Does Geographical Discrimination Exist in Online Lending in China: An Empirical Study Based on Chinese Loan Platform Renren
Abstract
:1. Introduction
2. Theoretical Analysis and Proposed Hypotheses
3. Variables, Data, and Research Design
3.1. Data Source and Processing
3.2. Model Setting
3.2.1. Model Setting of Geographical Discrimination
3.2.2. Model Setting for Reasons of Geographical Discrimination
3.3. Definition of Variables
3.3.1. Interpreted Variables
3.3.2. Explanatory Variables
3.3.3. Main Control Variables
4. Empirical Analysis of Geographical Discrimination in Online Lending
4.1. Descriptive Statistics
4.2. Empirical Test of Geographical Discrimination
4.3. Exploration of Potential Causes of Geographical Discrimination
4.4. Robustness Test
4.5. Expansibility Test
5. Conclusions and Reflections
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Success | Apr | Period | Ln_amoun | Creditrating | Age | Marry | Education | Company | Income | House | Car | Houseloan | Carloan | Prov_gdp | Prov_gov | Prov_edu | Prov_nat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
success | 1 | |||||||||||||||||
apr | −0.090 ** | 1 | ||||||||||||||||
period | −0.101 ** | 0.061 ** | 1 | |||||||||||||||
ln_amoun | −0.127 ** | 0.010 ** | 0.472 ** | 1 | ||||||||||||||
creditrating | −0.529 ** | 0.076 ** | 0.083 ** | 0.047 ** | 1 | |||||||||||||
age | 0.108 ** | 0.028 ** | 0.030 ** | 0.231 ** | −0.109 ** | 1 | ||||||||||||
marry | 0.075 ** | −0.024 ** | 0.038 ** | 0.177 ** | −0.086 ** | 0.394 ** | 1 | |||||||||||
education | 0.107 ** | −0.071 ** | 0.022 ** | 0.093 ** | −0.125 ** | 0.036 ** | −0.028 ** | 1 | ||||||||||
company | 0.069 ** | −0.016 ** | 0.065 ** | −0.084 ** | −0.052 ** | −0.053 ** | −0.084 ** | 0.177 ** | 1 | |||||||||
income | 0.076 ** | 0.002 | 0.012 ** | 0.427 ** | −0.104 ** | 0.259 ** | 0.199 ** | 0.063 ** | −0.244 ** | 1 | ||||||||
house | 0.074 ** | −0.031 ** | 0.028 ** | 0.160 ** | −0.090 ** | 0.301 ** | 0.316 ** | 0.107 ** | −0.015 ** | 0.162 ** | 1 | |||||||
car | 0.089 ** | −0.045 ** | −0.020 ** | 0.208 ** | −0.124 ** | 0.191 ** | 0.255 ** | 0.066 ** | −0.115 ** | 0.314 ** | 0.281 ** | 1 | ||||||
houseloan | 0.070 ** | −0.043 ** | 0.031 ** | 0.124 ** | −0.091 ** | 0.117 ** | 0.146 ** | 0.149 ** | 0.006 ** | 0.141 ** | 0.454 ** | 0.165 ** | 1 | |||||
carloan | 0.029 ** | −0.026 ** | 0.011 ** | 0.114 ** | −0.042 ** | 0.049 ** | 0.102 ** | 0.006 ** | −0.079 ** | 0.179 ** | 0.102 ** | 0.424 ** | 0.103 ** | 1 | ||||
prov_gdp | 0.013 ** | 0.007 ** | −0.033 ** | −0.015 ** | −0.014 ** | −0.020 ** | 0.015 ** | −0.077 ** | 0.013 ** | 0.067 ** | −0.063 ** | 0.013 ** | −0.041 ** | 0.019 ** | 1 | |||
prov_gov | 0.017 ** | 0.001 | −0.031 ** | −0.013 ** | −0.016 ** | −0.017 ** | 0.005 ** | −0.046 ** | 0.019 ** | 0.055 ** | −0.044 ** | 0.015 ** | −0.022 ** | 0.014 ** | 0.895 ** | 1 | ||
prov_edu | 0.016 ** | 0.002 | −0.032 ** | −0.015 ** | −0.016 ** | −0.025 ** | 0.017 ** | −0.069 ** | 0.002 | 0.054 ** | −0.050 ** | 0.019 ** | −0.031 ** | 0.024 ** | 0.885 ** | 0.937 ** | 1 | |
prov_nat | −0.001 | −0.008 ** | 0.021 ** | 0.012 ** | 0.003 | 0.014 ** | −0.005 ** | 0.009 ** | −0.019 ** | −0.041 ** | 0.018 ** | −0.001 | 0.027 ** | −0.013 ** | −0.315 ** | −0.250 ** | −0.328 ** | 1 |
References
