S.; Banerjee, N.; Varadan, V.K. A wearable remote brain machine interface using smartphones and the mobile network. Adv. Sci. Technol. 2013, 85, 11–16. [Google Scholar] [CrossRef]
- Tamburrini, G. Brain to computer communication: Ethical perspectives on interaction models. Neuroethics 2009, 2, 137–149. [Google Scholar] [CrossRef]
- Velliste, M.; Perel, S.; Spalding, M.C.; Whitford, A.S.; Schwartz, A.B. Cortical control of a prosthetic arm for self-feeding. Nature 2008, 453, 1098–1101. [Google Scholar] [CrossRef]
- Gilja, V.; Chestek, C.A.; Diester, I.; Henderson, J.M.; Deisseroth, K.; Shenoy, K.V. Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE Trans. Biomed. Eng. 2011, 58, 1891–1899. [Google Scholar] [CrossRef]
- Mason, S.G.; Jackson, M.M.M.; Birch, G.E. A general framework for characterizing studies of brain interface technology. Ann. Biomed. Eng. 2005, 33, 1653–1670. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Bashirullah, R. Wireless implants. IEEE Microw. Mag. 2010, 11, 14–23. [Google Scholar] [CrossRef]
- Clausen, J. Man, machine and in between. Nature 2009, 457, 1080–1081. [Google Scholar] [CrossRef]
- Clausen, J. Conceptual and ethical issues with brain-hardware interfaces. Curr. Opin. Psychiatry 2011, 24, 495–501. [Google Scholar]
- Diep, L.; Wolbring, G. Who needs to fit in? Who gets to stand out? Communication technologies including brain-machine interfaces revealed from the perspectives of special education school teachers through an ableism lens. Educ. Sci. 2013, 3, 30–49. [Google Scholar] [CrossRef]
- Lewens, T. The risks of progress: Precaution and the case of human enhancement. J. Risk Res. 2010, 13, 207–216. [Google Scholar] [CrossRef]
- Coenen, C.; Schuijff, M.; Smits, M.; Klaassen, P.; Hennen, L.; Rader, M.; Wolbring, G. Human Enhancement Study. Available online: http://www.europarl.europa.eu/RegData/etudes/etudes/join/ 2009/417483/IPOL-JOIN_ET(2009)417483_EN.pdf (accessed on 30 March 2013).
- Gunson, D. Cognitive enhancement, analogical reasoning and social justice. J. Int. Biotechnol. Law 2009, 6, 133–149. [Google Scholar] [CrossRef]
- Buchanan, A. Moral status and human enhancement. Philos. Public Aff. 2009, 37, 346–381. [Google Scholar] [CrossRef]
- Riis, J.; Simmons, J.P.; Goodwin, G.P. Preferences for enhancement pharmaceuticals: The reluctance to enhance fundamental traits. J. Consum. Res. 2008, 35, 495–508. [Google Scholar] [CrossRef]
- Beck, S. Enhancement as a legal challenge. J. Int. Biotechnol. Law 2007, 4, 75–81. [Google Scholar]
- Irish Council for Bioethics. Human Enhancement: Making People Better or Making Better People? Irish Council for Bioethics 2007. Available online: http://www.bioethics.ie/uploads/docs/Humanenh.pdf (accessed on 30 March 2013).
- Tomasini, F. Imagining human enhancement: Whose future, which rationality? Theor. Med. Bioeth. 2007, 28, 497–507. [Google Scholar] [CrossRef]
- Williams, A.E. Good, Better, Best: The Human Quest for Enhancement Summary Report of An Invitational Workshop Convened by the Scientific Freedom, Responsibility and Law Program American Association for the Advancement of Science 1–2 June 2006. Available online: http://www.aaas.org/spp/sfrl/projects/human_enhancement/pdfs/HESummaryReport.pdf (accessed on 30 March 2013).
