Sustainable Vineyard Management with On-Field UV-C Irradiation: Impacts of Supplementary Applications on Grape Composition and Secondary Metabolites
Abstract
1. Introduction
2. Results
2.1. Climatic Conditions and Vine Phenology
2.2. Vegetative Parameters and Fruit Yield
2.3. Berry Technological Parameters
2.4. Berry Flavonoids Compounds
2.5. Berry Aroma Compounds
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. UV-C Treatments
4.3. Vines Vegetative Growth and Yield Parameters
4.4. Berry Characteristics and Must Parameters
4.5. Berry Secondary Metabolites Determination
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Górny, R.L.; Gołofit-Szymczak, M.; Pawlak, A.; Ławniczek-Walczyk, A.; Cyprowski, M.; Stobnicka-Kupiec, A.; Płocinska, M.; Kowalska, J. Effectiveness of UV-C radiation in inactivation of microorganisms on materials with different surface structures. Ann. Agric. Environ. Med. 2024, 31, 287–293. [Google Scholar] [CrossRef]
- Ramalingam, S.; Le Myint, Z.; Ahn, S.Y.; Ryu, J.A.; Lee, S.M.; Yun, H.K. UV-C treatment elicits resistant responses against Botrytis cinerea infection and the improvement of fruit characteristics in grapevines. Hortic. Environ. Biotech. 2024, 65, 707–724. [Google Scholar] [CrossRef]
- Charles, M.T.; Makhlouf, J.; Arul, J. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. Postharvest Biol. Technol. 2008, 47, 21–26. [Google Scholar] [CrossRef]
- Ouhibi, C.; Attia, H.; Nicot, P.; Urban, L.; Lachaâl, M.; Aarrouf, J. Effect of UV-C radiation on resistance of Romaine Lettuce (Lactuca sativa L.) against Botrytis cinerea and Sclerotinia minor. J. Phytopath. 2015, 163, 578–582. [Google Scholar] [CrossRef]
- de Oliveira, I.R.; Crizel, G.R.; Severo, J.; Renard, C.M.; Chaves, F.C.; Rombaldi, C.V. Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa. Plant Physiol. Biochem. 2016, 108, 391–399. [Google Scholar] [CrossRef]
- Forges, M.; Bardin, M.; Urban, L.; Aarrouf, J.; Charles, F. Impact of UV-C radiation applied during plant growth on pre-and postharvest disease sensitivity and fruit quality of strawberry. Plant Dis. 2020, 104, 3239–3247. [Google Scholar] [CrossRef]
- Gadoury, D.M.; Sapkota, S.; Cadle-Davidson, L.; Underhill, A.; McCann, T.; Gold, K.M.; Gambhir, N.; Combs, D.B. Effects of nighttime applications of germicidal ultraviolet light upon powdery mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and sour rot of grapevine. Plant Dis. 2023, 107, 1452–1462. [Google Scholar] [CrossRef]
- Lidon, F.C.; Ramalho, J.C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J. Photochem. Photobiol. B Biol. 2011, 104, 457–466. [Google Scholar] [CrossRef]
- Hideg, É.; Jansen, M.A.; Strid, Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Matus, J.T.; Cavallini, E.; Loyola, R.; Höll, J.; Finezzo, L.; Dal Santo, S.; Vialet, S.; Commisso, M.; Roman, F.; Shubert, A.; et al. A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. Plant J. 2017, 91, 220–236. [Google Scholar] [CrossRef]
- Fernandes de Oliveira, A.; Nieddu, G. Accumulation and partitioning of anthocyanins in two red grape cultivars under natural and reduced UV solar radiation. Aus. J. Grape Wine Res. 2016, 22, 96–104. [Google Scholar] [CrossRef]
