Harnessing the Power of Past Triumphs: Unleashing the MAX Effect’s Potential in Emerging Market Returns
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Data and Variable Description
3.2. Data Preparation and N-Day Maximum Return Calculation
3.3. Portfolio Construction and Composition
3.4. Fama–French–Carhart Four-Factor Model Analysis
3.5. Cross-Sectional Regression Analyses
3.6. Economic Uncertainty Interaction and Subsample Analysis
4. Findings
4.1. Descriptive Statistics
4.2. Univariate Portfolio Analysis
4.3. Cross-Sectional Regression Analyses
4.4. Economic Uncertainty Interaction and Subsample Analysis
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Number of Firms |
---|---|
2013 | 244 |
2014 | 266 |
2015 | 275 |
2016 | 277 |
2017 | 281 |
2018 | 285 |
2019 | 288 |
2020 | 293 |
2021 | 345 |
2022 | 375 |
2023 | 377 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −2.4877 ** | (−2.15) | 0.831 | −14.02 | −0.0389 | (−0.26) | −0.2294 | (−0.90) | 0.1563 | −1.68 | 0.686 |
2 | −2.3002 ** | (−2.38) | 0.8935 | −18.23 | 0.0832 | −0.67 | −0.0517 | (−0.27) | 0.1547 | −2.07 | 0.763 |
3 | −2.8393 *** | (−3.22) | 0.86 | −16.08 | 0.0676 | −0.47 | −0.3733 | (−1.87) | 0.1704 | −2.38 | 0.721 |
4 | −1.918 | (−1.61) | 0.9115 | −15.65 | 0.1477 | −0.87 | −0.2619 | (−1.30) | 0.1234 | −1.38 | 0.725 |
5 | −2.4864 ** | (−2.34) | 0.8842 | −14.2 | 0.1172 | −0.9 | −0.3123 | (−1.21) | 0.155 | −1.82 | 0.669 |
6 | −2.0341 | (−1.51) | 0.8891 | −14.06 | 0.0449 | −0.29 | −0.2184 | (−0.78) | 0.1116 | −1.03 | 0.648 |
7 | −2.5625 ** | (−2.10) | 0.8294 | −14.9 | 0.0717 | −0.45 | −0.5309 | (−2.30) | 0.1012 | −1.06 | 0.642 |
8 | −2.6315 ** | (−2.00) | 0.7569 | −10.23 | −0.1578 | (−0.94) | −0.2606 | (−1.03) | 0.1176 | −1.19 | 0.601 |
9 | −2.9075 ** | (−2.24) | 0.7854 | −11.56 | 0.2831 | −1.97 | −0.3143 | (−1.02) | 0.1209 | −1.14 | 0.531 |
10 | −4.8393 *** | (−3.74) | 0.7369 | −9.01 | 0.215 | −1.09 | −0.264 | (−1.18) | 0.249 | −2.41 | 0.53 |
10 − 1 (H − L) | −2.3516 ** | (−2.27) | −0.0941 | (−1.30) | 0.2535 | −1.86 | −0.0348 | (−0.18) | 0.0927 | −1.23 | 0.078 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.0877 | (−0.12) | 0.7746 | −12.08 | −0.0373 | (−0.32) | −0.1188 | (−1.03) | −0.0095 | (−0.20) | 0.72 |
2 | −0.443 | (−0.50) | 0.8951 | −19.5 | 0.0401 | −0.45 | 0.0186 | −0.14 | 0.0165 | −0.28 | 0.803 |
3 | −2.1074 ** | (−2.47) | 0.8847 | −21.85 | 0.0641 | −0.73 | 0.0211 | −0.17 | 0.1239 | −2.06 | 0.808 |
4 | −0.5839 | (−0.39) | 0.9012 | −19.84 | 0.1171 | −1.08 | −0.0035 | (−0.03) | 0.0564 | −0.61 | 0.739 |
5 | −1.1594 | (−1.36) | 0.9104 | −26.29 | −0.0696 | (−0.70) | 0.0979 | −0.83 | 0.1091 | −1.86 | 0.825 |
6 | −1.1229 | (−0.85) | 0.8693 | −12.05 | 0.2684 | −1.26 | 0.5236 | −1.24 | 0.1678 | −1.25 | 0.491 |
7 | −2.5318 | (−1.58) | 0.8687 | −8.16 | 0.0867 | −0.42 | −0.0215 | (−0.10) | 0.126 | −1.16 | 0.551 |
8 | −1.9085 | (−1.45) | 0.8558 | −9.38 | −0.0938 | (−0.58) | −0.1778 | (−0.88) | 0.1017 | −1.09 | 0.576 |
9 | −3.0282 | (−1.55) | 0.6801 | −7.28 | 0.4738 | −1.98 | −0.0577 | (−0.13) | 0.1492 | −0.96 | 0.307 |
10 | −6.0820 ** | (−2.31) | 0.6188 | −5.34 | 0.195 | −0.68 | −0.004 | (−0.02) | 0.385 | −1.89 | 0.27 |
10 − 1 (H − L) | −5.9943 ** | (−2.09) | −0.1558 | (−1.37) | 0.2319 | −0.87 | 0.1144 | −0.43 | 0.3942 | −1.86 | 0.087 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −2.3884 ** | (−2.03) | 0.8284 | −13.47 | −0.0113 | (−0.07) | −0.203 | (−0.89) | 0.1409 | −1.56 | 0.686 |
2 | −2.3706 ** | (−2.38) | 0.8569 | −17.51 | 0.0389 | −0.26 | −0.1066 | (−0.55) | 0.1704 | −2.15 | 0.743 |
3 | −2.5348 ** | (−2.29) | 0.8906 | −18.04 | 0.1389 | −0.92 | −0.2716 | (−1.23) | 0.1531 | −1.74 | 0.702 |
4 | −2.3797 ** | (−2.37) | 0.8929 | −14.54 | 0.0055 | −0.05 | −0.3396 | (−1.77) | 0.1371 | −1.78 | 0.735 |
5 | −2.1275 ** | (−2.20) | 0.873 | −19.45 | 0.07 | −0.51 | −0.272 | (−1.27) | 0.1087 | −1.34 | 0.716 |
6 | −3.5131 *** | (−3.63) | 0.9056 | −15.82 | 0.2024 | −1.64 | −0.2044 | (−0.83) | 0.2359 | −2.95 | 0.698 |
7 | −3.8648 *** | (−3.38) | 0.8293 | −13.35 | 0.09 | −0.66 | −0.3822 | (−1.61) | 0.2117 | −2.35 | 0.665 |
8 | −2.0786 | (−1.39) | 0.7845 | −12.02 | 0.0664 | −0.4 | −0.4716 | (−1.49) | 0.0774 | −0.64 | 0.553 |
9 | −1.9122 | (−1.18) | 0.8056 | −9.19 | −0.0304 | (−0.17) | −0.3904 | (−1.26) | 0.0554 | −0.47 | 0.538 |