- Rothman, S.R.D. The Pursuit of Perfection: The Promise and Perils of Medical Enhancement; Pantheon Books: New York, NY, USA, 2005. [Google Scholar]
- Baylis, F.; Robert, J.S. The inevitability of genetic enhancement technologies. Bioethics 2004, 18, 1–26. [Google Scholar]
- Caplan, A.E.C. Is it ethical to use enhancement technologies to make us better than well? PLoS Med 2004, 1, e52. [Google Scholar] [CrossRef] [Green Version]
- Farah, M.; Illes, J.; Cook-Deegan, R.; Gardner, H.; Kandel, E.; King, P.; Parens, E.; Sahakian, B.; Wolpe, P.R. Neurocognitive enhancement: What can we do and what should we do? Nat. Rev. Neurosci. 2004, 5, 421–425. [Google Scholar]
- Khushf, G. Systems theory and the ethics of human enhancement—A framework for NBIC convergence. Ann. N.Y. Acad. Sci. 2004, 1013, 124–149. [Google Scholar]
- Brodey, W.M.; Lindgren, N. Human enhancement––Beyond machine age. IEEE Spectr. 1968, 5, 79–93. [Google Scholar] [CrossRef]
- President’s Council on Bioethics, Beyond Therapy: Biotechnology and the Pursuit of Happiness; US Government: Washington, DC, USA, 2003.
- Wolbring, G. HTA Initiative #23: The Triangle of Enhancement Medicine, Disabled People, and the Concept of Health: A New Challenge for HTA, Health Research, and Health Policy; Alberta Heritage Foundation for Medical Research (AHFMR): Edmonton, AB, Canada, 2005. Available online: https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fwww.ihe.ca%2Fdocuments%2FHTA-FR23.pdf&ei&usg=AFQjCNFU gB4sbi0863IdINgW1gjFlgeyIQ&sig2=-3BSiGZ_PUjC5QbFbbeIig (accessed on 30 March 2013).
- Wolbring, G. The Unenhanced Underclass. In Better Humans? The Politics of Human Enhancement; Wilsdon, J.M.P., Ed.; Demos Institute: London, UK, 2006. [Google Scholar]
- Wolbring, G. Why NBIC? Why human performance enhancement? Innov. Eur. J. Soc. Sci. Res. 2008, 21, 25–40. [Google Scholar] [CrossRef]
- Wolbring, G. Ableism, Enhancement Medicine and the Techno Poor Disabled. In Unnatural Selection: The Challenges of Engineering Tomorrow’s People; Healey, P., Rayner, S., Eds.; Earthscan-Routledge: Florence, SC, USA, 2008. [Google Scholar]
- Wolbring, G. Nanotechnology and the Transhumanization of Health, Medicine, and Rehabilitation. In Controversies in Science and Technology Volume 3: From Evolution to Energy; Kleinmann, D.L., Delborne, J., Cloud-Hansen, K., Handelsman, J., Eds.; Mary Ann Liebert: New Rochelle, NY, USA, 2010; pp. 290–303. [Google Scholar]
- Savulescu, J. New breeds of humans: The moral obligation to enhance. Reprod. Biomed. Online 2005, 10, 36–39. [Google Scholar] [CrossRef]
- Savulescu, J.; Kahane, G. The moral obligation to create children with the best chance of the best life. Bioethics 2009, 23, 274–290. [Google Scholar] [CrossRef]
- Harris, J. Enhancing Evolution: The Ethical Case for Making Better People; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Harris, J. Enhancing Evolution: The Ethical Case for Making Better People (New in Paper); Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Harris, J. Taking the “Human” out of human rights. Camb. Q. Healthc. Ethics 2011, 20, 9–20. [Google Scholar] [CrossRef]
- Harris, J. Sparrows, hedgehogs and castrati: Reflections on gender and enhancement. J. Med. Ethics 2011, 37, 262–266. [Google Scholar] [CrossRef]
- Forlini, C. Examining Discourses on the Ethics and Public Understanding of Cognitive Enhancement with Methylphenidate. Ph.D. Thesis, University of Montreal, Montreal, QC, Canada, 2009. [Google Scholar]
- Racine, E.; Forlini, C. Expectations regarding cognitive enhancement create substantial challenges. J. Med. Ethics 2009, 35, 469–470. [Google Scholar] [CrossRef]