- Barasinska, Nataliya, and Dorothea Schafer. 2014. Is Crowdfunding Different? Evidence on the Relation between Gender and Funding Success from a German Peer-to-Peer Lending Platform. German Economic Review 15: 436–52. [Google Scholar] [CrossRef]
- Barrell, Ray, and Abdulkader Nahhas. 2019. The role of lender country factors in cross border bank lending. International Review of Financial Analysis. [Google Scholar] [CrossRef]
- Caldieraro, Fabio, Jonathan Z. Zhang, Marcus Cunha Jr., and Jeffrey D. Shulman. 2018. Strategic Information Transmission in Peer-to-Peer Lending Markets. Journal of Marketing 82: 42–63. [Google Scholar] [CrossRef] [Green Version]
- Carlos, Canfield. 2018. Determinants of Default in P2P Lending: The Mexican Case. Independent Journal of Management & Production 9: 1–24. [Google Scholar]
- Chen, Wei, and Dezhu Ye. 2016. Research on Sex Discrimination in Internet Finance in China. Chinese Review of Financial Studies 2: 1–15. [Google Scholar]
- Chen, Wei, Xiaoyu Ding, and Beifen Wang. 2013. Research on Overdue Behavior of Private Lending—An Empirical Analysis Based on P2P Network Lending. Chinese Review of Financial Studies 11: 65–72. [Google Scholar]
- Chen, Juanjuan, Yabin Zhang, and Zhujia Yin. 2018. Education Premium in The Online Peer-To-Peer Lending Marketplace: Evidence from The Big Data In China. The Singapore Economic Review (SER) 63: 1–20. [Google Scholar] [CrossRef]
- Chi, Guotai, Shijie Ding, and Xiankun Peng. 2019. Data-Driven Robust Credit Portfolio Optimization for Investment Decisions in P2P Lending. Mathematical Problems in Engineering 2019: 1–10. [Google Scholar] [CrossRef]
- Duarte, Jefferson, Stephan Siegel, and Lance A. Young. 2009. To Lend or Not to Lend: Revealed Attitudes towards Gender, Ethnicity, Weight, and Age in the U.S. Rochester: Social Science Electronic Publishing. [Google Scholar] [CrossRef]
- Feng, Xiaodong, Zhi Xiao, Xianning Wang, and Bo Zhong. 2019. Peer-to-Peer Lending Platform Selection Using Intuitionistic Fuzzy Soft Set and D-S Theory of Evidence. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 27: 1–17. [Google Scholar] [CrossRef]
- Han, Lu, Jing Jian Xiao, and Zhi Su. 2019. Financing knowledge, risk attitude and P2P borrowing in China. International Journal of Consumer Studies 43: 166–77. [Google Scholar] [CrossRef]
- Hao, Ying, Qingquan Xin, and Xing Liu. 2014. Regional Difference, Enterprise Investment and Quality of Economic Growth. Economic Research Journal 3: 103–16. [Google Scholar]
- Hu, Rongcai, Meng Liu, Pingping He, and Yong Ma. 2019. Can Investors on P2P Lending Platforms Identify Default Risk? International Journal of Electronic Commerce 23: 63–84. [Google Scholar] [CrossRef]
- Huang, Guoping, and Benxian Yao. 2006. Regional Discrimination and the Construction of a Harmonious Society. Social Psychology 2006: 50–52. [Google Scholar]
- Jiang, You, and Anqi Zhou. 2016. Is there any geographical discrimination in P2P network lending?—Experience data from “everyone’s loan”. Journal of Central University of Finance and Economics 2016: 29–39. [Google Scholar]
- Jin, Jia, Qian Shang, and Qingguo Ma. 2019. The role of appearance attractiveness and loan amount in peer-to-peer lending: Evidence from event-related potentials. Neuroscience Letters 692: 10–15. [Google Scholar] [CrossRef]
