Regenerative Agriculture and Sustainable Plant Protection: Enhancing Resilience Through Natural Strategies
Abstract
1. Introduction
2. Biodiversity-Driven Pest Management: A Natural Approach to Sustainable Agriculture
3. Soil Microbiome and Plant Defense: Strengthening Resilience Through Healthy Soils
| Aspect | Conventional Agriculture | Regenerative Agriculture | Impact on Sustainability |
|---|---|---|---|
| Soil Health | Soil erosion rates can reach 10–100 times higher than soil formation rates [49]. | Regenerative practices can increase soil organic matter by 1–2% annually, improving water retention and carbon sequestration [50]. | Improves soil structure, water retention, and carbon sequestration. |
| Pest Management | 2.5 million tons of pesticides are used annually worldwide, leading to pest resistance and biodiversity loss [51]. | Biological controls and IPM reduce pesticide use by 30–50% while maintaining crop yields [52]. | Reduces chemical inputs, promotes natural pest predators, and enhances ecosystem resilience. |
| Biodiversity | Monoculture farming has led to a 75% decline in insect biomass over the past 30 years [53]. | Polyculture and hedgerows can increase pollinator diversity by 50–70% [54]. | Enhances pollination, natural pest control, and ecosystem stability. |
| Water Usage | Conventional irrigation wastes 30–60% of water due to inefficiency [55]. | Drip irrigation and mulching reduce water use by 20–50% while improving crop yields [56]. | Conserves water resources and reduce runoff pollution. |
| Climate Impact | Agriculture contributes 24% of global greenhouse gas emissions [57]. | Regenerative practices can sequester 2–5 tons of carbon per hectare annually [50]. | Mitigates climate change and improves long-term agricultural resilience. |
| Microorganism | Function | Impact on Plant Health | Examples |
|---|---|---|---|
| Mycorrhizal Fungi | Enhances nutrient uptake, especially phosphorus, and induces systemic resistance. | Increases plant growth by 20–50% and reduces disease incidence by 30–70% [67,68]. | Glomus species. |
| Rhizobacteria | Produces compounds that stimulate plant immune responses (ISR and SAR). | Reduces pest damage by 40–60% and increases yield by 10–20% [69]. | Pseudomonas and Bacillus species. |
| Nematophagous and Entomopathogenic Fungi | Preys on harmful nematodes in the soil. | Reduces nematode populations by 50–90% [70]. | Arthrobotrys, Metarhizium species. |
| Trichoderma spp. | Antagonistic to soil-borne pathogens and promotes root growth. | Reduces fungal diseases by 30–70% and enhances nutrient uptake by 20–40% [71]. | Trichoderma harzianum. |
| Nitrogen-Fixing Bacteria | Converts atmospheric nitrogen into plant-available forms. | Reduces synthetic fertilizer use by 30–50% [72]. | Rhizobium and Azospirillum species. |
3.1. Cultural Control Methods in Regenerative Plant Protection
3.1.1. Crop Rotation as a Disruptive Ecological Strategy
3.1.2. Intercropping and Functional Crop Diversity
3.1.3. Planting Time Adjustment and Phenological Escape
3.1.4. Field Sanitation and Residue Management
3.1.5. Cover Cropping and Soil–Pest Interactions
3.1.6. Habitat Manipulation and Landscape-Level Regulation
3.2. Harnessing Nature: Biological Strategies for Pest Suppression
3.3. Eco-Friendly Pest Control: Physical Barriers and Mechanical Strategies
3.4. Botanical Pesticides in Regenerative Plant Protection
3.5. Augmentation of Biological Control: Enhancing Natural Enemy Populations
4. Conservation of Natural Enemies: Enhancing Habitat and Resources
Challenges and Limitations of Biological Control
| Method | Description | Advantages | Challenges |
|---|---|---|---|