- Bostrom, N.; Roache, R. Smart policy: Cognitive enhancement and the public interest. Contemp. Read. Law Soc. Justice 2010, 2, 68–84. [Google Scholar]
- Outram, S.M.; Racine, E. Developing public health approaches to cognitive enhancement: An analysis of current reports. Public Health Ethics 2011, 4. [Google Scholar] [CrossRef]
- Partridge, B.J.; Bell, S.K.; Lucke, J.C.; Yeates, S.; Hall, W.D. Smart drugs “As common as coffee”: Media hype about neuroenhancement. PLoS ONE 2011, 6, e28416. [Google Scholar] [CrossRef]
- Franke, A.G.; Bonertz, C.; Christmann, M.; Engeser, S.; Lieb, K. Attitudes toward cognitive enhancement in users and nonusers of stimulants for cognitive enhancement: A pilot study. AJOB Prim. Res. 2012, 3, 48–57. [Google Scholar]
- Sarewitz, D.; Karas, T.H. Policy Implications of Technologies for Cognitive Enhancement. In Neurotechnology: Premises, Potential, and Problems; Giordano, J., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 267–285. [Google Scholar]
- Lucke, J.C. Empirical research on attitudes toward cognitive enhancement is essential to inform policy and practice guidelines. AJOB Prim. Res. 2012, 3, 58–60. [Google Scholar] [CrossRef]
- Wolbring, G. Is there an end to out-able? Is there an end to the rat race for abilities? J. Media Cult. 2008, 11. Available online: http://journal.media-culture.org.au/index.php/mcjournal/article/viewArticle/57 (accessed 30 March 2013). [Google Scholar]
- Wolbring, G. Therapeutic, enhancement enabling, assistive devices and the UN Convention on the rights of persons with disabilities: A missing lens in the enhancement regulation discourse. J. Int. Biotechnol. Law 2009, 6, 193–206. [Google Scholar]
- Wolbring, G. Therapeutic enhancements and the view of rehabilitation educators. DILEMATA Int. J. Appl. Ethics 2012, 8, 169–183. [Google Scholar]
- Lyon, R.H. A Sound Guide to Product Acceptance. Available online: http://www.aip.org/tip/INPHFA/vol-4/iss-1/p50.pdf (accessed on 30 March 2013).
- Frewer, L.; Scholderer, J.; Lambert, N. Consumer acceptance of functional foods: Issues for the future. Br. Food J. 2003, 105, 714–731. [Google Scholar] [CrossRef]
- Verbeke, W.; Vanhonacker, F.; Frewer, L.J.; Sioen, I.; de Henauw, S.; van Camp, J. Communicating risks and benefits from fish consumption: Impact on Belgian consumers’ perception and intention to eat fish. Risk Anal. 2008, 28, 951–967. [Google Scholar]
- Frewer, L.J.; Howard, C.; Shepherd, R. Genetic engineering and food: What determines consumer acceptance? Br. Food J. 1995, 97, 31–36. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Robert, G.; Bate, P.; Macfarlane, F.; Kyriakidou, O. Diffusion of Innovations in Health Service Organisations; Blackwell Publishing Ltd.: Mississauga, ON, Canada, 2005. [Google Scholar]
- Caselli, F.; Ventura, J. A representative consumer theory of distribution. Am. Econ. Rev. 2000, 90, 909–926. [Google Scholar] [CrossRef]
- Diewert, W.E. Hedonic Regressions. A Consumer Theory Approach; University of Chicago Press: Chicago, IL, USA, 2003. [Google Scholar]
- Kronenberg, T. Finding common ground between ecological economics and post-Keynesian economics. Ecol. Econ. 2010, 69, 1488–1494. [Google Scholar] [CrossRef]
- Gualerzi, D. Growth Theory, Structural Dynamics and the Analysis of Consumption. In Structural Dynamics and Economic Growth; Arena, R., Porta, P.L., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 181–203. [Google Scholar]
- Mahajan, V. Models for Innovation Diffusion; Sage Publications, Inc: Thousand Oaks, CA, USA, 1985; Volume 48. [Google Scholar]
- Sultan, F.; Farley, J.U.; Lehmann, D.R. A meta-analysis of applications of diffusion models. J. Mark. Res. 1990, 27, 70–77. [Google Scholar] [CrossRef]