- Cao, Y.; Mei, Y.; Zhang, R.; Zhong, Z.; Yang, X.; Xu, C.; Chen, K.; Li, X. Transcriptional regulation of flavonol biosynthesis in plants. Hortic. Res. 2024, 11, uhae043. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Pontin, M.; Berli, F.; Bottini, R.; Piccoli, P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochem 2012, 77, 89–98. [Google Scholar] [CrossRef]
- Miao, W.; Luo, J.; Liu, J.; Howell, K.; Zhang, P. The influence of UV on the production of free terpenes in Vitis vinifera cv. Shiraz. Agronomy 2020, 10, 1431. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Su, H.; Liang, Y.; Ji, P.; Wang, X.; Xi, Z. Effects of ultraviolet and infrared radiation absence or presence on the aroma volatile compounds in winegrape during veraison. Food Res. Int. 2023, 167, 112662. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, M.; Harrison, R.; Jordan, B.; Creasy, G.; Hofmann, R. Effects of UV-B and water deficit on aroma precursors in grapes and flavor release during wine micro-vinification and consumption. Foods 2022, 11, 1336. [Google Scholar] [CrossRef]
- McDaniel, A.L.; Mireles, M.; Gadoury, D.; Collins, T.; Moyer, M.M. Effects of Ultraviolet-C light on grapevine powdery mildew and fruit quality in Vitis vinifera Chardonnay. Am. J. Enol. Vitic. 2024, 75, 0750014. [Google Scholar] [CrossRef]
- Alonso, R.; Berli, F.J.; Fontana, A.; Piccoli, P.; Bottini, R. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Plant Physiol. Biochem. 2016, 109, 84–90. [Google Scholar] [CrossRef]
- Berli, F.J.; Bottini, R. UV-B and abscisic acid effects on grape berry maturation and quality. J. Berry Res. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Torres, N.; Hilbert, G.; Richard, T.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomès, E. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochem 2014, 102, 106–114. [Google Scholar] [CrossRef]
- Song, J.; Smart, R.; Wang, H.; Dambergs, B.; Sparrow, A.; Qian, M.C. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chem. 2015, 173, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Henry-Kirk, R.A.; Plunkett, B.; Hall, M.; McGhie, T.; Allan, A.C.; Wargent, J.J.; Espley, R.V. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica). Plant Cell Environ. 2018, 41, 675–688. [Google Scholar] [CrossRef]
- Zhou, D.; Li, R.; Zhang, H.; Chen, S.; Tu, K. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chem. 2020, 309, 125726. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Shi, W.; Gong, Z.; Chen, L.; Hou, Z. Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. J. Agric. Food Chem. 2018, 66, 10931–10942. [Google Scholar] [CrossRef]
- Li, D.; Luo, Z.; Mou, W.; Wang, Y.; Ying, T.; Mao, L. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biol. Tech. 2014, 90, 56–62. [Google Scholar] [CrossRef]
- Berli, F.J.; Moreno, D.; Piccoli, P.; Hespanhol-Viana, L.; Silva, M.F.; Bressan-Smith, R.; Cavagnaro, J.B.; Bottini, R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ. 2010, 33, 1–10. [Google Scholar]
- Narra, F.; Castagna, A.; Palai, G.; Havlík, J.; Bergo, A.M.; D’Onofrio, C.; Ranieri, A.; Santin, M. Postharvest UV-B exposure drives changes in primary metabolism, phenolic concentration, and volatilome profile in berries of different grape (Vitis vinifera L.) varieties. J. Sci. Food Agric. 2023, 103, 6340–6351. [Google Scholar] [CrossRef]