- Li, Yuelei, Yang Guo, and Wei Zhang. 2013. Analysis of Factors Affecting the Success Rate of China’s P2P Microfinance Market Borrowing. Financial Research 7: 126–38. [Google Scholar]
- Lin, Mingfeng, and Siva Viswanathan. 2015. Home Bias in Online Investments: An Empirical Study of an Online Crowdfunding Market. Management Science 62: 1393–413. [Google Scholar] [CrossRef] [Green Version]
- Lin, Ma, Xi Zhao, Zhili Zhou, and Yuanyuan Liu. 2018. A new aspect on P2P online lending default prediction using meta-level phone usage data in China. Decision Support Systems 111: 60–71. [Google Scholar]
- Liu, Wei, and Liqiu Xia. 2018. Evolutionary Game Equilibrium Analysis of Participating Subject Behavior Strategies in Internet Lending Market—Based on the Perspective of Three-Party Game. Chinese Management Science 26: 169–77. [Google Scholar]
- Lucia, Gibilaro, and Gianluca Mattarocci. 2018. Peer-to-peer lending and real estate mortgages: evidence from United Kingdom. Journal of European Real Estate Research 11: 319–34. [Google Scholar]
- Ma, Xiaojun, Jinglan Sha, Dehua Wang, Yuanbo Yu, Qian Yang, and Xueqi Niu. 2018. Study on A Prediction of P2P Network Loan Default Based on the Machine Learning LightGBM and XGboost Algorithms according to Different High Dimensional Data Cleaning. Electronic Commerce Research and Applications 38: 24–39. [Google Scholar] [CrossRef]
- Mollick, Ethan. 2014. The Dynamics of Crowdfunding: An Exploratory Study. Journal of Business Venturing 29: 1–16. [Google Scholar] [CrossRef] [Green Version]
- Peng, Hongfeng, Liuming Yang, and Xiaoyu Tan. 2016. How Regional Differences Affect P2P Platform Lending Behavior—Based on Empirical Evidence of “Everyone’s Lending”. Contemporary Economic Science 38: 21–33. [Google Scholar]
- Pi, Tianlei, and Tie Zhao. 2014. Internet Finance: Category, Innovation and Prospects. Finance and Economics 6: 22–30. [Google Scholar]
- Pope, Devin G., and Justin R. Sydnor. 2011. What’s in a Picture? Evidence of Discrimination from Prosper.com. Journal of Human Resources 46: 53–92. [Google Scholar] [CrossRef]
- Ravina, Enrichetta. 2012. Love & Loans: The Effect of Beauty and Personal Characteristics in Credit Markets. Rochester: Social Science Electronic Publishing. [Google Scholar] [CrossRef]
- Yang, Li, Cuicui Zhao, and Xiaohong Chen. 2018. Research on P2P Lending Credit Risk Relief Mechanism Based on Social Network. Chinese Management Science 26: 47–56. [Google Scholar]
Time | Stage | Characteristics |
---|---|---|
2007–2011 | Start-up period | The mode of copying foreign platforms |
2011–2012 | Expansion period | Rapid increase in quantity |
2013–2014 | Risk outbreak | Problem online loan company increased |
2014–2017 | Policy adjustment period | Government strengthens supervision |
2017–now | Remodeling period | Remodeling business model |
Variable Type | Variable | Variable Definitions |
---|---|---|
Explained variable | success | Take 1 when the loan is successful, and take 0 if the failure is successful. |
apr | Annualized interest rate of borrowing orders | |
Explanatory variables | Prov | The province where the borrower is located, with Zhejiang as the control group, set 30 dummy variables |