| Importation | Introducing natural enemies from the pest’s native range. | Successful in 70% of cases for invasive pest control [110]. | Risk of non-target effects and ecosystem disruption. |
| Augmentation | Releasing mass-reared natural enemies to enhance pest control. | Reduces pest populations by 50–80% in greenhouse crops [111]. | High cost and labor-intensive. |
| Conservation | Modifying habitats to support natural enemy populations. | Increases natural enemy populations by 30–60% [112]. | Requires knowledge of local ecosystems and species interactions. |
| Classical Biological Control | Establishing permanent populations of natural enemies in new environments. | Long-term pest suppression with 50–90% success rates [113]. | Time-consuming and requires careful risk assessment. |
| Inundative Release | Releasing large numbers of natural enemies for immediate pest control. | Effective for short-term pest suppression in 80% of cases [114]. | Expensive and may require repeated releases. |
5. Plants Physical & Mechanical Protection
5.1. Insect Exclusion Screening
5.2. Difficulties and Drawbacks of Physical Barriers
5.2.1. Specific Pest Species—Physical Control
5.2.2. Grow-Out Practices (Hand-Picking and Remove)
5.2.3. Crop Protection and Barrier Methods
5.2.4. Production of Apple with Insect Exclusion Netting
6. Green Chemistry: Plant-Derived Pest Control Solutions
6.1. Plant-Based Repellents and Efficacy
6.2. Plants and Pests: The Battle of Chemical Defenses
6.3. Natural Deterrents: Garlic and Peppermint
6.4. Eucalyptus Oil and Other Natural Substances
6.5. Environmental Benefits and Sustainability
6.6. Economic and Environmental Benefits
6.7. Long-Term Economic Advantages of Sustainable Practices
7. Environmental Benefits of Reducing Chemical Inputs
| Aspect | Economic Benefits | Environmental Benefits | Long-Term Impact |
|---|---|---|---|
| Reduced Chemical Inputs | Saves $20–50 per hectare on pesticide costs [52]. | Reduces soil and water contamination by 30–70%. | Improves soil health and biodiversity, leading to sustainable farming. |
| Biological Control | Reduces pest control costs by 40–60% [114]. | Promotes natural pest predators and reduces pesticide resistance. | Enhances ecosystem resilience and reduces long-term pest control costs. |
| Soil Health | Increases crop yields by 10–20% [50]. | Enhances carbon sequestration and water retention. | Mitigates climate change and improves agricultural productivity. |
| Biodiversity | Reduces crop losses by 20–40% through enhanced pollination [54]. | Maintains ecosystem balance and reduces the risk of pest outbreaks. | Creates a more resilient and sustainable agricultural system. |
| Climate Resilience | Reduces vulnerability to extreme weather events and pest outbreaks. | Enhances ecosystem adaptability to climate change. | Ensure long-term food security and environmental sustainability. |
7.1. Promoting Soil Health, Biodiversity, and Climate Resilience
| Strategy | Description | Benefits | Examples |
|---|---|---|---|
| Hedgerows | Planting native shrubs and trees along field edges. | Increases beneficial insect populations by 40–60% [25]. | Cornflower, buckwheat, and vetch. |
| Cover Crops | Non-crop plants grow between main crop seasons. | Reduces weed biomass by 50–90% and improves soil nitrogen by 30–50% [153]. | Legumes like clover and vetch. |
| Wildflower Strips | Strips of flowering plants within or around crop fields. | Increases pollinator abundance by 300% and pest control by 50% [26]. | Sunflowers, marigolds, and lavender. |
| Polyculture | Growing multiple crop species together. | Reduces pest outbreaks by 30–60% compared to monocultures [154]. | Intercropping maize with beans or squash. |