- Sheng, K.; Zheng, H.; Shui, S.; Yan, L.; Liu, C.; Zheng, L. Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biol. Technol. 2018, 138, 74–81. [Google Scholar] [CrossRef]
- Gindri, R.V.; Pauletto, R.; Franco, F.W.; Fortes, J.P.; Treptow, T.C.; Rodrigues, E.; Somacal, S.; Sautter, C.K. Grape UV-C irradiation in the postharvest period as a tool to improve sensorial quality and anthocyanin profile in ‘Cabernet Sauvignon’ wine. J. Food Sci. Technol. 2022, 59, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.P.; Perin, E.C.; Schott, I.B.; Düsman, E.; da Silva Rodrigues, R.; Lucchetta, L.; Manfri, V.; Rombaldi, C.V. Phenolic compounds are dependent on cultivation conditions in face of UV-C radiation in ‘Concord’grape juices (Vitis labrusca). LWT 2022, 154, 112681. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Diago, M.P.; Martínez-Abaigar, J.; Martínez-Zapater, J.M.; Tardáguila, J.; Núñez-Olivera, E. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol. 2014, 14, 183. [Google Scholar] [CrossRef]
- Matus, J.T. Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Front. Plant Sci. 2016, 7, 1337. [Google Scholar] [CrossRef]
- Berli, F.J.; Fanzone, M.; Piccoli, P.; Bottini, R. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J. Agric. Food Chem. 2011, 59, 4874–4884. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.Á.; Diago, M.P.; Monforte, L.; Tardaguila, J.; Martínez-Abaigar, J.; Núñez-Olivera, E. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. J. Sci. Food Agric. 2015, 95, 409–416. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, X.; Wang, K.; Lv, X.; Li, R.; Ma, W. GC–MS Untargeted analysis of volatile compounds in four red grape varieties (Vitis vinifera L. cv) at Different Maturity Stages near Harvest. Foods 2022, 11, 2804. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Bottini, R.; Berli, F.; Pontin, M.; Silva, M.F.; Piccoli, P. Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochem 2013, 96, 148–157. [Google Scholar] [CrossRef]
- Sasaki, K.; Takase, H.; Matsuyama, S.; Kobayashi, H.; Matsuo, H.; Ikoma, G.; Takata, R. Effect of light exposure on linalool biosynthesis and accumulation in grape berries. Biosci. Biotech. Biochem. 2016, 80, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Pineau, B.; Barbe, J.C.; Van Leeuwen, C.; Dubourdieu, D. Which impact for β-damascenone on red wines aroma? J. Agric. Food Chem. 2007, 55, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, P.; Rouseff, R. Carotenoid-derived aroma compounds: An introduction. ACS Symp. 2002, 802, 1–17. [Google Scholar]
- Young, P.R.; Eyeghe-Bickong, H.A.; du Plessis, K.; Alexandersson, E.; Jacobson, D.A.; Coetzee, Z.; Deloire, A.; Vivier, M.A. Grapevine plasticity in response to an altered microclimate: Sauvignon Blanc modulates specific metabolites in response to increased berry exposure. Plant Physiol. 2016, 170, 1235–1254. [Google Scholar] [CrossRef]
- Joubert, C.; Young, P.R.; Eyéghé-Bickong, H.A.; Vivier, M.A. Field-grown grapevine berries use carotenoids and the associated xanthophyll cycles to acclimate to UV exposure differentially in high and low light (shade) conditions. Front. Plant Sci. 2016, 7, 786. [Google Scholar] [CrossRef] [PubMed]