10 | −4.0550 *** | (−2.92) | 0.7055 | −9.53 | 0.2623 | −1.25 | −0.1791 | (−0.67) | 0.1809 | −1.66 | 0.479 |
10 − 1 (H − L) | −1.6666 * | (−1.68) | −0.1229 | (−1.75) | 0.2735 | −1.8 | 0.0239 | −0.12 | 0.04 | −0.54 | 0.078 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.8188 | (−0.87) | 0.7966 | −11.65 | −0.0233 | (−0.16) | −0.0042 | (−0.03) | 0.0469 | −0.79 | 0.705 |
2 | −0.7378 | (−1.13) | 0.8659 | −15.67 | 0.0423 | −0.45 | −0.0499 | (−0.38) | 0.009 | −0.18 | 0.793 |
3 | −1.7904 * | (−1.84) | 0.9148 | −18.35 | 0.0506 | −0.36 | −0.1436 | (−1.02) | 0.0948 | −1.49 | 0.771 |
4 | −1.405 | (−1.33) | 0.8853 | −19.91 | −0.086 | (−1.03) | 0.1669 | −1.47 | 0.0995 | −1.42 | 0.805 |
5 | −0.8568 | (−0.92) | 0.9825 | −25.27 | 0.0838 | −0.89 | 0.026 | −0.19 | 0.0897 | −1.44 | 0.815 |
6 | −1.9196 | (−1.62) | 0.8614 | −17.88 | 0.2825 | −2.57 | 0.1249 | −0.56 | 0.1793 | −2.21 | 0.705 |
7 | −3.8650 *** | (−3.03) | 0.8666 | −9.22 | 0.0906 | −0.48 | 0.1365 | −0.55 | 0.2556 | −2.56 | 0.566 |
8 | −0.7122 | (−0.43) | 0.7471 | −5.62 | 0.3092 | −1.59 | −0.4468 | (−1.55) | −0.0143 | (−0.12) | 0.38 |
9 | −0.6029 | (−0.32) | 0.86 | −9.98 | 0.3224 | −1.38 | 0.0672 | −0.26 | 0.0748 | −0.61 | 0.465 |
10 | −4.913 | (−1.40) | 0.5684 | −4.44 | −0.0201 | (−0.08) | −0.0101 | (−0.03) | 0.2227 | −0.87 | 0.189 |
10 − 1 (H − L) | −4.0942 | (−1.10) | −0.2282 | (−1.71) | 0.0032 | −0.01 | −0.0059 | (−0.01) | 0.1758 | −0.64 | 0.04 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −2.4779 *** | (−2.66) | 0.8169 | −13.96 | −0.0109 | (−0.08) | −0.2084 | (−1.06) | 0.1453 | −1.98 | 0.723 |
2 | −2.4432 ** | (−2.01) | 0.8639 | −16.12 | 0.0566 | −0.38 | −0.1252 | (−0.55) | 0.1713 | −1.82 | 0.708 |
3 | −2.6006 *** | (−2.80) | 0.8789 | −17.65 | 0.0666 | −0.42 | −0.2966 | (−1.48) | 0.1515 | −1.93 | 0.72 |
4 | −2.6095 ** | (−2.54) | 0.9191 | −15.72 | 0.0502 | −0.41 | −0.3218 | (−1.48) | 0.1434 | −1.84 | 0.737 |
5 | −2.3820 ** | (−2.16) | 0.8467 | −14.9 | 0.0403 | −0.3 | −0.2853 | (−1.36) | 0.1295 | −1.52 | 0.692 |
6 | −3.3930 *** | (−3.39) | 0.8913 | −17.63 | 0.1257 | −1.07 | −0.1908 | (−0.82) | 0.2137 | −2.53 | 0.708 |
7 | −3.0928 ** | (−2.59) | 0.8662 | −12.34 | 0.2757 | −1.9 | −0.345 | (−1.43) | 0.1757 | −1.81 | 0.652 |
8 | −2.4026 * | (−1.82) | 0.8246 | −12.61 | 0.1244 | −0.88 | −0.4277 | (−1.33) | 0.1215 | −1.12 | 0.579 |
9 | −2.4513 | (−1.40) | 0.7342 | −10.16 | 0.0183 | −0.08 | −0.4696 | (−1.70) | 0.0845 | −0.63 | 0.484 |
10 | −3.2024 ** | (−2.30) | 0.7352 | −9.92 | 0.0958 | −0.52 | −0.1616 | (−0.64) | 0.1189 | −1.13 | 0.504 |
10 − 1 (H − L) | −0.7245 | (−0.69) | −0.0818 | (−1.10) | 0.1067 | −0.67 | 0.0469 | −0.25 | −0.0264 | (−0.35) | 0.026 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.8123 | (−0.94) | 0.772 | −11.4 | −0.0918 | (−1.05) | −0.0867 | (−0.75) | 0.0326 | −0.59 | 0.722 |
2 | −0.2076 | (−0.24) | 0.883 | −16.79 | 0.1201 | −1.18 | −0.003 | (−0.03) | 0.0112 | −0.22 | 0.809 |
3 | −2.3560 ** | (−2.36) | 0.9033 | −19.31 | −0.0216 | (−0.19) | −0.1694 | (−1.29) | 0.1154 | −1.81 | 0.76 |
4 | −0.6887 | (−0.81) | 0.9172 | −20.86 | −0.0839 | (−0.92) | 0.0719 | −0.65 | 0.0597 | −1.02 | 0.831 |
5 | −0.5677 | (−0.47) | 0.9693 | −20.03 | 0.1303 | −1.4 | 0.0889 | −0.75 | 0.0734 | −0.92 | 0.792 |
6 | −2.7305 *** | (−2.69) | 0.8982 | −19.3 | 0.2492 | −2.28 | 0.0347 | −0.15 | 0.2389 | −3.25 | 0.737 |
7 | −1.4396 | (−1.44) | 0.8864 | −10.31 | 0.2185 | −1.45 | 0.0339 | −0.17 | 0.1139 | −1.3 | 0.618 |
8 | −3.4009 ** | (−2.12) | 0.7906 | −7.61 | 0.1846 | −0.82 | 0.0373 | −0.15 | 0.2114 | −1.91 | 0.427 |
9 | −1.3587 | (−0.74) | 0.7445 | −9 | 0.01 | −0.04 | −0.3521 | (−1.31) | 0.0554 | −0.43 | 0.434 |
10 | −3.5451 | (−1.09) | 0.6178 | −4.92 | 0.1872 | −0.69 | 0.12 | −0.27 | 0.1789 | −0.73 | 0.191 |
10 − 1 (H − L) | −2.7327 | (−0.81) | −0.1541 | (−1.11) | 0.279 | −1.03 | 0.2067 | −0.48 | 0.1463 | −0.58 | 0.028 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −2.8156 *** | (−2.97) | 0.7973 | −13.52 | −0.037 | (−0.29) | −0.217 | (−1.15) | 0.1542 | −2.12 | 0.72 |
2 | −2.3002 * | (−1.87) | 0.8816 | −16.37 | 0.0481 | −0.29 | −0.2 | (−0.86) | 0.16 | −1.66 | 0.69 |
3 | −3.0981 *** | (−3.75) | 0.8808 | −16.83 | 0.0589 | −0.41 | −0.22 | (−1.22) | 0.1763 | −2.51 | 0.74 |