| Biological Control | Introduction or conservation of natural enemies (predators, parasitoids, etc.). | Reduces pest populations by 50–80% without chemical inputs [114]. | Ladybugs, lacewings, and parasitoid wasps. |
7.2. Overcoming Barriers and Advancing Sustainable Plant Protection
7.3. Key Challenges in Sustainable Plant Protection
8. Future Research Directions
Policies and Cooperation for Effective Execution
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IPM | Integrated pest management |
| NTOs | Non-target organisms |
| ISR | Induced systemic resistance |
| SAR | Systemic acquired resistance |
| METs | Modified environment therapies |
| AI | Artificial intelligence |
References
- Bhoi, T.K.; Samal, I.; Majhi, P.K.; Komal, J.; Mahanta, D.K.; Pradhan, A.K.; Saini, V.; Nikhil Raj, M.; Ahmad, M.A.; Behera, P.P. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front. Microbiol. 2022, 13, 1001454. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Mahanta, D.K.; Komal, J. Establishing the role of silicon (Si) in plant resistance to insects: A bibliometric approach. Silicon 2024, 16, 2119–2128. [Google Scholar] [CrossRef]
- Samal, I.; Dhillon, M.K.; Tanwar, A.K.; Bhoi, T.K. Biological performance of different Chilo partellus populations on diverse maize genotypes. Indian J. Agric. Sci. 2021, 91, 393–397. [Google Scholar] [CrossRef]
- Bhoi, T.K.; Trivedi, N.; Kumar, H.; Tanwar, A.K.; Dhillon, M.K. Biochemical defense in maize against Chilo partellus (Swinhoe) through activation of enzymatic and nonenzymatic antioxidants. Indian J. Exp. Biol. 2020, 59, 54–63. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Bhoi, T.K.; Komal, J.; Samal, I.; Mastinu, A. Spatial, spectral and temporal insights: Harnessing high-resolution satellite remote sensing and artificial intelligence for early monitoring of wood boring pests in forests. Plant Stress 2024, 11, 100381. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, H.; Roques, A. Early monitoring of forest wood-boring pests with remote sensing. Annu. Rev. Entomol. 2023, 68, 277–298. [Google Scholar] [CrossRef]
- Marvasti-Zadeh, S.M.; Goodsman, D.; Ray, N.; Erbilgin, N. Early detection of bark beetle attack using remote sensing and machine learning: A review. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Rhodes, C.J. The imperative for regenerative agriculture. Sci. Prog. 2017, 100, 80–129. [Google Scholar] [CrossRef]
- White, C. Why regenerative agriculture? Am. J. Econ. Sociol. 2020, 79, 799–812. [Google Scholar] [CrossRef]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Zionts, J. Regenerative Agriculture: Good for Soil Health, but Limited Potential to Mitigate Climate Change; World Resources Institute: Washington, DC, USA, 2020. [Google Scholar]
- Hermani, C. Regenerative Agriculture and the Quest for Sustainability-Inquiry of an Emerging Concept; Humboldt University of Berlin: Berlin, Germany, 2020. [Google Scholar]
- Mustafa, M.A.; Mabhaudhi, T.; Avvari, M.V.; Massawe, F. Transition toward sustainable food systems: A holistic pathway toward sustainable development. In Food Security and Nutrition; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–56. [Google Scholar]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar] [CrossRef]
- Frische, T.; Egerer, S.; Matezki, S.; Pickl, C.; Wogram, J. 5-Point programme for sustainable plant protection. Environ. Sci. Eur. 2018, 30, 8. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, H.; Zhang, S.; Huang, S.; Zhao, S.; Xu, X.; He, P.; Zhou, W.; Zhao, Y.; Yan, N.J.C. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. CATENA 2023, 220, 106708. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Skaldina, O. Insects associated with sweet fennel: Beneficial visitors attracted by a generalist plant. Arthropod-Plant Interact. 2020, 14, 399–407. [Google Scholar] [CrossRef]