- Palai, G.; Gucci, R.; Caruso, G.; D’Onofrio, C. Physiological changes induced by either pre-or post-veraison deficit irrigation in ‘Merlot’ vines grafted on two different rootstocks. Vitis 2021, 60, 153–161. [Google Scholar]
- Tosi, V.; Palai, G.; Verosimile, C.M.; Pompeiano, A.; D’Onofrio, C. Vine water status modulates the physiological response to different apical leaf removal treatments in Sangiovese (Vitis vinifera L.) Grapevines. Horticulturae 2025, 11, 1524. [Google Scholar] [CrossRef]
- Downey, M.O.; Rochfort, S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J. Chromat. A 2008, 1201, 43–47. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Study of the terpene profile at harvest and during berry development of Vitis vinifera L. aromatic varieties Aleatico, Brachetto, Malvasia di Candia aromatica and Moscato bianco. J. Sci. Food Agric. 2017, 97, 2898–2907. [Google Scholar] [CrossRef] [PubMed]
- Palai, G.; Caruso, G.; Gucci, R.; D’Onofrio, C. Water deficit before veraison is crucial in regulating berry VOCs concentration in Sangiovese grapevines. Front. Plant Sci. 2023, 14, 1117572. [Google Scholar] [CrossRef] [PubMed]





| Year | Treatment | Ψstem (MPa) | TLA (m2) | Shoots (n) | Fruity Shoots (n) | Clusters (n) | Fruit Yield per Vine (kg) | Pruning Weight (kg) | Ravaz Index |
|---|---|---|---|---|---|---|---|---|---|
| 2022 | CTRL | −0.82 ± 0.13 | 1.51 ± 0.31 | 7.60 ± 1.33 | 7.07 ± 1.34 | 11.27 ± 2.70 | 0.84 ± 0.29 | 0.37 ± 0.13 | 2.36 ± 0.68 |
| UV-C | −0.87 ± 0.10 | 1.48 ± 0.44 | 7.63 ± 1.40 | 7.37 ± 1.50 | 12.53 ± 3.25 | 0.97 ± 0.40 | 0.42 ± 0.13 | 2.46 ± 1.02 | |
| p | 0.5210 | 0.3247 | 0.9250 | 0.4163 | 0.1059 | 0.1416 | 0.1561 | 0.6567 | |
| 2023 | CTRL | −0.75 ± 0.08 | 1.62 ± 0.29 | 8.77 ± 0.85 | 7.33 ± 0.75 | 12.76 ± 1.81 | 1.12 ± 0.58 | 0.49 ± 0.09 | 2.29 ± 0.77 |
| UV-C | −0.70 ± 0.15 | 1.43 ± 0.26 | 8.10 ± 0.71 | 7.27 ± 0.94 | 13.05 ± 2.05 | 1.03 ± 0.44 | 0.42 ± 0.11 | 2.45 ± 0.95 | |
| p | 0.6650 | 0.1863 | 0.8865 | 0.4921 | 0.3729 | 0.7825 | 0.6699 | 0.3228 |
| Year | Harvest Time | Treatment | TSS (°Brix) | pH | TA (g L−1 tart. Acid) | Berry FW (g) |
|---|---|---|---|---|---|---|
| 2022 | T1 | CTRL | 24.25 ± 1.09 | 3.41 ± 0.08 | 4.74 ± 0.31 | 0.86 ± 0.04 |
| (29 August) | UV-C | 23.60 ± 0.73 | 3.46 ± 0.09 | 4.63 ± 0.24 | 0.89 ± 0.05 | |
| p | 0.1893 | 0.2966 | 0.4943 | 0.2503 | ||
| T2 | CTRL | 24.60 ± 0.91 | 3.52 ± 0.09 | 4.39 ± 0.36 | 0.93 ± 0.05 | |
| (13 September) | UV-C | 24.02 ± 0.66 | 3.55 ± 0.14 | 4.40 ± 0.4 | 0.94 ± 0.09 | |
| p | 0.2307 | 0.6213 | 0.9557 | 0.7960 | ||
| 2023 | T1 | CTRL | 22.90 ± 1.05 | 3.39 ± 0.09 | 4.55 ± 0.35 | 1.01 ± 0.06 |
| (06 September) | UV-C | 22.95 ± 0.78 | 3.50 ± 0.09 | 4.35 ± 0.33 | 1.05 ± 0.05 | |
| p | 0.7368 | 0.2548 | 0.1488 | 0.8125 | ||
| T2 | CTRL | 23.10 ± 1.12 | 3.42 ± 0.10 | 4.20 ± 0.32 | 1.11 ± 0.06 | |
| (26 September) | UV-C | 23.25 ± 0.69 | 3.49 ± 0.11 | 4.25 ± 0.31 | 1.08 ± 0.06 | |
| p | 0.7778 | 0.5497 | 0.4361 | 0.6999 |
| 2022 | 2023 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | T2 | T1 | T2 | |||||||||
| CTRL | UV-C | p | CTRL | UV-C | p | CTRL | UV-C | p | CTRL | UV-C | p | |
| isoamyl alcohol | 22.1 | 18.3 | n.s. | 25.3 | 30.5 | n.s. | 39.8 | 37.3 | n.s. | 76.8 | 63.7 | n.s. |
| 1-pentanol | 8.4 | 7.5 | n.s. | 7.3 | 8.5 | n.s. | 13 | 14.1 | n.s. | 13.4 | 14 | n.s. |