4 | −2.2541 ** | (−2.17) | 0.926 | −18.82 | 0.0652 | −0.51 | −0.335 | (−1.56) | 0.1295 | −1.58 | 0.74 |
5 | −2.5301 ** | (−2.24) | 0.8577 | −13.59 | 0.0467 | −0.4 | −0.243 | (−1.08) | 0.1405 | −1.59 | 0.68 |
6 | −3.5138 *** | (−3.24) | 0.8621 | −16 | 0.1824 | −1.29 | −0.134 | (−0.58) | 0.226 | −2.58 | 0.68 |
7 | −2.4959 * | (−1.94) | 0.8853 | −14.69 | 0.1861 | −1.21 | −0.401 | (−1.49) | 0.1391 | −1.28 | 0.66 |
8 | −2.8262 ** | (−2.61) | 0.8103 | −13.09 | 0.1781 | −1.31 | −0.419 | (−1.56) | 0.1576 | −1.72 | 0.61 |
9 | −2.0643 | (−1.21) | 0.7236 | −7.76 | 0.1053 | −0.52 | −0.501 | (−1.43) | 0.0546 | −0.42 | 0.46 |
10 | −3.1095 ** | (−2.10) | 0.757 | −9.96 | 0.0211 | −0.1 | −0.158 | (−0.63) | 0.1209 | −1.11 | 0.51 |
10 − 1 (H − L) | −0.2939 | (−0.26) | −0.0403 | (−0.61) | 0.0582 | −0.34 | 0.0594 | −0.26 | −0.0333 | (−0.41) | 0.01 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.6115 | (−0.70) | 0.7412 | −11.24 | −0.097 | (−1.13) | −0.094 | (−0.78) | 0.0232 | −0.42 | 0.69 |
2 | −0.1198 | (−0.15) | 0.9076 | −19.18 | 0.1188 | −1.19 | −0.002 | (−0.02) | −0.002 | (−0.04) | 0.83 |
3 | −2.1523 ** | (−2.37) | 0.8995 | −16.71 | 0.0191 | −0.17 | −0.102 | (−0.82) | 0.1034 | −1.72 | 0.78 |
4 | −1.3499 | (−1.61) | 0.9679 | −24.79 | 0.0129 | −0.13 | 0.0695 | −0.58 | 0.1043 | −1.78 | 0.84 |
5 | −0.8175 | (−0.74) | 0.8964 | −15.92 | 0.1572 | −1.67 | 0.0968 | −0.71 | 0.0872 | −1.18 | 0.77 |
6 | −1.8849 | (−1.65) | 0.9012 | −15.32 | 0.284 | −2.9 | 0.1796 | −0.86 | 0.1737 | −2.11 | 0.74 |
7 | −2.0937 * | (−1.80) | 0.8393 | −12.22 | 0.1914 | −0.79 | 0.0719 | −0.15 | 0.172 | −1.19 | 0.43 |
8 | −3.7845 *** | (−2.68) | 0.8447 | −8.66 | 0.3226 | −1.62 | 0.0163 | −0.07 | 0.2455 | −2.51 | 0.53 |
9 | −1.5029 | (−0.91) | 0.7901 | −6.72 | 0.0246 | −0.1 | −0.378 | (−1.30) | 0.0247 | −0.21 | 0.42 |
10 | −3.123 | (−0.94) | 0.6536 | −5.19 | 0.1098 | −0.37 | 0.3344 | −0.68 | 0.1939 | −0.79 | 0.21 |
10 − 1 (H − L) | −2.5115 | (−0.72) | −0.0876 | (−0.67) | 0.207 | −0.71 | 0.4286 | −0.86 | 0.1706 | −0.65 | 0.02 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −2.9361 *** | (−3.03) | 0.8105 | −13.62 | −0.0239 | (−0.17) | −0.2251 | (−1.07) | 0.1697 | −2.17 | 0.712 |
2 | −2.2803 * | (−1.97) | 0.8895 | −17.31 | 0.0512 | −0.35 | −0.1904 | (−0.86) | 0.1416 | −1.62 | 0.711 |
3 | −2.8103 *** | (−3.23) | 0.8617 | −16.16 | −0.0163 | (−0.13) | −0.276 | (−1.55) | 0.1559 | −2.14 | 0.735 |
4 | −2.6548 *** | (−3.26) | 0.8905 | −18.22 | 0.0913 | −0.69 | −0.2684 | (−1.39) | 0.1472 | −2.19 | 0.751 |
5 | −2.6702 ** | (−2.29) | 0.8967 | −13.97 | 0.0959 | −0.78 | −0.2172 | (−0.84) | 0.1665 | −1.84 | 0.679 |
6 | −3.2944 *** | (−3.10) | 0.872 | −15.54 | 0.1686 | −1.22 | −0.1607 | (−0.70) | 0.2146 | −2.48 | 0.699 |
7 | −2.5251 * | (−1.87) | 0.8583 | −13.7 | 0.1383 | −0.84 | −0.4037 | (−1.49) | 0.1366 | −1.21 | 0.636 |
8 | −2.0832 * | (−1.84) | 0.8318 | −13.41 | 0.164 | −1.09 | −0.4151 | (−1.44) | 0.1135 | −1.16 | 0.62 |
9 | −3.3159 ** | (−2.07) | 0.7376 | −9.38 | 0.1853 | −1.09 | −0.4255 | (−1.20) | 0.1489 | −1.15 | 0.481 |
10 | −2.3524 | (−1.53) | 0.7317 | −9.63 | −0.0041 | (−0.02) | −0.2366 | (−0.85) | 0.0613 | −0.55 | 0.488 |
10 − 1 (H − L) | 0.5837 | −0.54 | −0.0788 | (−1.17) | 0.0198 | −0.11 | −0.0115 | (−0.04) | −0.108 | (−1.36) | 0.031 |
Decile | Alpha (%) | t-Stat | MKT_RF | t-Stat | SMB | t-Stat | HML | t-Stat | MOM | t-Stat | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.8786 | (−1.00) | 0.7576 | −10.8 | −0.0756 | (−0.87) | −0.11 | (−0.89) | 0.0427 | −0.82 | 0.684 |
2 | −0.7819 | (−0.84) | 0.9169 | −18.38 | 0.0971 | −0.89 | 0.0138 | −0.14 | 0.0204 | −0.4 | 0.821 |
3 | −1.8406 * | (−1.71) | 0.8785 | −16.87 | 0.0085 | −0.09 | −0.0909 | (−0.79) | 0.0873 | −1.23 | 0.779 |
4 | −2.37 *** | (−2.79) | 0.9417 | −20.96 | 0.0682 | −0.7 | 0.033 | −0.24 | 0.1333 | −2.28 | 0.796 |
5 | 0.028 | −0.03 | 0.9483 | −23.42 | 0.0515 | −0.6 | 0.1717 | −1.5 | 0.0484 | −0.68 | 0.806 |
6 | −1.8761 ** | (−2.11) | 0.9538 | −19 | 0.2802 | −2.82 | 0.1224 | −0.64 | 0.1603 | −2.48 | 0.782 |
7 | −1.551 | (−1.12) | 0.7886 | −10.34 | 0.1251 | −0.52 | 0.0189 | −0.04 | 0.1654 | −1.07 | 0.385 |
8 | −2.3219 * | (−1.76) | 0.9191 | −10.69 | 0.3944 | −2.15 | −0.0286 | (−0.14) | 0.1867 | −1.87 | 0.624 |