prov_gdp | Assignment from low to high by province GDP level 1–5 | |
prov_gov | According to the province’s local fiscal general budget expenditure level from low to high assignment 1–5 | |
prov_edu | According to the provincial education funding level from low to high assignment 1–5 | |
prov_nat | The minority autonomous region takes 1 and the rest takes 0 | |
Control variable | period | Repayment period set by the borrower |
ln_amount | The loan amount is logarithm | |
apr | Annualized interest rate of borrowing orders | |
credit | Take 1 when the level is HR, otherwise take 0 | |
age | Borrower’s age | |
marry | Married to take 1, otherwise take 0 | |
education | According to education from low to high assignment 1–4 | |
company | Assignment from low to high according to the size of the borrower company 1–4 | |
income | Assigned from low to high according to the borrower’s income level 1–7 | |
house | Have a property to take 1, otherwise take 0 | |
car | Have a car take 1, otherwise take 0 | |
House loan | Have a mortgage to take 1, otherwise take 0 | |
carloan | Have a car loan to take 1, otherwise take 0 |
Variable | Number | Mean | Median | Max | Min | Standard |
---|---|---|---|---|---|---|
success | 396,634 | 0.0677 | 0 | 1 | 0 | 0.2512 |
apr | 396,634 | 13.6829 | 13 | 23.4 | 3 | 3.0772 |
prov_gdp | 396,634 | 3.1127 | 3 | 5 | 1 | 1.1781 |
prov_gov | 396,634 | 3.8473 | 4 | 5 | 1 | 1.2994 |
prov_edu | 396,634 | 3.881 | 4 | 5 | 1 | 1.2419 |
prov_nat | 396,634 | 0.065 | 0 | 1 | 0 | 0.2466 |
period | 396,634 | 15.9585 | 12 | 36 | 1 | 9.3176 |
ln_amount | 396,634 | 10.2095 | 10.309 | 13.8155 | 6.9078 | 1.2996 |
creditrating | 396,634 | 0.9429 | 1 | 1 | 0 | 0.2321 |
age | 396,634 | 31.1305 | 29 | 65 | 18 | 6.5614 |
marry | 396,634 | 0.4984 | 0 | 1 | 0 | 0.5 |
education | 396,634 | 1.8676 | 2 | 4 | 1 | 0.793 |
company | 396,634 | 2.3936 | 2 | 4 | 1 | 1.0475 |
income | 396,634 | 3.9143 | 4 | 7 | 1 | 1.1609 |
house | 396,634 | 0.436 | 0 | 1 | 0 | 0.4959 |
car | 396,634 | 0.2506 | 0 | 1 | 0 | 0.4334 |
houseloan | 396,634 | 0.141 | 0 | 1 | 0 | 0.3481 |
carloan | 396,634 | 0.0573 | 0 | 1 | 0 | 0.2325 |
Province | Successful | Failure | Total | Success Rate |
---|---|---|---|---|
zhejiang | 2516 | 26,519 | 29,035 | 8.67% |
jiangsu | 2029 | 22,485 | 24,514 | 8.28% |
guizhou | 551 | 6338 | 6889 | 8.00% |
beijing | 1223 | 14,275 | 15,498 | 7.89% |
gansu | 308 | 3817 | 4125 | 7.47% |
shanghai | 976 | 12,113 | 13,089 | 7.46% |
shanxi_2 | 625 | 7979 | 8604 | 7.26% |
shandong | 2042 | 26,386 | 28,428 | 7.18% |
qinghai | 63 | 835 | 898 | 7.02% |
guangxi | 795 | 10,636 | 11,431 | 6.95% |
guangdong | 4107 | 55,127 | 59,234 | 6.93% |
yunnan | 582 | 7905 | 8487 | 6.86% |
henan | 1141 | 15,558 | 16,699 | 6.83% |
hainan | 208 | 2871 | 3079 | 6.76% |
tianjin | 227 | 3141 | 3368 | 6.74% |
neimenggu | 476 | 6735 | 7211 | 6.60% |
jinlin | 368 | 5288 | 5656 | 6.51% |
ningxia | 137 | 1980 | 2117 | 6.47% |
xinjiang | 282 | 4136 | 4418 | 6.38% |
anhui | 753 | 11,096 | 11,849 | 6.35% |
heilongjiang | 519 | 7844 | 8363 | 6.21% |
jiangxi | 569 | 8669 | 9238 | 6.16% |
fujian | 1355 | 21,324 | 22,679 | 5.97% |
hebei | 770 | 12,529 | 13,299 | 5.79% |
hubei | 847 | 14,183 | 15,030 | 5.64% |
sichuan | 1141 | 19,376 | 20,517 | 5.56% |