| 3-methyl-2-buten-1-ol | 14.7 | 14.5 | n.s. | 13.1 | 18.4 | *** | 25 | 29.3 | n.s. | 28.3 | 35.4 | * |
| 1-hexanol | 44.5 | 40.2 | n.s. | 53.5 | 51.1 | n.s. | 85.3 | 79.8 | n.s. | 95.1 | 83.7 | n.s. |
| cis-3-hexenol | 1 | 1 | n.s. | 1.3 | 1.3 | n.s. | 3.8 | 2.8 | n.s. | 3.4 | 3.1 | n.s. |
| trans-2-hexenol | 7.3 | 6.8 | n.s. | 6.6 | 6.3 | n.s. | 15.9 | 17 | n.s. | 9.3 | 10.5 | n.s. |
| 1-octen-3-ol | 5.9 | 6 | *** | 7.1 | 8 | n.s. | 18.9 | 20.2 | n.s. | 11.1 | 13.1 | n.s. |
| 1-octanol | 3.6 | 7.2 | n.s. | 3.2 | 3.1 | n.s. | 5.1 | 5.3 | n.s. | 4.5 | 4.6 | n.s. |
| (E)-2-octen-1-ol | 2.4 | 2.7 | * | 1.6 | 1.5 | n.s. | 2 | 1.9 | n.s. | 2.1 | 1.8 | n.s. |
| 4-methyl-3-pentenol | 1.4 | 2 | n.s. | 1.3 | 1.4 | n.s. | 2.2 | 4 | n.s. | 2.9 | 2.8 | n.s. |
| Total aliphatic alcohols | 111.3 | 106.2 | 120.3 | 130.1 | 211 | 211.7 | 247 | 232.8 | ||||
| benzaldehyde | 2.7 | 1.6 | n.s. | 1.6 | 1.6 | n.s. | 5.2 | 5.3 | n.s. | 16.7 | 7.8 | n.s. |
| acetophenone | 0.3 | 0.3 | n.s. | 0.4 | 0.3 | n.s. | 0.8 | 0.8 | n.s. | 0.8 | 0.7 | n.s. |
| methyl salicylate | 0.8 | 1.3 | ** | 0.7 | 1.2 | n.s. | 2.9 | 4.2 | n.s. | 3.4 | 4.6 | n.s. |
| benzyl alcohol | 363.5 | 364.7 | n.s. | 257.9 | 314.1 | n.s. | 542 | 589.3 | n.s. | 457.7 | 476 | n.s. |
| 2-phenylethanol | 532.5 | 558.8 | n.s. | 477.5 | 463.9 | n.s. | 832.4 | 812.6 | n.s. | 908.4 | 783.7 | * |
| benzenepropanol | 0.6 | 0.4 | n.s. | 1 | 1.1 | n.s. | 0.8 | 0.8 | n.s. | 0.7 | 0.8 | n.s. |
| p-cymen-7-ol | 2.5 | 2.8 | n.s. | 2.1 | 1.7 | n.s. | 4 | 3.9 | n.s. | 3.4 | 3.1 | n.s. |
| 6-methoxy-3-methylbenzofuran | 2.8 | 2.9 | n.s. | 2.6 | 1.8 | n.s. | 4.5 | 5.6 | n.s. | 6.3 | 6.3 | n.s. |
| 3′,5′-dimethoxyacetophenone | 7.5 | 10.1 | ** | 6 | 5.9 | n.s. | 9.6 | 12 | n.s. | 11.1 | 10.1 | n.s. |
| 3,4-dimethoxybenzyl alcohol | 9.1 | 21 | n.s. | 11.6 | 10.1 | n.s. | 11.3 | 12.2 | n.s. | 10.7 | 10.5 | n.s. |
| 2,3,4-trimethoxybenzyl alcohol | 21.3 | 31.7 | *** | 19.2 | 20.1 | n.s. | 36.7 | 38.7 | n.s. | 33 | 34.4 | n.s. |
| 3,5-dimethoxy-4-hydroxyphenylacetic acid | 8.6 | 13.1 | n.s. | 6.9 | 7.2 | n.s. | 17.4 | 14 | n.s. | 9.3 | 11.7 | n.s. |
| Total benzene derivatives | 952.4 | 1008.9 | 787.5 | 828.9 | 1467.8 | 1499.5 | 1461.7 | 1349.7 | ||||
| 1-phenylethanol | 2.1 | 2.1 | n.s. | 1.9 | 1.8 | n.s. | 3.9 | 3.9 | n.s. | 4.3 | 3.8 | n.s. |
| guaiacol | 11.5 | 12.4 | n.s. | 8.1 | 8.3 | n.s. | 4.7 | 13.5 | n.s. | 4.5 | 8.8 | n.s. |
| eugenol | 1.7 | 1.9 | n.s. | 1.3 | 1.3 | n.s. | 2.9 | 3.1 | n.s. | 2.7 | 2.9 | n.s. |
| 4-vinylguaiacol | 522.1 | 849.5 | ** | 463.2 | 505.6 | n.s. | 1047.7 | 1106.9 | * | 1044.1 | 898.2 | n.s. |
| γ-hydroxyeugenol | 6.4 | 8.9 | * | 5.9 | 6.3 | n.s. | 11.1 | 10.5 | n.s. | 11.1 | 10.4 | n.s. |
| phenol-3,4,5-trimethoxy | 31.4 | 34.2 | n.s. | 26.1 | 28.7 | n.s. | 46.3 | 51.3 | n.s. | 56.3 | 50.9 | n.s. |
| Total phenols | 575.2 | 909.2 | 506.5 | 552.1 | 1116.6 | 1189.3 | 1123.1 | 975 | ||||
| methyl vanillate | 9.1 | 21 | n.s. | 11.6 | 10.1 | n.s. | 11.3 | 12.2 | n.s. | 10.7 | 10.5 | n.s. |
| acetovanillone | 10 | 9.8 | n.s. | 9.3 | 8.4 | n.s. | 11.6 | 12 | n.s. | 7.5 | 7.5 | n.s. |
| zingerone | 7 | 9.2 | n.s. | 5.9 | 4.6 | n.s. | 12.4 | 11.4 | n.s. | 9.9 | 8.6 | n.s. |
| homovanillic alcohol | 10.4 | 12.3 | n.s. | 5.4 | 5.4 | n.s. | 18.9 | 17.1 | n.s. | 11.6 | 12.2 | n.s. |