9 | −3.499 ** | (−2.31) | 0.7371 | −6.13 | −0.2228 | (−0.91) | −0.1413 | (−0.45) | 0.1482 | −1.38 | 0.407 |
10 | −2.2783 | (−0.68) | 0.6581 | −5.19 | 0.1057 | −0.34 | 0.2814 | −0.53 | 0.134 | −0.54 | 0.202 |
10 − 1 (H − L) | −1.3996 | (−0.40) | −0.0996 | (−0.75) | 0.1813 | −0.63 | 0.3914 | −0.76 | 0.0913 | −0.35 | 0.016 |
References
- Aboulamer, A., & Kryzanowski, L. (2016). Are idiosyncratic volatility and MAX priced in the Canadian market? Journal of Empirical Finance, 37, 20–36. [Google Scholar] [CrossRef]
- Alshammari, S., & Goto, S. (2022). Are lottery-like stocks overvalued in markets that have no lotteries?—Evidence from Saudi Arabia. Finance Research Letters, 46, 102460. [Google Scholar] [CrossRef]
- Annaert, J., De Ceuster, M., & Verstegen, K. (2013). Are extreme returns priced in the stock market? European evidence. Journal of Banking & Finance, 37(9), 3401–3411. [Google Scholar]
- Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the cross-section of expected returns. Journal of Financial Economics, 99(2), 427–446. [Google Scholar] [CrossRef]
- Barberis, N., & Huang, M. (2008). Stocks as lotteries: The implications of probability weighting for security prices. American Economic Review, 98(5), 2066–2100. [Google Scholar] [CrossRef]
- Berggrun, L., Cardona, E., & Lizarzaburu, E. (2019). Extreme daily returns and the cross-section of expected returns: Evidence from Brazil. Journal of Business Research, 102, 201–211. [Google Scholar] [CrossRef]
- Bergsma, K., & Tayal, J. (2019). Short interest and lottery stocks. Financial Management, 48(1), 187–227. [Google Scholar] [CrossRef]
- Bonomo, M., Brito, R. D., & Martins, B. (2015). The after crisis government-driven credit expansion in Brazil: A firm level analysis. Journal of International Money and Finance, 55, 111–134. [Google Scholar] [CrossRef]
- Boyer, B., Mitton, T., & Vorkink, K. (2010). Expected idiosyncratic skewness. The Review of Financial Studies, 23(1), 169–202. [Google Scholar] [CrossRef]
- Bradrania, R., & Gao, Y. (2024). Lottery demand, weather, and the cross-section of stock returns. Journal of Behavioral and Experimental Finance, 42, 100910. [Google Scholar] [CrossRef]
- Brogaard, J., & Detzel, A. (2015). The asset-pricing implications of government economic policy uncertainty. Management Science, 61(1), 3–18. [Google Scholar] [CrossRef]
- Byun, S. J., Jeon, B., & Kim, D. (2023). Investor sentiment and the MAX effect: Evidence from Korea. Applied Economics, 55(3), 319–331. [Google Scholar] [CrossRef]
- Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52(1), 57–82. [Google Scholar] [CrossRef]
- Chadwick, M. G. (2019). Dependence of the “Fragile Five” and “Troubled Ten” emerging market financial systems on US monetary policy and monetary policy uncertainty. Research in International Business and Finance, 49, 251–268. [Google Scholar] [CrossRef]
- Chee, W. Y. (2012). An empirical analysis of idiosyncratic volatility and extreme returns in the Japanese stock market [Doctoral dissertation, Lincoln University]. [Google Scholar]
- Chelikani, S., Kilic, O., & Wang, X. (2022). Past stock returns and the MAX effect. Journal of Behavioral Finance, 23(3), 338–352. [Google Scholar] [CrossRef]
- Cheon, Y. H., & Lee, K. H. (2018). Time variation of MAX-premium with market volatility: Evidence from Korean stock market. Pacific-Basin Finance Journal, 51, 32–46. [Google Scholar] [CrossRef]
- Eraker, B., & Ready, M. (2015). Do investors overpay for stocks with lottery-like payoffs? An examination of the returns of OTC stocks. Journal of Financial Economics, 115(3), 486–504. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. [Google Scholar] [CrossRef]
- Fong, W. M., & Toh, B. (2014). Investor sentiment and the MAX effect. Journal of Banking & Finance, 46, 190–201. [Google Scholar]
- Gao, H., Shi, D., & Zhao, B. (2021). Does good luck make people overconfident? Evidence from a natural experiment in the stock market. Journal of Corporate Finance, 68, 101933. [Google Scholar] [CrossRef]
- Gould, J., Yang, J. W., Singh, R., & Yeo, B. (2023). The seasonality of lottery-like stock returns. International Review of Economics & Finance, 83, 383–400. [Google Scholar]