- Schurr, L.; Geslin, B.; Affre, L.; Gachet, S.; Delobeau, M.; Brugger, M.; Bourdon, S.; Masotti, V. Landscape and local drivers affecting flying insects along fennel crops (Foeniculum vulgare, Apiaceae) and implications for its yield. Insects 2021, 12, 404. [Google Scholar] [CrossRef]
- Latha, E.; Rajan, S.; Yadav, S.; Sathish, R. Agro ecosystem analysis and ecological engineering based plant health management in organic tomato (Lycopersicon esculentum) cultivation. Int. J. Agric. Sci. 2018, 10, 5379–5382. [Google Scholar]
- Wang, Y.-X.; Yu, T.-F.; Wang, C.-X.; Wei, J.-T.; Zhang, S.-X.; Liu, Y.-W.; Chen, J.; Zhou, Y.-B.; Chen, M.; Ma, Y.-Z.; et al. Heat shock protein TaHSP17. 4, a TaHOP interactor in wheat, improves plant stress tolerance. Int. J. Biol. Macromol. 2023, 246, 125694. [Google Scholar] [CrossRef]
- Parvaiz, B.; Khan, A.A. Conservation of predatory fauna and decline of insect pests status in ecologically engineered tomato ecosystem of Kashmir. Int. J. Ecotoxicol. Ecobiol. 2022, 7, 49–59. [Google Scholar]
- Romeis, J.; Städler, E.; Wäckers, F.L. Nectar-and pollen-feeding by adult herbivorous insects. In Plant-Provided Food for Carnivorous Inesects: A Protective Mutualism and Its Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Winkler, K.; Wäckers, F.; Pinto, D.M. Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecol. Entomol. 2009, 34, 221–227. [Google Scholar] [CrossRef]
- Morandin, L.A.; Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef]
- M’Gonigle, L.K.; Ponisio, L.C.; Cutler, K.; Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 2015, 25, 1557–1565. [Google Scholar] [CrossRef]
- Haaland, C.; Naisbit, R.E.; Bersier, L.F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2DM: A research review. Front. Immunol. 2023, 14, 1243834. [Google Scholar] [CrossRef] [PubMed]
- Jangir, C.K.; Singh, D.; Kumar, S. Yield and economic response of biofertilizer and fertility levels on black gram (Vigna mungo L.). Prog. Res. Int. J. 2016, 11, 5252–5254. [Google Scholar]
- Hassan, F.-u.; Liu, C.; Mehboob, M.; Bilal, R.M.; Arain, M.A.; Siddique, F.; Chen, F.; Li, Y.; Zhang, J.; Shi, P. Potential of dietary hemp and cannabinoids to modulate immune response to enhance health and performance in animals: Opportunities and challenges. Front. Immunol. 2023, 14, 1285052. [Google Scholar] [CrossRef]
- Martinez, L.; Soti, P.; Kaur, J.; Racelis, A.; Kariyat, R.R. Impact of cover crops on insect community dynamics in organic farming. Agriculture 2020, 10, 209. [Google Scholar] [CrossRef]
- Bowers, C.; Toews, M.D.; Schmidt, J.M. Winter cover crops shape early-season predator communities and trophic interactions. Ecosphere 2021, 12, e03635. [Google Scholar] [CrossRef]
- Von Königslöw, V.; Fornoff, F.; Klein, A.-M. Pollinator enhancement in agriculture: Comparing sown flower strips, hedges and sown hedge herb layers in apple orchards. Biodivers. Conserv. 2022, 31, 433–451. [Google Scholar]
- Wang, F.; Zhang, J.; Zeng, Y.; Wang, H.; Zhao, X.; Chen, Y.; Deng, H.; Ge, L.; Dahlgren, R.A.; Gao, H.; et al. Arsenic mobilization and nitrous oxide emission modulation by different nitrogen management strategies in a flooded ammonia-enriched paddy soil. Pedosphere 2024, 34, 1051–1065. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems. Soil Tillage Res. 2003, 72, 203–211. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.K.; Thakral, S.K.; Bhardwaj, K.K.; Jhariya, M.K.; Meena, R.S.; Jangir, C.K.; Bedwal, S.; Jat, R.D.; Gaber, A. Integrated nutrient management improves the productivity and nutrient use efficiency of Lens culinaris Medik. Sustainability 2022, 14, 1284. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.K.; Dhaka, A.K.; Bedwal, S.; Sheoran, S.; Meena, R.S.; Jangir, C.K.; Kumar, D.; Kumar, R.; Jat, R.D. Efficient nutrient management for enhancing crop productivity, quality and nutrient dynamics in lentil (Lens culinaris Medik.) in the semi-arid region of northern India. PLoS ONE 2023, 18, e0280636. [Google Scholar] [CrossRef]