| 3,4,5-trimethoxybenzyl-methyl-ether | 24 | 68.8 | n.s. | 34.8 | 31.5 | n.s. | 21.4 | 23.1 | n.s. | 28.7 | 30.9 | n.s. |
| homovanillic acid | 75.2 | 86.4 | n.s. | 41.7 | 43.2 | n.s. | 64.9 | 78.6 | n.s. | 59.4 | 76.2 | n.s. |
| acetosyringone | 28.1 | 38.7 | ** | 25 | 23.1 | n.s. | 53.7 | 52.7 | n.s. | 51.6 | 44.8 | n.s. |
| Total vanillins | 163.7 | 246.1 | 133.7 | 126.3 | 194.2 | 207.2 | 179.3 | 190.8 | ||||
| (E)-furanoid linalool ox. A L | 3.4 | 3.2 | n.s. | 2.7 | 2.1 | n.s. | 3.7 | 3.6 | n.s. | 3.2 | 2.8 | n.s. |
| (Z)-furanoid linalool ox. B L | 3 | 3.2 | n.s. | 2.5 | 2.2 | n.s. | 4.4 | 4.3 | n.s. | 3.8 | 3.4 | n.s. |
| terpinen-4-ol T | 0.4 | 0.6 | ** | 0.3 | 0.3 | n.s. | 1 | 1 | n.s. | 0.8 | 0.6 | n.s. |
| ocimenol | 10.7 | 12.4 | n.s. | 8 | 5.6 | * | 1.2 | 2.3 | n.s. | 0.8 | 1 | n.s. |
| α-terpineol T | 12.7 | 14.8 | * | 9.5 | 6.6 | * | 10.4 | 13.1 | * | 9.2 | 9.1 | n.s. |
| α-citral G | 0.7 | 0.9 | * | 0.4 | 0.5 | n.s. | 2.4 | 4.5 | *. | 3.3 | 3.3 | n.s. |
| (E)-pyranoid linalool ox. C L | 5.9 | 5.8 | n.s. | 4.8 | 3.6 | n.s. | 5.3 | 4.5 | n.s. | 5 | 4 | n.s. |
| (Z)-pyranoid linalool ox. D L | 1.8 | 1.8 | n.s. | 1.6 | 1.3 | n.s. | 2.4 | 1.9 | n.s. | 2.2 | 1.7 | n.s. |
| citronellol G | 1.1 | 3.2 | *** | 1 | 0.9 | n.s. | 11.4 | 10.2 | n.s. | 6.9 | 9.6 | n.s. |
| lilac alcohol A L | 4.5 | 7.7 | ** | 3.6 | 3.6 | n.s. | 13.5 | 13 | n.s. | 11.1 | 11.3 | n.s. |
| nerol G | 2.3 | 2.9 | *** | 1.9 | 1.8 | n.s. | 4.2 | 8.5 | ** | 5 | 6.4 | n.s. |
| geraniol G | 11.1 | 12.3 | n.s. | 7.6 | 7.3 | n.s. | 21.7 | 20.4 | n.s. | 16.7 | 16.1 | n.s. |
| exo-2-hydroxycineole T | 13.7 | 13.1 | n.s. | 9.9 | 7.6 | n.s. | 12.7 | 12.9 | n.s. | 10.4 | 9 | n.s. |
| 2,6-dimethyl-3,7-octadiene-2,6-diol 1 L | 0.8 | 0.9 | n.s. | 0.3 | 0.3 | n.s. | 0.9 | 1.1 | n.s. | 0.6 | 0.7 | n.s. |
| 6,7-2OH-7-hydroxylinalool L | 1.3 | 1.9 | * | 1 | 0.9 | n.s. | 5.7 | 5.2 | n.s. | 2.9 | 3.4 | n.s. |
| 2,6-dimethyl-1,7-octadiene-3,6-diol 2 L | 2.3 | 3.1 | * | 1.1 | 1.4 | n.s. | 2.6 | 2.6 | n.s. | 3 | 2.2 | n.s. |
| OH-citronellol G | 9.5 | 8.4 | n.s. | 6.2 | 4.9 | n.s. | 6.3 | 6.2 | n.s. | 5.5 | 4.6 | n.s. |
| trans-8-hydroxylinalool L | 11.2 | 15.4 | ** | 8.7 | 7.8 | n.s. | 21.3 | 30.9 | * | 16.6 | 16.3 | n.s. |
| cis-8-hydroxylinalool L | 13.5 | 19.9 | ** | 11.3 | 10.4 | n.s. | 21.8 | 30.5 | * | 17.2 | 16.9 | n.s. |
| geranic acid G | 10.6 | 14.1 | ** | 7.6 | 7.6 | n.s. | 14 | 19.9 | ** | 13 | 11.9 | n.s. |
| 7-OH-α-terpineol T | 157.7 | 170.8 | n.s. | 99.7 | 74.3 | * | 166.1 | 174.1 | n.s. | 142.2 | 127.9 | n.s. |
| 2,6-dimethyl-6OH-2,7-octadienoic acid L | 30.6 | 37.7 | n.s. | 22.8 | 21.2 | n.s. | 39.2 | 40.4 | n.s. | 29.8 | 31.8 | n.s. |
| Total monoterpenes | 308.9 | 353.8 | 212.3 | 172.1 | 372.4 | 411.1 | 309.5 | 294.2 | ||||
| actinidol A | 1.3 | 1.3 | n.s. | 1 | 0.6 | n.s. | 1.2 | 1.1 | n.s. | 1.1 | 0.9 | n.s. |
| actinidol B | 2.2 | 2.1 | n.s. | 1.6 | 1.2 | n.s. | 2.2 | 1.9 | n.s. | 1.7 | 1.5 | n.s. |
| 3,4-dihydro-3-oxo-α-ionol (I) | 17.6 | 21 | n.s. | 14.9 | 13.1 | n.s. | 24.8 | 25.4 | n.s. | 25.5 | 22.3 | n.s. |
| 3,4-dihydro-3-oxo-α-ionol (II) | 33.6 | 40.8 | ** | 30.4 | 25.9 | n.s. | 41.8 | 49.2 | ** | 48.3 | 40.8 | n.s. |
| 3,4-dihydro-3-oxo-α-ionol (III) | 44.9 | 55.3 | * | 43.5 | 35.4 | n.s. | 54.7 | 64.1 | * | 66.3 | 55.2 | n.s. |