hunan | 831 | 14,373 | 15,204 | 5.47% |
liaoning | 577 | 9967 | 10,544 | 5.47% |
shanxi_1 | 506 | 9017 | 9523 | 5.31% |
xizang | 28 | 597 | 625 | 3.48% |
chongqing | 293 | 6690 | 6983 | 3.20% |
Total | 26,845 | 369,789 | 396,634 | 6.77% |
Variable | Model 1 | Model 2 | Variable | Model 1 | Model 2 | Variable | Model 1 | Model 2 |
---|---|---|---|---|---|---|---|---|
anhui | −0.0095 *** | 0.01 | jiangxi | −0.0149 *** | 0.051 | apr | −0.0039 *** | |
(−3.1592) | −0.3 | (−5.9481) | −1.41 | (−35.9534) | ||||
beijing | −0.0145 *** | −0.2788 *** | liaoning | −0.0166 *** | 0.1178 *** | period | 0.0004 *** | 0.0236 *** |
(−6.8954) | (−9.0914) | (−6.9647) | −3.39 | −8.99 | −38.5 | |||
fujian | −0.0108 *** | 0.037 | neimenggu | −0 | −0.2265 *** | ln_amount | −0.0323 *** | −0.0732 *** |
(−5.8263) | −1.37 | (−1.1900) | (−5.6313) | (−95.0217) | (−13.7813) | |||
gansu | 5 × 10−4 | −0.1974 *** | ningxia | −0 | −0.02 | creditrating | −0.5304 *** | 0.8385 *** |
−0.15 | (−3.8841) | (−0.7810) | (−0.2434) | (−358.1010) | −38.9 | |||
guangdong | −0.0052 *** | −0.1389 *** | qinghai | −0 | −0.11 | age | 0.0024 *** | 0.0264 *** |
(−3.4678) | (−6.3376) | (−0.6700) | (−1.0703) | −41.4 | −31.3 | |||
guangxi | −0.0062 *** | −0.05 | shandong | −0.0091 *** | 0.2162 *** | marry | 0.0086 *** | −0.2041 *** |
(−2.6875) | (−1.3509) | (−5.1799) | −8.47 | −11.4 | (−18.4568) | |||
guizhou | −0 | −0.2212 *** | shanxi1 | −0.0152 *** | −0.1496 *** | education | 0.0129 *** | −0.2160 *** |
(−0.7141) | (−5.4033) | (−6.1322) | (−3.1393) | −29 | (−33.3471) | |||
hainan | −0.0070 * | −0 | shanxi2 | −0 | −0.0877 ** | company | 0.0113 *** | −0.0155 *** |
(−1.7753) | (−0.0450) | (−1.3225) | (−2.3382) | −33.3 | (−3.1479) | |||
hebei | −0.01125 *** | 0.0645 ** | shanghai | −0.0155 *** | −0.1783 *** | income | 0.0164 *** | 0.0812 *** |
(−5.1279) | −2.02 | (−7.0325) | (−5.5316) | −46.8 | −15.8 | |||
henan | −0.0038 * | −0.1957 *** | sichuan | −0.0175 *** | −0.1175 *** | house | 0.0025 *** | −0.0640 *** |
(−1.8426) | (−6.5979) | (−9.1186) | (−3.2112) | −3.06 | (−5.3427) | |||
heilongjiang | −0.0103 *** | −0.02 | tianjin | −0.0166 *** | 0.2303 *** | car | 0.0111 *** | −0.2124 *** |
(−3.9664) | (−0.5698) | (−3.3611) | −3.15 | −12.1 | (−15.7899) | |||
hubei | −0.0188 *** | −0.1128 *** | xizang | −0.01 | 0.183 | houseloan | 0.0082 *** | −0.2151 *** |
(−8.9226) | (−3.6695) | (−0.7916) | −1.49 | −7.58 | (−13.5710) | |||
hunan | −0.0201 *** | −0.0880 *** | xinjiang | −0.0066 * | −0.3229 *** | carloan | 9 × 10−4 | −0.1531 *** |
(−9.5477) | (−2.8718) | (−1.9491) | (−6.5458) | −0.56 | (−6.6257) | |||
jilin | −0.0052 * | 0.1185 *** | yunnan | −0.0049 * | −0.0663 * | |||
(−1.7060) | −2.67 | (−1.9061) | (−1.7610) | |||||
jiangsu | −0.0050 *** | 0.0969 *** | chongqing | −0.0238 *** | 0.023 | |||
(−2.7389) | −3.66 | (−8.5419) | −0.56 | |||||
R2 | 0.3081 | 0.0201 | Adj R2 | 0.3080 | 0.0200 | N | 396,634 | 396,634 |
Variable | Success | |||
---|---|---|---|---|
prov_gdp | 0.0007 ** (2.4942) | -- | -- | -- |
prov_gov | -- | 0.0009 *** (3.5838) | -- | -- |
prov_edu | -- | -- | 0.0012 *** (3.5632) | -- |
prov_nat | -- | -- | -- | 0.0044 *** (3.2280) |
Control | -- | -- | -- | -- |
R2 | 0.3076 | 0.3076 | 0.3076 | 0.3076 |
N | 396,634 | 396,634 | 396,634 | 396,634 |