- Rashid, M.H.-O.; Chung, Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017, 8, 1816. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Fernandez, I.; Lok, G.B.; Pozo, M.J.; Pieterse, C.M.; Van Wees, S.C. Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol. 2017, 213, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Ponti, L.; Nicholls, C.I. Soil fertility, biodiversity and pest management. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 72–84. [Google Scholar]
- Yuan, Y.; Xiao, N.; Krogh, P.H.; Chen, F.; Ge, F. Laboratory assessment of the impacts of transgenic Bt rice on the ecological fitness of the soil non-target arthropod, Folsomia candida (Collembola: Isotomidae). Transgenic Res. 2013, 22, 791–803. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; Liang, S.; Xiao, Q.; Cao, P.; Chen, X.; Niu, Y.; He, Y.; Sun, Z.; Wen, X. Effects of soil-treatment with fungal biopesticides on pupation behaviors, emergence success and fitness of tea geometrid, Ectropis grisescens (Lepidoptera: Geometridae). J. Asia-Pac. Entomol. 2019, 22, 208–214. [Google Scholar]
- Wang, H.; Ma, T.; Xiao, Q.; Cao, P.; Chen, X.; Wen, Y.; Xiong, H.; Qin, W.; Liang, S.; Jian, S. Pupation behaviors and emergence successes of Ectropis grisescens (Lepidoptera: Geometridae) in response to different substrate types and moisture contents. Environ. Entomol. 2017, 46, 1365–1373. [Google Scholar] [CrossRef]
- Rafiq, M.; Shoaib, A.; Javaid, A.; Parveen, S.; Hassan, M.A.; Nawaz, H.H.; Cheng, C. Application of Asteraceae biomass and biofertilizers to improve potato crop health by controlling black scurf disease. Front. Plant Sci. 2024, 15, 1437702. [Google Scholar] [CrossRef]
- Sangwan, S.; Prasanna, R. Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb. Ecol. 2022, 84, 1–10. [Google Scholar]
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): Role and mechanism of action against phytopathogens. In Fungal Biotechnology and Bioengineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 457–470. [Google Scholar]
- Olowe, O.M.; Akanmu, A.O.; Asemoloye, M.D. Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Ann. Appl. Biol. 2020, 177, 282–293. [Google Scholar] [CrossRef]
- Rakhonde, G.Y.; Panda, S.; Ahale, S.R.; Veratiya, A.K.; Deshkar, A.M.; Nayak, L. Role of Microbes and Organic Amendments in Stimulating ISR and SAR in Plant Disease Management. In Advances in Organic Farming; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 491–514. [Google Scholar]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Lal, R. Regenerative agriculture for food and climate. J. Soil Water Conserv. 2020, 75, 123A–124A. [Google Scholar] [CrossRef]
- Mekouar, M.A. Food and Agriculture Organization of the United Nations (FAO). Yearb. Int. Environ. Law 2023, 34, yvae031. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report 2021: Valuing Water; United Nations: Paris, France, 2021. [Google Scholar]
- Abdelzaher, M.; Awad, M.M. Sustainable development goals for the circular economy and the water-food nexus: Full implementation of new drip irrigation technologies in upper Egypt. Sustainability 2022, 14, 13883. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/download/ (accessed on 18 September 2023).