- Lee, T.T. Nurses adoption of technology: Application of Rogers innovation-diffusion model. Appl. Nurs. Res. 2004, 17, 231–238. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations; Free Press: New York, NY, USA, 1995. [Google Scholar]
- Fishbein, M. A theory of reasoned action: Some applications and implications. Nebr. Symp. Motiv. 1980, 27, 65–116. [Google Scholar]
- Sheppard, B.H.; Hartwick, J.; Warshaw, P.R. The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. J. Consum. Res. 1988, 15, 325–343. [Google Scholar]
- Millstein, S.G. Utility of the theories of reasoned action and planned behavior for predicting physician behavior: A prospective analysis. Health Psychol. 1996, 15, 398–402. [Google Scholar] [CrossRef]
- Hausenblas, H.A.; Carron, A.V.; Mack, D.E. Application of the theories of reasoned action and planned behavior to exercise behavior: A meta-analysis. J. Sport Exerc. Psychol. 1997, 19, 36–51. [Google Scholar]
- Chang, M.K. Predicting unethical behavior: A comparison of the theory of reasoned action and the theory of planned behavior. J. Bus. Ethics 1998, 17, 1825–1834. [Google Scholar] [CrossRef]
- Belleau, B.D.; Summers, T.A.; Xu, Y.; Pinel, R. Theory of reasoned action. Cloth. Text. Res. J. 2007, 25, 244–257. [Google Scholar]
- Jaccard, J. The reasoned action model directions for future research. Ann. Amer. Acad. Polit. Soc. Sci. 2012, 640, 58–80. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption among young adults in Belgium: Theory of planned behaviour and the role of confidence and values. Ecol. Econ. 2008, 64, 542–553. [Google Scholar]
- Barker, M.; Swift, J.A. The application of psychological theory to nutrition behaviour change. Proc. Nutr. Soc. 2009, 68, 205–209. [Google Scholar]
- Kasper, J.; Koepke, S.; Fischer, K.; Schaeffler, N.; Backhus, I.; Solari, A.; Heesen, C. Applying the theory of planned behaviour to multiple sclerosis patients decisions on disease modifying therapy questionnaire concept and validation. BMC Med. Inform. Decis. Mak. 2012, 12. [Google Scholar] [CrossRef]
- Cote, F.; Gagnon, J.; Houme, P.K.; Abdeljelil, A.B.; Gagnon, M.P. Using the theory of planned behaviour to predict nurses’ intention to integrate research evidence into clinical decision-making. J. Adv. Nurs. 2012, 10, 2289–2298. [Google Scholar]
- Bandura, A. Health promotion from the perspective of social cognitive theory. Psychol. Health 1998, 13, 623–649. [Google Scholar] [CrossRef]
- Alkire, S. Subjective quantitative studies of human agency. Soc. Indic. Res. 2005, 74, 217–260. [Google Scholar] [CrossRef]
- Yoo, S.J.; Han, S.H.; Huang, W.H. The roles of intrinsic motivators and extrinsic motivators in promoting e-learning in the workplace: A case from South Korea. Comput. Hum. Behav. 2012, 28, 942–950. [Google Scholar] [CrossRef]
- Jang, Y.; Yoo, H. Self-management programs based on the Social Cognitive Theory for Koreans with chronic diseases: A systematic review. Contemp. Nurse 2012, 40, 147–159. [Google Scholar] [CrossRef]
- Bandura, A. Social cognitive theory in cultural context. Appl. Psychol. 2002, 51, 269–290. [Google Scholar] [CrossRef]
- Williams, G.C.; Deci, E.L. Internalization of biopsychosocial values by medical students: A test of self-determination theory. J. Pers. Soc. Psychol. 1996, 70, 767–779. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Self-determination theory: A macrotheory of human motivation, development, and health. Can. Psychol. 2008, 49, 182–185. [Google Scholar] [CrossRef]
- Burton, D.; Gillham, A.D.; Hammermeister, J. Competitive engineering: Structural climate modifications to enhance youth athletes’ competitive experience. Int. J. Sports Sci. Coach. 2011, 6, 201–218. [Google Scholar] [CrossRef]