- Hai, H. V. (2023). MAX, lottery-type stocks, and the cross-section of stock returns: Evidence from the Chinese stock market. Cogent Economics & Finance, 11(1), 2175471. [Google Scholar]
- Han, Y., & Lesmond, D. (2011). Liquidity biases and the pricing of cross-sectional idiosyncratic volatility. The Review of Financial Studies, 24(5), 1590–1629. [Google Scholar] [CrossRef]
- Jegadeesh, N. (1991). Seasonality in stock price mean reversion: Evidence from the US and the UK. The Journal of Finance, 46(4), 1427–1444. [Google Scholar] [CrossRef]
- Jiang, G. J., Xu, D., & Yao, T. (2009). The information content of idiosyncratic volatility. Journal of Financial and Quantitative Analysis, 44(1), 1–28. [Google Scholar] [CrossRef]
- Kahneman, T., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47(2), 263–291. [Google Scholar] [CrossRef]
- Khurram, M. U., Ali, F., Jiang, Y., & Xie, W. (2022). Predictability of extreme daily returns and Preference for lottery-like stocks in an emerging market. Economic Research-Ekonomska Istraživanja, 35(1), 1322–1344. [Google Scholar] [CrossRef]
- Kumar, A. (2009). Who gambles in the stock market? The Journal of Finance, 64(4), 1889–1933. [Google Scholar] [CrossRef]
- Lehmann, B. N. (1990). Fads, martingales, and market efficiency. The Quarterly Journal of Economics, 105(1), 1–28. [Google Scholar] [CrossRef]
- Lin, C. H., Yen, K. C., & Cheng, H. P. (2021). Lottery-like momentum in the cryptocurrency market. The North American Journal of Economics and Finance, 58, 101552. [Google Scholar] [CrossRef]
- Lin, T. C., & Liu, X. (2018). Skewness, individual investor preference, and the cross-section of stock returns. Review of Finance, 22(5), 1841–1876. [Google Scholar] [CrossRef]
- Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance, 20(4), 587–615. [Google Scholar]
- Liu, C., Sun, P., & Zhu, D. (2023). Lottery preference, short-sale constraint, and the salience effect: Evidence from China. Economic Modelling, 125, 106341. [Google Scholar] [CrossRef]
- Lu, J., Yang, N. T., Ho, K. Y., & Ko, K. C. (2022). Lottery demand and the asset growth anomaly. Finance Research Letters, 48, 102988. [Google Scholar] [CrossRef]
- Mitton, T., & Vorkink, K. (2007). Equilibrium underdiversification and the preference for skewness. The Review of Financial Studies, 20(4), 1255–1288. [Google Scholar] [CrossRef]
- Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the Econometric Society, 34, 768–783. [Google Scholar] [CrossRef]
- Nartea, G. V., Kong, D., & Wu, J. (2017). Do extreme returns matter in emerging markets? Evidence from the Chinese stock market. Journal of Banking & Finance, 76, 189–197. [Google Scholar]
- Nartea, G. V., Wu, J., & Liu, H. T. (2014). Extreme returns in emerging stock markets: Evidence of a MAX effect in South Korea. Applied Financial Economics, 24(6), 425–435. [Google Scholar] [CrossRef]
- Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. International Economic Review, 28(3), 777–787. [Google Scholar] [CrossRef]
- Nguyen, H. T., & Truong, C. (2018). When are extreme daily returns not lottery? At earnings announcements! Journal of Financial Markets, 41, 92–116. [Google Scholar] [CrossRef]
- Ozdamar, M., Akdeniz, L., & Sensoy, A. (2021). Lottery-like preferences and the MAX effect in the cryptocurrency market. Financial Innovation, 7, 74. [Google Scholar] [CrossRef]
- Palfrey, T. R., & Wang, S. W. (2012). Speculative overpricing in asset markets with information flows. Econometrica, 80(5), 1937–1976. [Google Scholar]
- Sehgal, S., Vasishth, V., & Deisting, F. (2024). Lottery factor and stock returns: Evidence from India. Borsa Istanbul Review, 24(3), 449–459. [Google Scholar] [CrossRef]
- Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. [Google Scholar]
- Shen, J., Yu, J., & Zhao, S. (2017). Investor sentiment and economic forces. Journal of Monetary Economics, 86, 1–21. [Google Scholar] [CrossRef]
- Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323. [Google Scholar] [CrossRef]
- Walkshäusl, C. (2014). The MAX effect: European evidence. Journal of Banking & Finance, 42, 1–10. [Google Scholar]
- Wang, Z. M., & Lien, D. (2022). Is maximum daily return a lottery? Evidence from monthly revenue announcements. Review of Quantitative Finance and Accounting, 59(2), 545–600. [Google Scholar] [CrossRef]