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Sharma, P.; Meena, R.S.; Kumar, S.; Gurjar, D.; Yadav, G.S.; Kumar, S. Growth, yield and quality of cluster bean (Cyamopsis tetragonoloba) as influenced by integrated nutrient management under alley cropping system. Indian J. Agric. Sci. 2019, 89, 1876–1880. [Google Scholar] [CrossRef]
- Singhal, V.; Ghosh, J.; Jinger, D. Cover crop technology–a way towards conservation agriculture: A review. Indian J. Agric. Sci. 2020, 90, 2275–2284. [Google Scholar]
- Yadav, M.R.; Kumar, S.; Lal, M.K.; Kumar, D.; Kumar, R.; Yadav, R.K.; Kumar, S.; Nanda, G.; Singh, J.; Udawat, P. Mechanistic understanding of leakage and consequences and recent technological advances in improving nitrogen use efficiency in cereals. Agronomy 2023, 13, 527. [Google Scholar] [CrossRef]
- Chai, Y.; Miao, C.; Slater, L.; Ciais, P.; Berghuijs, W.R.; Chen, T.; Huntingford, C. Underestimating global land greening: Future vegetation changes and their impacts on terrestrial water loss. One Earth 2025, 8, 101176. [Google Scholar] [CrossRef]
- Harborne, J. Role of secondary metabolites in chemical defence mechanisms in plants. In Ciba Foundation Symposium 154-Bioactive Compounds from Plants: Bioactive Compounds from Plants: Ciba Foundation Symposium 154; Wiley Online Library: Hoboken, NJ, USA, 2007; pp. 126–139. [Google Scholar]
- Riaz, M.; Rafiq, M.; Nawaz, H.H.; Miao, W. Bridging Molecular Insights and Agronomic Innovations: Cutting-Edge Strategies for Overcoming Boron Deficiency in Sustainable Rapeseed Cultivation. Plants 2025, 14, 995. [Google Scholar] [CrossRef]
- Dreistadt, S.H. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide; UCANR Publications: Oakland, CA, USA, 2016; Volume 3359. [Google Scholar]
- Flint, M.L. Pests of the Garden and Small Farm: A Grower’s Guide to Using Less Pesticide; UCANR Publications: Oakland, CA, USA, 2018; Volume 3332. [Google Scholar]
- Martin, F.M.; van Der Heijden, M.G. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef]
- Perveen, S.; Shoaib, A.; Yaqoob, H.S.; Riaz, G.; Rafiq, M.J.P.; Pathology, M.P. Ochrobactrum ciceri and zinc synergy combatting Fusarium verticillioides. Physiol. Mol. Plant Pathol. 2025, 136, 102536. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Ayaz, M.; Zhao, J.-T.; Zhao, W.; Chi, Y.-K.; Ali, Q.; Ali, F.; Khan, A.R.; Yu, Q.; Yu, J.-W.; Wu, W.-C. Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Front. Microbiol. 2024, 15, 1433716. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Bouwman, T.; Andersson, J.; Giller, K. Adapting yet not adopting? Conservation agriculture in Central Malawi. Agric. Ecosyst. Environ. 2021, 307, 107224. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Finney, D.; Buyer, J.; Kaye, J. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 2017, 72, 361–373. [Google Scholar] [CrossRef]
- Romdhane, S.; Spor, A.; Busset, H.; Falchetto, L.; Martin, J.; Bizouard, F.; Bru, D.; Breuil, M.-C.; Philippot, L.; Cordeau, S. Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol. 2019, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Barwant, M.M.; Singh, S. Advances in Cultural Control to Sustainable Management of Insect Pests. In Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2026; pp. 11–23. [Google Scholar]
- Roquyya, G.; Shoaib, A.; Parveen, S.; Rafiq, M. Evaluation of chili pepper varieties for resistance to Alternaria alternata: Growth, biochemical, and post-harvest responses. Microb. Pathog. 2025, 209, 108092. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Nicholls, C.I.; Dinelli, G.; Negri, L. Towards an agroecological approach to crop health: Reducing pest incidence through synergies between plant diversity and soil microbial ecology. npj Sustain. Agric. 2024, 2, 6. [Google Scholar] [CrossRef]
- Al-Musawi, Z.K.; Vona, V.; Kulmány, I.M. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy 2025, 15, 1966. [Google Scholar] [CrossRef]
- Muhyidiyn, I. Restoring Agroecosystem Biodiversity; International Congresses of Turkish Science and Technology Publishing: Merkaz/Sivas, Türkiye, 2025; pp. 854–865. [Google Scholar]