- Kapp, S.K. Navajo and autism: The beauty of harmony. Disabil. Soc. 2011, 26, 583–595. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Self-determination theory in health care and its relations to motivational interviewing: A few comments. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef]
- Ng, J.Y.Y.; Ntoumanis, N.; Thøgersen-Ntoumani, C.; Deci, E.L.; Ryan, R.M.; Duda, J.L.; Williams, G.C. Self-determination theory applied to health contexts: A meta-analysis. Perspect. Psychol. Sci. 2012, 7, 325–340. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Motivation, Personality, and Development within Embedded Social Contexts: An Overview of Self-Determination Theory. In The Oxford Handbook of Human Motivation; Ryan, R.M., Ed.; Oxford University Press: New York, NY, USA, 2012; pp. 85–107. [Google Scholar]
- Teixeira, P.J.; Carraça, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results; Massachusetts Institute of Technology: Boston, MA, USA, 1985. [Google Scholar]
- Mathieson, K. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS. Q. 1997, 21, 389–400. [Google Scholar] [CrossRef]
- Venkatesh, V.; Brown, S.A. A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges 408. MIS. Q. 2001, 25, 71–102. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inform. Management 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Terrizzi, S.; Sherer, S.; Meyerhoefer, C.; Scheinberg, M.; Levick, D. Extending the technology acceptance model in healthcare: Identifying the role of trust and shared information. AMCIS Proc. 2012. Paper 19. [Google Scholar]
- Belanche, D.; Casalo, L.V.; Flavian, C. Integrating trust and personal values into the Technology Acceptance Model: The case of e-government services adoption. Cuad. Econ. Dir. Empres. 2012, 15, 192–204. [Google Scholar]
- Chang, S.H. The impacts of consumer variety-seeking, interaction of demand and technology acceptance model on self-service technology in baby boomers. Mc.S. Thesis, Ming Chuan University, Taipei, Taiwan, 2012. [Google Scholar]
- Oshlyansky, L.; Cairns, P.; Thimbleby, H. Validating the Unified Theory of Acceptance and Use of Technology (UTAUT) Tool Cross-Culturally. In Proceedings of HCI 2007, the 21st British HCI Group Annual Conference, Lancaster, UK, 3–7 September 2007; British Computer Society: London, UK, 2007; pp. 83–86. [Google Scholar]
- Im, I.; Kim, Y.; Han, H.J. The effects of perceived risk and technology type on users’ acceptance of technologies. Inform. Management 2008, 45, 1–9. [Google Scholar] [CrossRef]
- Van Schaik, P. Unified theory of acceptance and use for websites used by students in higher education. J. Educ. Comput. Res. 2009, 40, 229–257. [Google Scholar] [CrossRef]
- Im, I.; Hong, S.; Kang, M.S. An international comparison of technology adoption Testing the UTAUT model. Inform. Management 2011, 48, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Townsend, A.; Luse, A.; Mennecke, B. The determinants of acceptance of recommender systems: Applying the UTAUT model. AMCIS Proc. 2012. Paper 2. [Google Scholar]
- Kidd, T.; Davis, T. Framework to Analyze Faculty Involvement in Online Teaching Using UTAUT and Dewey’s Theory of Experience. In Proceedings of Society for Information Technology & Teacher Education International Conference; Resta, P., Ed.; AACE: Chesapeake, VA, USA, 2012; pp. 505–510. [Google Scholar]
- Ifinedo, P. Technology Acceptance by Health Professionals in Canada: An Analysis with a Modified UTAUT Model. In Proceeding of the 45th Hawaii International Conference on System Science, Maui, HI, USA, 4–7 January 2012; pp. 2937–2946.