- Wang, Z. M., & Lien, D. (2023). Limited attention, salient anchor, and the modified MAX effect: Evidence from Taiwan’s stock market. The North American Journal of Economics and Finance, 67, 101904. [Google Scholar] [CrossRef]
- Yuan, S., Rieger, M. O., & Caliskan, N. (2020). Maxing out: The puzzling influence of past maximum returns on future asset prices in a cross-country analysis. Management Review Quarterly, 70(4), 567–589. [Google Scholar] [CrossRef]
- Zhong, A., & Gray, P. (2016). The MAX effect: An exploration of risk and mispricing explanations. Journal of Banking & Finance, 65, 76–90. [Google Scholar]
Değişkenler | n | Mean | Std. Dv. | Min | Max | Skew. | Kurt. | Hill | Shp. | Dist. |
---|---|---|---|---|---|---|---|---|---|---|
Max 1-Day Return | 35,590 | 0.057 | 0.027 | −0.038 | 0.100 | 0.216 | 1.796 | 0.002 | −0.245 | Wei (Bnd.) |
Max 2-Day Return | 35,590 | 0.098 | 0.048 | −0.077 | 0.219 | 0.473 | 2.234 | 0.020 | −0.070 | Wei (Bnd.) |
Max 3-Day Return | 35,590 | 0.130 | 0.068 | −0.118 | 0.316 | 0.686 | 2.746 | 0.023 | −0.025 | Wei (Bnd.) |
Max 4-Day Return | 35,590 | 0.155 | 0.085 | −0.160 | 0.408 | 0.838 | 3.276 | 0.012 | −0.028 | Wei (Bnd.) |
Max 5-Day Return | 35,590 | 0.174 | 0.100 | −0.268 | 0.496 | 0.930 | 3.798 | 0.006 | −0.052 | Wei (Bnd.) |
Volatility | 35,590 | 0.494 | 0.198 | 0.036 | 2.460 | 1.209 | 5.824 | 0.121 | 0.017 | Fréchet (H) |
Size | 35,590 | 4264 | 15,415 | 1940 | 372,552 | 10.769 | 164.39 | 0.292 | 1.692 | Fréchet (H) |
M/B | 35,590 | 3.801 | 19.922 | 0.090 | 1790.09 | 54.662 | 4220.43 | 0.622 | 0.689 | Fréchet (H) |
M/B (winsorized) | 35,590 | 3.095 | 4.972 | 0.230 | 35.093 | 4.350 | 24.906 | n.a. | 0.690 | Fréchet (H) |
SMB | 120 | −0.009 | 0.030 | −0.090 | 0.128 | 0.894 | 7.826 | n.a. | −0.116 | Wei (Bnd.) |
HML | 120 | −0.021 | 0.029 | −0.183 | 0.037 | −1.470 | 8.240 | n.a. | −0.476 | Wei (Bnd.) |
MOM | 120 | 0.167 | 0.064 | −0.041 | 0.471 | 0.539 | 5.757 | n.a. | −0.161 | Wei (Bnd.) |
Reversal | 120 | 0.499 | 0.124 | 0.306 | 1.177 | 1.677 | 8.995 | n.a. | 0.084 | Fréchet (H) |
EUI | 120 | 142.453 | 88.361 | 49.903 | 521.295 | 2.455 | 10.283 | n.a. | 0.289 | Fréchet (H) |
Portfolios | MAX(1) | MAX(2) | MAX(3) | MAX(4) | MAX(5) |
---|---|---|---|---|---|
Low MAX | 0.023 | 0.040 | 0.053 | 0.060 | 0.062 |
2 | 0.032 | 0.056 | 0.075 | 0.088 | 0.098 |
3 | 0.039 | 0.067 | 0.089 | 0.105 | 0.117 |
4 | 0.045 | 0.077 | 0.102 | 0.121 | 0.135 |
5 | 0.052 | 0.088 | 0.116 | 0.137 | 0.153 |
6 | 0.060 | 0.100 | 0.130 | 0.153 | 0.171 |
7 | 0.067 | 0.113 | 0.147 | 0.173 | 0.193 |
8 | 0.075 | 0.129 | 0.168 | 0.198 | 0.221 |
9 | 0.084 | 0.146 | 0.195 | 0.233 | 0.262 |
High MAX | 0.096 | 0.173 | 0.238 | 0.293 | 0.339 |
High–Low | 0.0735 *** (349.2) | 0.1326 *** (260.5) | 0.1852 *** (208.1) | 0.2331 *** (175.6) | 0.2775 *** (156.4) |
Portfolios | MAX(1) | MAX(2) | MAX(3) | MAX(4) | MAX(5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Return | Alpha | Return | Alpha | Return | Alpha | Return | Alpha | Return | Alpha | |
Low MAX | 0.019 *** (3.02) | −0.001 (−0.12) | 0.019 *** (2.81) | −0.008 (−0.87) | 0.019 *** (2.87) | −0.008 (−0.94) | 0.019 *** (2.99) | −0.006 (−0.70) | 0.020 *** (3.03) | −0.009 (−1.00) |
2 | 0.018 ** (2.53) | −0.004 (−0.50) | 0.015 *** (2.15) | −0.007 (−1.13) | 0.019 *** (2.77) | −0.002 (−0.24) | 0.018 ** (2.58) | −0.001 (−0.15) | 0.014 ** (2.09) | −0.008 (−0.84) |
3 | 0.018 ** (2.56) | −0.021 ** (−2.47) | 0.020 *** (2.75) | −0.018 * (−1.84) | 0.018 ** (2.54) | −0.023 ** (−2.36) | 0.017 ** (2.37) | −0.021 ** (−2.37) | 0.017 ** (2.46) | −0.018 * (−1.71) |
4 | 0.023 *** (3.09) | −0.005 (−0.39) | 0.019 *** (2.72) | −0.014 (−1.33) | 0.022 *** (3.13) | −0.006 (−0.81) | 0.022 *** (3.03) | −0.013 (−1.61) | 0.016 ** (2.26) | −0.024 *** (−2.79) |
5 | 0.025 *** (3.47) | −0.011 (−1.36) | 0.026 *** (3.37) | −0.008 (−0.92) | 0.024 *** (3.19) | −0.005 (−0.47) | 0.022 *** (3.19) | −0.008 (−0.74) | 0.024 *** (3.33) | −0.001 −0.03 |
6 | 0.023 ** (2.57) | −0.011 (−0.85) | 0.024 *** (3.37) | −0.019 (−1.62) | 0.028 *** (3.80) | −0.027 *** (−2.69) | 0.023 *** (3.16) | −0.019 (−1.65) | 0.022 *** (3.03) | −0.019 ** (−2.11) |