| 3-oxo-α-damascone | 19.6 | 22.7 | * | 19.1 | 18.3 | n.s. | 29.7 | 31.5 | n.s. | 33.1 | 26.8 | n.s. |
| 3-oxo-α-ionol | 302.8 | 403.6 | ** | 293.6 | 260.8 | n.s. | 442.2 | 513.6 | ** | 502.4 | 450.1 | n.s. |
| 2,3-2OH-4-oxo-7,8-2OH-β-ionon | 15.2 | 21.1 | ** | 17.9 | 16.1 | n.s. | 21 | 21.1 | n.s. | 30.9 | 26 | n.s. |
| 7,8-dihydrovomifoliol | 6.9 | 12.2 | * | 6.9 | 5.6 | n.s. | 10.4 | 10.5 | n.s. | 7.7 | 7.1 | n.s. |
| Total C13-norisprenoids | 444.2 | 580 | 428.8 | 377.1 | 628.1 | 718.4 | 717.1 | 630.6 | ||||
| Total glycosylated VOCs | 5016.5 | 6322.5 | 4270.6 | 4254.8 | 7870.2 | 8141.1 | 7845.1 | 7128.4 | ||||
| 2022 | 2023 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | T2 | T1 | T2 | |||||||||
| CTRL | UV-C | p | CTRL | UV-C | p | CTRL | UV-C | p | CTRL | UV-C | p | |
| isoamyl alcohol | 1.3 | 1.3 | n.s. | 1.4 | 0.6 | n.s. | 10.3 | 12.2 | n.s. | 15.8 | 11 | n.s. |
| 3-methyl-2-buten-1-ol | 8.2 | 1.4 | *** | 1.6 | 0.6 | * | 18.4 | 16.3 | n.s. | 6.3 | 9.7 | n.s. |
| 1-hexanol | 60.7 | 50 | n.s. | 34.7 | 17.7 | n.s. | 172.9 | 219 | n.s. | 98 | 136.2 | n.s. |
| trans-3-hexenol | 2 | 1.7 | n.s. | 1.1 | 0.6 | n.s. | 8.9 | 10.8 | n.s. | 5.7 | 6.6 | n.s. |
| cis-3-hexenol | 20.3 | 22.1 | n.s. | 5.2 | 3.5 | n.s. | 54 | 67.3 | n.s. | 16.9 | 26.8 | n.s. |
| trans-2-hexenol | 175.4 | 148.7 | n.s. | 54.7 | 56 | n.s. | 600.5 | 583.7 | n.s. | 410.7 | 467.8 | n.s. |
| 1-octen-3-ol | 11.8 | 3 | *** | 2.6 | 1.1 | n.s. | 13.8 | 14.8 | n.s. | 3.8 | 4.4 | n.s. |
| Total aliphatic alcohols | 279.7 | 228.1 | 101.3 | 80.1 | 878.8 | 924 | 557.2 | 662.6 | ||||
| benzaldehyde | 0.3 | 0.2 | ** | 0.2 | 0.1 | n.s. | 3.5 | 3.4 | n.s. | 3.4 | 2.4 | n.s. |
| acetophenone | 1.8 | 1.5 | n.s. | 0.7 | 0.4 | n.s. | 9.5 | 9.4 | n.s. | 5.8 | 4.6 | n.s. |
| 2,5-dimethyl-benzaldehyde | 1.4 | 0.1 | n.s. | 0.3 | 0.1 | n.s. | 0.8 | 0.5 | n.s. | 0.8 | 0.6 | n.s. |
| 2-phenylethanol | 52.3 | 36.7 | * | 16.7 | 19.7 | n.s. | 203.2 | 205.1 | n.s. | 193.9 | 173.4 | n.s. |
| Total benzene derivatives | 55.7 | 38.5 | 17.8 | 20.4 | 217 | 218.3 | 203.9 | 181 | ||||
| guaiacol | 3.9 | 2.7 | ** | 2.1 | 1.2 | n.s. | 6.8 | 6.8 | n.s. | 6 | 4.4 | n.s. |
| β-phenoxyethyl alcohol | 23.4 | 26.7 | n.s. | 10.6 | 5.9 | n.s. | 72.4 | 66.3 | n.s. | 61.4 | 58.7 | n.s. |
| 4-vinylguaiacol | 56.8 | 27 | n.s. | 37.2 | 18.9 | n.s. | 149.8 | 69.7 | n.s. | 132.1 | 90.7 | n.s. |
| phenol-2,6-dimethoxy | 43.4 | 25.4 | ** | 14.8 | 16.7 | n.s. | 63.7 | 59.9 | n.s. | 69.3 | 55.5 | n.s. |
| eugenol | 0.4 | 0.4 | n.s. | 0.2 | 0.1 | n.s. | 1.9 | 1.9 | n.s. | 1.1 | 1.1 | n.s. |
| phenol-3,4,5-trimethoxy | 4.8 | 2.6 | ** | 3 | 1.6 | n.s. | 17.5 | 16.1 | n.s. | 21.8 | 16.7 | n.s. |
| Total phenols | 132.8 | 84.7 | 67.9 | 44.4 | 312.1 | 220.6 | 291.6 | 227 | ||||
| vanillin | 1.7 | 1.2 | n.s. | 0.8 | 0.5 | n.s. | 6.3 | 4.9 | n.s. | 3.6 | 3.3 | n.s. |
| methyl vanillate | 26.8 | 21.6 | n.s. | 13.1 | 7.9 | n.s. | 90.7 | 98.5 | n.s. | 88.2 | 71.7 | n.s. |
| acetovanillone | 2.6 | 1.5 | * | 1.4 | 0.6 | n.s. | 12.8 | 12 | n.s. | 6.1 | 5.9 | n.s. |
| homovanillic alcohol | 3.4 | 2.7 | n.s. | 1.4 | 0.7 | n.s. | 10.4 | 13 | n.s. | 6.4 | 8.9 | n.s. |
| homovanillic acid | 10.3 | 12 | n.s. | 3.4 | 2 | n.s. | 50 | 46.4 | n.s. | 20.6 | 14.5 | n.s. |
| acetosyringone | 3.8 | 2.4 | n.s. | 1.8 | 0.9 | n.s. | 11.4 | 8.4 | n.s. | 11.4 | 10 | n.s. |