- Oye, N.D.; Iahad, A.; Rahim, N. The history of UTAUT model and its impact on ICT acceptance and usage by academicians. Educ. Inf. Technol. 2012. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS. Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- BenMessaoud, C.; Kharrazi, H.; MacDorman, K.F. Facilitators and barriers to adopting robotic-assisted surgery: Contextualizing the unified theory of acceptance and use of technology. PloS ONE 2011, 6, e16395. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D.; DeLone, W.; McLean, E.; Jarvis, C.B.; MacKenzie, S.B.; Podsakoff, P.M.; Chin, W.W. User acceptance of information technology: Toward a unified view. Inform. Management 2003, 27, 425–478. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS. Q. 2012, 36, 157–178. [Google Scholar]
- Atif, A.; Richards, D. A technology acceptance model for unit guide information systems. PACIS Proc. 2012. Paper 97. [Google Scholar]
- Yergens, D.R.J.; Doig, C.J. KSv2: Application for Enhancing Scoping and Systematic Reviews. In Proceeidngs of American Medical Informatics Association (AMIA) 2012 Annual Symposium, Chicago, IL, USA, 3–7 November 2012.
- Gürkök, H.; Plass-Oude Bos, D.; Laar, B.; Nijboer, F.; Nijholt, A. User experience evaluation in BCI: Filling the gap. Int. J. Bioelectromagn. 2011, 13, 54–55. [Google Scholar]
- Plass-Oude Bos, D.; Gürkök, H.; van de Laar, B.; Nijboer, F.; Nijholt, A. User Experience Evaluation in BCI: Mind the Gap! Int. J. Bioelectromagn. 2011, 13, 48–49. [Google Scholar]
- Laar, B.; Nijboer, F.; Gürkök, H.; Plass-Oude Bos, D.; Nijholt, A. User experience evaluation in BCI: Bridge the gap. Int. J. Bioelectromagn. 2011, 13, 157–158. [Google Scholar]
- Heerink, M.; Kröse, B.; Evers, V.; Wielinga, B. Assessing acceptance of assistive social agent technology by older adults: The almere model. Int. J. Soc. Robot. 2010, 2, 361–375. [Google Scholar] [CrossRef]
- De Ruyter, B.; Saini, P.; Markopoulos, P.; van Breemen, A. Assessing the effects of building social intelligence in a robotic interface for the home. Interact. Comput. 2005, 17, 522–541. [Google Scholar] [CrossRef]
- Salvini, P.; Laschi, C.; Dario, P. Design for acceptability: Improving robots’ coexistence in human society. Int. J. Soc. Robot. 2010, 2, 451–460. [Google Scholar] [CrossRef]
- Young, J.E.; JaYoung, S.; Voida, A.; Sharlin, E.; Igarashi, T.; Christensen, H.I.; Grinter, R.E. Evaluating human-robot interaction: Focusing on the holistic interaction experience. Int. J. Soc. Robot. 2011, 3, 53–67. [Google Scholar] [CrossRef]
- Broadbent, E.; Stafford, R.; MacDonald, B. Acceptance of healthcare robots for the older population: Review and future directions. Int. J. Soc. Robot. 2009, 1, 319–330. [Google Scholar] [CrossRef]
- Mackenzie, R.; Watts, J. Robots, social networking sites and multi-user games: Using new and existing assistive technologies to promote human flourishing. Tizard Learn. Disabil. Rev. 2011, 16, 38–47. [Google Scholar] [CrossRef]