7 | 0.015 * (1.74) | −0.025 (−1.58) | 0.019 ** (2.21) | −0.038 *** (−3.03) | 0.021 *** (2.72) | −0.043 (−1.44) | 0.023 ** (2.55) | −0.021 * (−1.80) | 0.028 *** (3.19) | −0.015 (−1.12) |
8 | 0.020 *** (2.64) | −0.019 (−1.45) | 0.016 * (1.87) | −0.007 (−0.43) | 0.016 * (1.91) | −0.034 ** (−2.12) | 0.018 ** (2.17) | −0.038 *** (−2.68) | 0.024 *** (2.98) | −0.023 * (−1.76) |
9 | 0.009 (1.01) | −0.030 (−1.55) | 0.021 ** (2.50) | −0.006 (−0.32) | 0.020 ** (2.61) | −0.013 (−0.74) | 0.015 * (1.80) | −0.015 (−0.91) | 0.011 (1.37) | −0.035 ** (−2.31) |
High MAX | 0.014 * (1.73) | −0.060 ** (−2.31) | 0.003 (0.33) | −0.049 (−1.40) | 0.006 (0.62) | −0.035 (−1.09) | 0.009 (0.93) | −0.031 (−0.94) | 0.009 (0.92) | −0.023 (−0.68) |
High–Low | −0.003 (−0.36) | −0.059 ** (−2.09) | −0.015 (−1.62) | −0.041 (−1.10) | −0.012 (−1.28) | −0.027 (−0.81) | −0.009 (−0.99) | −0.025 (−0.72) | −0.010 (−1.04) | −0.014 (−0.40) |
Portfolios | MAX(1) | MAX(2) | MAX(3) | MAX(4) | MAX(5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Return | Alpha | Return | Alpha | Return | Alpha | Return | Alpha | Return | Alpha | |
Low MAX | 0.024 *** (3.41) | −0.024 ** (−2.15) | 0.022 *** (3.12) | −0.023 ** (−2.03) | 0.022 *** (3.22) | −0.024 *** (−2.66) | 0.020 *** (3.00) | −0.028 *** (−2.97) | 0.021 *** (3.14) | −0.029 *** (−3.03) |
2 | 0.022 *** (3.08) | −0.023 ** (−2.38) | 0.025 *** (3.56) | −0.023 ** (−2.38) | 0.024 *** (3.40) | −0.024 ** (−2.01) | 0.026 *** (3.48) | −0.023 * (−1.87) | 0.023 *** (3.12) | −0.023 * (−1.97) |
3 | 0.025 *** (3.51) | −0.028 *** (−3.22) | 0.024 *** (3.12) | −0.025 ** (−2.29) | 0.024 *** (3.20) | −0.026 *** (−2.80) | 0.021 *** (2.88) | −0.031 *** (−3.75) | 0.022 *** (3.09) | −0.028 *** (−3.23) |
4 | 0.025 *** (3.31) | −0.019 (−1.61) | 0.025 *** (3.37) | −0.024 ** (−2.37) | 0.023 *** (3.06) | −0.026 ** (−2.54) | 0.025 *** (3.27) | −0.022 ** (−2.17) | 0.021 *** (2.98) | −0.027 *** (−3.26) |
5 | 0.025 *** (3.29) | −0.024 ** (−2.34) | 0.021 *** (2.88) | −0.021 ** (−2.20) | 0.022 *** (3.04) | −0.024 ** (−2.16) | 0.021 *** (2.90) | −0.025 ** (−2.24) | 0.023 *** (3.06) | −0.027 ** (−2.29) |
6 | 0.021 *** (2.77) | −0.020 (−1.51) | 0.025 *** (3.24) | −0.035 *** (−3.63) | 0.023 *** (3.04) | −0.034 *** (−3.39) | 0.022 *** (2.93) | −0.035 *** (−3.24) | 0.023 *** (3.10) | −0.033 *** (−3.10) |
7 | 0.020 *** (2.71) | −0.025 ** (−2.10) | 0.021 *** (2.90) | −0.038 *** (−3.38) | 0.021 *** (2.83) | −0.031 ** (−2.59) | 0.023 *** (3.08) | 0.025 * (−1.94) | 0.023 *** (3.04) | −0.025 * (−1.87) |
8 | 0.017 ** (2.50) | −0.026 ** (−2.00) | 0.020 ** (2.60) | −0.021 (−1.39) | 0.022 *** (2.90) | −0.024 * (−1.82) | 0.023 *** (3.11) | −0.028 ** (−2.61) | 0.024 *** (3.17) | −0.021 * (−1.84) |
9 | 0.013 * (1.74) | −0.029 ** (−2.24) | 0.017 ** (2.19) | −0.019 (−1.18) | 0.017 ** (2.21) | −0.024 (−1.40) | 0.016 ** (2.06) | −0.021 (−1.21) | 0.016 ** (2.10) | −0.033 ** (−2.07) |
High MAX | 0.013 * (1.79) | −0.048 *** (−3.74) | 0.008 (1.08) | −0.041 *** (−2.92) | 0.007 (1.07) | −0.032 ** (−2.30) | 0.009 (1.31) | −0.031 ** (−2.10) | 0.009 (1.28) | −0.023 (−1.53) |
High–Low | −0.011 ** (−2.53) | −0.023 ** (−2.27) | −0.014 *** (3.18) | −0.016 * (−1.68) | −0.014 *** (−3.20) | −0.007 (−0.69) | −0.010 ** (−2.31) | −0.003 (−0.26) | −0.012 ** (−2.57) | 0.006 (−0.54) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
Lag_MAX | 0.235 *** | 0.390 *** | |||||||
(45.78) | (80.35) | ||||||||
Volatility | 0.0284 *** | 0.0484 *** | |||||||
(41.64) | (72.71) | ||||||||
Size | 9.0209 | 5.2108 *** | |||||||
(1.12) | (5.68) | ||||||||
(M/B) | 0.0001 | 0.0001 | |||||||
(0.29) | (1.68) | ||||||||
SMB | −0.0520 *** | −0.0150 ** | |||||||
(−12.02) | (−3.13) | ||||||||
HML | 0.00327 | −0.164 *** | |||||||
(0.63) | (−34.35) | ||||||||
MOM | −0.0148 *** | 0.114 *** | |||||||
(−3.94) | (53.49) | ||||||||
Reversal | 0.0576 *** | 0.0756 *** | |||||||
(26.87) | (70.56) | ||||||||
(Intercept) | 0.00283 *** | 0.0348 *** | 0.0329 *** | 0.0567 *** | 0.0569 *** | 0.0567 *** | 0.0535 *** | 0.0378 *** | 0.0192 *** |
(4.49) | (114.27) | (92.91) | (387.27) | (401.88) | (385.17) | (314.33) | (98.94) | (34.79) | |
adj. R2 | 0.250 | 0.152 | 0.128 | 0.001 | 0.000 | 0.000 | 0.032 | 0.073 | 0.121 |
N | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 |