Variable | Apr | |||
---|---|---|---|---|
prov_gdp | 0.0111 *** (2.8052) | -- | -- | -- |
prov_gov | -- | 0.0015 (0.3935) | -- | -- |
prov_edu | -- | -- | 0.0012 (0.3124) | -- |
prov_nat | -- | -- | -- | −0.0958 *** (−3.8638) |
Control | -- | -- | -- | -- |
R2 | 0.0183 | 0.0183 | 0.0183 | 0.0184 |
N | 396,634 | 396,634 | 396,634 | 396,634 |
Variable | Success | |||
---|---|---|---|---|
prov_gdp | 0.0006 ** (2.1622) | -- | -- | -- |
prov_gov | -- | 0.0010 *** (3.8935) | -- | -- |
prov_edu | -- | -- | 0.0013 *** (3.5583) | -- |
prov_nat | -- | -- | -- | 0.0055 *** (3.9903) |
Control | -- | -- | -- | -- |
R2 | 0.3020 | 0.3020 | 0.3020 | 0.3020 |
N | 357,379 | 357,379 | 357,379 | 357,379 |
Variable | Apr | |||
---|---|---|---|---|
prov_gdp | 0.0101 ** (2.4159) | -- | -- | -- |
prov_gov | -- | 0.0005 (0.1175) | -- | -- |
prov_edu | -- | -- | 0.0016 (0.3720) | -- |
prov_nat | -- | -- | -- | −0.0987 *** (−3.7070) |
Control | -- | -- | -- | -- |
R2 | 0.0199 | 0.0199 | 0.0199 | 0.0199 |
N | 357,379 | 357,379 | 357,379 | 357,379 |
Variable | Success | |||
---|---|---|---|---|
prov_gdp | 0.0133 *** (4.2342) | -- | -- | -- |
prov_gov | -- | 0.0165 *** (5.5188) | -- | -- |
prov_edu | -- | -- | 0.0192 *** (6.1319) | -- |
prov_nat | -- | -- | -- | 0.0633 *** (3.1265) |
Control | -- | -- | -- | -- |
Pseudo R2 | 0.3494 | 0.3495 | 0.3495 | 0.3494 |
N | 396,634 | 396,634 | 396,634 | 396,634 |
Variable | Success | Apr | ||||
---|---|---|---|---|---|---|
prov_gdp | 0.0007 (1.0532) | −0.0012 ** (−2.1153) | 0.0011 *** (3.7561) | 0.0486 *** (5.1687) | 0.0484 *** (5.7945) | 0.0045 (1.0734) |
prov_gov | 0.0016 *** (3.0241) | -- | -- | −0.0395 *** (−4.6597) | -- | -- |
prov_edu | -- | 0.0035 *** (6.1846) | -- | -- | −0.0361 *** (−4.2888) | -- |
prov_nat | -- | -- | 0.0048 * (1.9111) | -- | -- | −0.0435 (−1.2570) |
gdp_gov | 0.0017 *** (7.1994) | -- | -- | 0.0002 (0.0451) | -- | -- |
gdp_edu | -- | 0.0016 *** (6.7892) | -- | -- | 0.0064 * (1.8670) | -- |
gdp_nat | -- | -- | −0.0008 (−0.5586) | -- | -- | 0.0307 (1.5611) |
Control | -- | -- | -- | -- | -- | -- |
Pseudo R2 | 0.3077 | 0.3077 | 0.3076 | 0.0184 | 0.0184 | 0.0184 |
N | 396,634 | 396,634 | 396,634 | 396,634 | 396,634 | 396,634 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, T.; Liu, Y.; Song, J. Does Geographical Discrimination Exist in Online Lending in China: An Empirical Study Based on Chinese Loan Platform Renren. Int. J. Financial Stud. 2020, 8, 15. https://doi.org/10.3390/ijfs8010015
Pi T, Liu Y, Song J. Does Geographical Discrimination Exist in Online Lending in China: An Empirical Study Based on Chinese Loan Platform Renren. International Journal of Financial Studies. 2020; 8(1):15. https://doi.org/10.3390/ijfs8010015
Chicago/Turabian StylePi, Tianlei, Yaosen Liu, and Jiahui Song. 2020. "Does Geographical Discrimination Exist in Online Lending in China: An Empirical Study Based on Chinese Loan Platform Renren" International Journal of Financial Studies 8, no. 1: 15. https://doi.org/10.3390/ijfs8010015
APA StylePi, T., Liu, Y., & Song, J. (2020). Does Geographical Discrimination Exist in Online Lending in China: An Empirical Study Based on Chinese Loan Platform Renren. International Journal of Financial Studies, 8(1), 15. https://doi.org/10.3390/ijfs8010015