- Young, J.E.; Hawkins, R.; Sharlin, E.; Igarashi, T. Toward acceptable domestic robots: Applying insights from social psychology. Int. J. Soc. Robot. 2009, 1, 95–108. [Google Scholar] [CrossRef]
- Dai, C.-Y.; Jang, J.-J.; Lee, T.-H.; Chen, Y.-T.; Yuan, Y.-H. Base on Human-Computer Interaction Perspective to Analyze the Factors of Technology Acceptance Model on IRSSP for Taiwan Recommendatory Admission. In Proceedings of the 6th International Conference on Computer Science & Education, Singapore, 3–5 August 2011; IEEE: Paolo Alto, CA, USA, 2011; pp. 149–153. [Google Scholar]
- Mason, S.G.; Bashashati, A.; Fatourechi, M.; Navarro, K.F.; Birch, G.E. A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng. 2007, 35, 137–169. [Google Scholar]
- McCullagh, P.J.; Ware, M.; Mulvenna, M.; Lightbody, G.; Nugent, C.D.; McAllister, H.G. Can brain computer interfaces become practical assistive devices in the community? Stud. Health Technol. Inform. 2010, 160, 314–318. [Google Scholar]
- Garipelli, G.; Galan, F.; Chavarriaga, R.; Ferrez, P.W.; Lew, E.; Millan, R. The Use of Brain-Computer Interfacing in Ambient Intelligence. In Constructing Ambient Intelligence; Springer-Heidelberg: Berlin, Germany, 2008; pp. 268–285. [Google Scholar]
- Ziefle, M.; Schaar, A.K. Gender differences in acceptance and attitudes towards an invasive medical stent. Electron. J. Health Inform. 2011, 6, e13:1–e13:18. [Google Scholar]
- Carpenter, J.; Davis, J.M.; Erwin-Stewart, N.; Lee, T.R.; Bransford, J.D.; Vye, N. Gender representation and humanoid robots designed for domestic use. Int. J. Soc. Robot. 2009, 1, 261–265. [Google Scholar] [CrossRef]
- Hegel, F.; Muhl, C.; Wrede, B.; Hielscher-Fastabend, M.; Sagerer, G. Understanding Social Robots. In Proceedings of the Second International Conferences on Advances in Computer Human Interactions, Cancun, Mexico, 1–7 February 2009; pp. 169–174.
- Moon, A.J.; Danielson, P.; van der Loos, H.F.M. Survey-based discussions on morally contentious applications of interactive robotics. Int. J. Soc. Robot. 2012, 4, 77–96. [Google Scholar]
- Marcos, S.; Gomez-Garcia-Bermejo, J.; Zalama, E. A realistic, virtual head for human-computer interaction. Interact. Comput. 2010, 22, 176–192. [Google Scholar] [CrossRef]
- Welch, K.C.; Lahiri, U.; Warren, Z.; Sarkar, N. An approach to the design of socially acceptable robots for children with autism spectrum disorders. Int. J. Soc. Robot. 2010, 2, 391–403. [Google Scholar] [CrossRef]
- Park, E.; del Pobil, A.P. Users’ attitudes toward service robots in South Korea. Ind. Robot 2013, 40, 77–87. [Google Scholar] [CrossRef]
- Qianli, X.; Ng, J.; Cheong, Y.L.; Tan, O.; Wong, J.B.; Tay, T.C.; Park, T. The Role of Social Context in Human-Robot Interaction. In Proceedings of 2012 Southeast Asian Network of Ergonomics Societies Conference, Langkawi, Malaysia, 9–12 July 2012; pp. 1–5.