Portfolios | MAX(1) | MAX(2) | MAX(3) | MAX(4) | MAX(5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Lag_MAX | adj. R2 | Lag_MAX | adj. R2 | Lag_MAX | adj. R2 | Lag_MAX | adj. R2 | Lag_MAX | adj. R2 | |
Low | 0.169 *** | 0.16 | 0.311 *** | 0.162 | 0.419 *** | 0.149 | 0.490 *** | 0.117 | 0.527 *** | 0.082 |
2 | 0.190 *** | 0.144 | 0.354 *** | 0.16 | 0.463 *** | 0.153 | 0.564 *** | 0.153 | 0.655 *** | 0.151 |
3 | 0.228 *** | 0.167 | 0.418 *** | 0.181 | 0.546 *** | 0.172 | 0.662 *** | 0.172 | 0.771 *** | 0.176 |
4 | 0.269 *** | 0.182 | 0.449 *** | 0.183 | 0.601 *** | 0.184 | 0.723 *** | 0.181 | 0.791 *** | 0.159 |
5 | 0.321 *** | 0.202 | 0.527 *** | 0.203 | 0.699 *** | 0.208 | 0.815 *** | 0.191 | 0.947 *** | 0.195 |
6 | 0.350 *** | 0.217 | 0.553 *** | 0.192 | 0.734 *** | 0.189 | 0.873 *** | 0.189 | 1.009 *** | 0.19 |
7 | 0.302 *** | 0.183 | 0.554 *** | 0.178 | 0.728 *** | 0.167 | 0.943 *** | 0.183 | 1.117 *** | 0.193 |
8 | 0.145 *** | 0.13 | 0.472 *** | 0.166 | 0.763 *** | 0.154 | 1.052 *** | 0.162 | 1.296 *** | 0.168 |
9 | 0.253 *** | 0.174 | 0.573 *** | 0.19 | 0.822 *** | 0.185 | 0.976 *** | 0.166 | 1.080 *** | 0.151 |
High | −0.00159 | 0.001 | 0.241 *** | 0.089 | 0.597 *** | 0.138 | 0.976 *** | 0.153 | 1.342 *** | 0.157 |
Variable | EUI_MAX1 | EUI_MAX2 | EUI_MAX3 | EUI_MAX4 | EUI_MAX5 |
---|---|---|---|---|---|
(Intercept) | 0.0089 *** (10.30) | 0.0088 *** (6.10) | 0.0078 *** (4.01) | 0.0044 * (1.83) | −0.0023 (−0.84) |
MAX(1) | 0.2553 *** (24.66) | ||||
MAX(2) | 0.3228 *** (30.99) | ||||
MAX(3) | 0.3372 *** (31.72) | ||||
MAX(4) | 0.3346 *** (30.71) | ||||
MAX(5) | 0.3304 *** (29.48) | ||||
EUI | 0.0001 (1.22) | 0.0001 (0.45) | −0.0001 (−0.57) | −0.0001 (−1.33) | −0.0001 (−1.64) |
MAX(1) × EUI | −0.0001 (−1.19) | ||||
MAX(2) × EUI | −0.0001 (−0.85) | ||||
MAX(3) × EUI | −0.0001 (−0.01) | ||||
MAX(4) × EUI | 0.0001 (0.70) | ||||
MAX(5) × EUI | 0.0001 (0.95) | ||||
Volatility | 0.0250 *** (29.39) | 0.0417 *** (26.93) | 0.0556 *** (25.53) | 0.0680 *** (24.94) | 0.0787 *** (24.49) |
Size | −0.0003 *** (−4.09) | −0.0003 ** (−2.29) | −0.0002 (−0.90) | 0.0002 (0.92) | 0.0008 *** (3.33) |
M/B | 0.0002 *** (7.53) | 0.0004 *** (7.38) | 0.0006 *** (7.09) | 0.0007 *** (6.83) | 0.0008 *** (6.61) |
SMB | −0.0328 *** (−7.32) | −0.0513 *** (−6.53) | −0.0651 *** (−5.97) | −0.0774 *** (−5.64) | −0.0897 *** (−5.47) |
HML | −0.0082 (−1.50) | −0.0270 *** (−2.81) | −0.0520 *** (−3.89) | −0.0819 *** (−4.84) | −0.1145 *** (−5.67) |
MOM | −0.0095 ** (−2.50) | −0.0155 ** (−2.36) | −0.0214 ** (−2.37) | −0.0295 *** (−2.62) | −0.0382 *** (−2.86) |
Reversal | 0.0468 *** (20.84) | 0.0797 *** (20.27) | 0.1068 *** (19.78) | 0.1318 *** (19.55) | 0.1539 *** (19.24) |
Adj. R2 | 0.23 | 0.284 | 0.3 | 0.302 | 0.301 |
N | 35,207 | 35,207 | 35,207 | 35,207 | 35,207 |
MAX Version | Low Uncertainty | High Uncertainty | Difference (Low–High) |
---|---|---|---|
MAX(1) | 0.2590 *** | 0.2275 *** | 0.0316 |
(31.67) | (28.42) | (0.67) | |
MAX(2) | 0.3297 *** | 0.2958 *** | 0.0338 |
(39.80) | (34.65) | (0.88) | |
MAX(3) | 0.3532 *** | 0.3143 *** | 0.0389 |
(41.00) | (35.62) | (1.05) | |
MAX(4) | 0.3549 *** | 0.3195 *** | 0.0354 |
(40.01) | (35.37) | (0.94) | |
MAX(5) | 0.3524 *** | 0.3181 *** | 0.0343 |
(38.68) | (34.11) | (0.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherghina, Ş.C.; Yıldırım, D.; Dogan, M. Harnessing the Power of Past Triumphs: Unleashing the MAX Effect’s Potential in Emerging Market Returns. Int. J. Financial Stud. 2025, 13, 128. https://doi.org/10.3390/ijfs13030128
Gherghina ŞC, Yıldırım D, Dogan M. Harnessing the Power of Past Triumphs: Unleashing the MAX Effect’s Potential in Emerging Market Returns. International Journal of Financial Studies. 2025; 13(3):128. https://doi.org/10.3390/ijfs13030128
Chicago/Turabian StyleGherghina, Ştefan Cristian, Durmuş Yıldırım, and Mesut Dogan. 2025. "Harnessing the Power of Past Triumphs: Unleashing the MAX Effect’s Potential in Emerging Market Returns" International Journal of Financial Studies 13, no. 3: 128. https://doi.org/10.3390/ijfs13030128
APA StyleGherghina, Ş. C., Yıldırım, D., & Dogan, M. (2025). Harnessing the Power of Past Triumphs: Unleashing the MAX Effect’s Potential in Emerging Market Returns. International Journal of Financial Studies, 13(3), 128. https://doi.org/10.3390/ijfs13030128