| Total vanillins | 48.5 | 41.3 | 21.8 | 12.5 | 181.7 | 183.2 | 136.3 | 114.3 | ||||
| p-cymen-7-ol | 0.5 | 0.3 | n.s. | 0.2 | 0.1 | n.s. | 1.7 | 1.4 | n.s. | 1.5 | 1.1 | n.s. |
| citronellol G | 6.6 | 2.5 | ** | 2.4 | 0.8 | n.s. | 21.4 | 19.3 | n.s. | 9.1 | 10.1 | n.s. |
| exo-2-hydroxycineole | 1.1 | 1 | n.s. | 0.4 | 0.3 | n.s. | 1.1 | 1.8 | n.s. | 1.1 | 1.4 | n.s. |
| 2,3-pinanediol | 3.2 | 2.4 | n.s. | 1.1 | 0.6 | n.s. | 13.5 | 12.2 | n.s. | 10.7 | 8.9 | n.s. |
| 7-OH-geraniol G | 5.7 | 2.1 | *** | 1.2 | 0.8 | n.s. | 6.6 | 7.9 | n.s. | 3.3 | 4.7 | n.s. |
| cis-8-OH-linalool L | 2.7 | 2.2 | n.s. | 1.1 | 0.6 | n.s. | 15 | 10.5 | n.s. | 6.2 | 6.6 | n.s. |
| geranic acid G | 7.7 | 4 | ** | 2.2 | 1.2 | n.s. | 15.8 | 16.4 | n.s. | 10.7 | 9.4 | n.s. |
| 7-OH-α-terpineol T | 2.3 | 0.9 | n.s. | 2 | 0.7 | n.s. | 4.9 | 5 | n.s. | 4.5 | 3.3 | n.s. |
| 2,6-dimethyl-6OH-2,7-octadienoic acid L | 8.1 | 3.5 | ** | 1.8 | 1.2 | n.s. | 77.7 | 43.1 | n.s. | 21.7 | 92.4 | n.s. |
| Total monoterpenes | 37.8 | 19 | 12.5 | 6.3 | 157.6 | 117.6 | 68.7 | 137.9 | ||||
| Total Free VOCs | 554.5 | 411.6 | 221.3 | 163.7 | 1747.2 | 1663.7 | 1257.7 | 1322.8 | ||||
| Year | Date | Measurements/Analysis |
|---|---|---|
| 2022 | 29 July | TLA, Ψstem |
| 29 August (T1) | Berry technological parameters (TSS, TA, pH) | |
| Berry flavonol and anthocyanin profile | ||
| Berry free/glycosylated VOCs profile | ||
| 13 September (T2) | Vine vegetative-productive parameters | |
| Berry flavonol and anthocyanin profile | ||
| Berry free/glycosylated VOCs profile | ||
| 2023 | 7 July | Leaf gas exchange |
| 1 August | Leaf gas exchange | |
| 4 August | TLA, Ψstem | |
| 25 August | Leaf gas exchange | |
| 6 September (T1) | Berry technological parameters (TSS, TA, pH) | |
| Berry flavonol and anthocyanin profile | ||
| Berry free/glycosylated VOCs profile | ||
| 26 September (T2) | Vine vegetative-productive parameters | |
| Berry flavonol and anthocyanin profile | ||
| Berry free/glycosylated VOCs profile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
D’Onofrio, C.; Palai, G.; Tosi, V.; Ghidotti, D.; Verosimile, C.M.; Neri, A. Sustainable Vineyard Management with On-Field UV-C Irradiation: Impacts of Supplementary Applications on Grape Composition and Secondary Metabolites. Plants 2026, 15, 298. https://doi.org/10.3390/plants15020298
D’Onofrio C, Palai G, Tosi V, Ghidotti D, Verosimile CM, Neri A. Sustainable Vineyard Management with On-Field UV-C Irradiation: Impacts of Supplementary Applications on Grape Composition and Secondary Metabolites. Plants. 2026; 15(2):298. https://doi.org/10.3390/plants15020298
Chicago/Turabian StyleD’Onofrio, Claudio, Giacomo Palai, Vincenzo Tosi, Daniele Ghidotti, Carmine Mattia Verosimile, and Alessio Neri. 2026. "Sustainable Vineyard Management with On-Field UV-C Irradiation: Impacts of Supplementary Applications on Grape Composition and Secondary Metabolites" Plants 15, no. 2: 298. https://doi.org/10.3390/plants15020298
APA StyleD’Onofrio, C., Palai, G., Tosi, V., Ghidotti, D., Verosimile, C. M., & Neri, A. (2026). Sustainable Vineyard Management with On-Field UV-C Irradiation: Impacts of Supplementary Applications on Grape Composition and Secondary Metabolites. Plants, 15(2), 298. https://doi.org/10.3390/plants15020298