- Donovan, R.J.; Egger, G.; Kapernick, V.; Mendoza, J. A conceptual framework for achieving performance enhancing drug compliance in sport. Sports Med. 2002, 32, 269–284. [Google Scholar] [CrossRef]
- Bloss, C.S.; Ornowski, L.; Silver, E.; Cargill, M.; Vanier, V.; Schork, N.J.; Topol, E.J. Consumer perceptions of direct-to-consumer personalized genomic risk assessments. Genet. Med. 2010, 12, 556–566. [Google Scholar] [CrossRef]
- Guttmacher, A.E.; McGuire, A.L.; Ponder, B.; Stefansson, K. Personalized genomic information: Preparing for the future of genetic medicine. Nat. Rev. Genet. 2010, 11, 161–165. [Google Scholar]
- Kato, K.; Kano, K.; Shirai, T. Science communication: Significance for genome-based personalized medicineûa view from the Asia-Pacific. Curr. Pharm. 2010, 8, 93–96. [Google Scholar]
- Keller, M.A.; Gordon, E.S.; Stack, C.B.; Gharani, N.; Sill, C.J.; Schmidlen, T.J.; Joseph, M.; Pallies, J.; Gerry, N.P.; Christman, M.F. Coriell Personalized Medicine Collaborative®: A prospective study of the utility of personalized medicine. Pers. Med. 2010, 7, 301–317. [Google Scholar] [CrossRef]
- Boone, R.G.; Gordon, J.; Barnes, F.; Fraser-Beekman, S. Factors Impacting Innovation in a Product Development Organization. In Proceedings of 2012 IEEE International Conference on Electro/Information Technology (EIT), Indianapolis, IN, USA, 6–8 May 2012; pp. 1–11.
- Conci, M.; Pianesi, F.; Zancanaro, M. Useful, Social and Enjoyable: Mobile Phone Adoption by Older People. In Human-Computer Interaction––INTERACT 2009; Springer: Uppsala, Sweden, 2009; pp. 63–76. [Google Scholar]
- Musa, P.F. Making a case for modifying the technology acceptance model to account for limited accessibility in developing countries. Inf. Technol. Dev. 2006, 12, 213–224. [Google Scholar] [CrossRef]
- Salovaara, A.; Tamminen, S. Acceptance or Appropriation? A Design-oriented Critique of Technology Acceptance Models. In Future Interaction Design II; Springer: Heidelberg, Germany, 2009; pp. 157–173. [Google Scholar]
- Totter, A.; Bonaldi, D.; Majoe, D. A human-Centered Approach to the Design and Evaluation of Wearable Sensors-Framework and Case Study. In Proceedings of the 6th International Conference on Pervasive Computing and Applications, Port Elizabeth, South Africa, 26–28 October 2011; IEEE: Palo Alto, CA, USA, 2011; pp. 233–241. [Google Scholar]
- Ziefle, M.; Rocker, C. Human-Centered Design of E-Health Technologies: Concepts, Methods and Applications; IGI Global: Hershey, PA, USA, 2011. [Google Scholar]
- Van Velsen, L.; van Der Geest, T.; Klaassen, R.; Steehouder, M. User-centered evaluation of adaptive and adaptable systems: A literature review. Knowl. Eng. Rev. 2008, 23, 261–281. [Google Scholar]
- Millen, L.; Cobb, S.; Patel, H. Participatory design approach with children with autism. Int. J. Disabil. Hum. Dev. 2011, 10, 289–294. [Google Scholar]
- Alper, M.; Hourcade, J.P.; Gilutz, S. Interactive Technologies for Children with Special Needs. In Proceedings of the 11th International Conference on Interaction Design and Children, Bremen, Germany, 12–15 June 2012; ACM: New York, NY, USA, 2012; pp. 363–366. [Google Scholar]
- Hussain, S.; Sanders, E.B.-N. Fusion of horizons: Co-designing with Cambodian children who have prosthetic legs, using generative design tools. CoDesign 2012, 8, 43–79. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wolbring, G.; Diep, L.; Yumakulov, S.; Ball, N.; Yergens, D. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks. Technologies 2013, 1, 3-25. https://doi.org/10.3390/technologies1010003
Wolbring G, Diep L, Yumakulov S, Ball N, Yergens D. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks. Technologies. 2013; 1(1):3-25. https://doi.org/10.3390/technologies1010003
Chicago/Turabian StyleWolbring, Gregor, Lucy Diep, Sophya Yumakulov, Natalie Ball, and Dean Yergens. 2013. "Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks" Technologies 1, no. 1: 3-25. https://doi.org/10.3390/technologies1010003
APA StyleWolbring, G., Diep, L., Yumakulov, S., Ball, N., & Yergens, D. (2013). Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks. Technologies, 1(1), 3-25. https://doi.org/10.3390/technologies1010003