- Kaur, T.; Himshikha; Singh, A.; Brar, S.K.; Kaur, S.; Kaur, J. Enhancing nutrient recycling through regenerative practices under different agroecosystems. In Regenerative Agriculture for Sustainable Food Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 271–301. [Google Scholar]
- Allen, K.C.; Luttrell, R.G.; Sappington, T.W.; Hesler, L.S.; Papiernik, S.K. Frequency and abundance of selected early-season insect pests of cotton. J. Integr. Pest Manag. 2018, 9, 20. [Google Scholar] [CrossRef]
- Hackett, S.C.; Bonsall, M.B. Insect pest control, approximate dynamic programming, and the management of the evolution of resistance. Ecol. Appl. 2019, 29, e01851. [Google Scholar] [CrossRef]
- Rowen, E.K.; Pearsons, K.A.; Smith, R.G.; Wickings, K.; Tooker, J.F. Early-season plant cover supports more effective pest control than insecticide applications. Ecol. Appl. 2022, 32, e2598. [Google Scholar]
- Tindwa, H.J.; Semu, E.W.; Singh, B.R. Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production. Agronomy 2024, 14, 2423. [Google Scholar] [CrossRef]
- Pokharel, S.S.; Yu, H.; Fang, W.; Parajulee, M.N.; Chen, F. Intercropping cover crops for a vital ecosystem service: A review of the biocontrol of insect pests in tea agroecosystems. Plants 2023, 12, 2361. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Ellsworth, P.C. Landscape considerations in pest management: Case study of the Arizona cotton IPM system. In Arthropod Management and Landscape Considerations in Large-Scale Agroecosystems; CABI GB: Oxfordshire, UK, 2024; pp. 44–77. [Google Scholar]
- McMahon, B.J.; Caminade, C.; de Meneghi, D.; Doyle, C.; Garnier, J.; Hitziger, M.; Keune, H.; Kock, R.; Martin, C.; Patterson, G.; et al. Biodiversity Conservation, Ecosystem Services and One Health; Principles of One Health for a Better Planet: Oxfordshire, UK, 2025; p. 146. [Google Scholar]
- Aguilar-Rivera, N.; Presa-Parra, E.; del Carmen Fernández-Juárez, E. Organic amendments as strategies in traditional and conventional agriculture in developing countries. In Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–22. [Google Scholar]
- Michels, A. Regenerative Agriculture Effects on Invertebrate and Bird Communities and Insect-Provided Ecosystem Services; South Dakota State University: Brookings, SD, USA, 2022. [Google Scholar]
- LaCanne, C.E.; Lundgren, J.G. Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ 2018, 6, e4428. [Google Scholar] [CrossRef]
- Kumari, M.; Srivastava, A.; Sah, S.B. Biological control of agricultural insect pests. In Insecticides-Impact and Benefits of Its Use for Humanity; IntechOpen: London, UK, 2022. [Google Scholar]
- Bryan, M.D.; Dysart, R.J.; Burger, T.L. Releases of Introduced Parasites of the Alfalfa Weevil in the United States, 1957–1988; US Department of Agriculture, Animal and Plant Health Inspection Service: Riverdale, MD, USA, 1993. [Google Scholar]
- Samal, I.; Bhoi, T.K.; Mahanta, D.K.; Komal, J.; Pradhan, A.K. Sustainable Plant Protection Measures in Regenerative Farming. In Regenerative Agriculture for Sustainable Food Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 387–421. [Google Scholar]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Mishra, M.; Gaurav, K. Historical Perspectives on Biopesticides. In The Role of Entomopathogenic Fungi in Agriculture; CRC Press: Boca Raton, FL, USA, 2025; pp. 32–44. [Google Scholar]
- Isman, M.B. Pesticides based on plant essential oils: Phytochemical and practical considerations. In Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization; ACS Publications: Washington, DC, USA, 2016; pp. 13–26. [Google Scholar]
- Sarmah, K.; Anbalagan, T.; Marimuthu, M.; Mariappan, P.; Angappan, S.; Vaithiyanathan, S. Innovative formulation strategies for botanical-and essential oil-based insecticides. J. Pest Sci. 2025, 98, 1–30. [Google Scholar] [CrossRef]
- Ahmed, N.; Alam, M.; Saeed, M.; Ullah, H.; Iqbal, T.; Al-Mutairi, K.A.; Shahjeer, K.; Ullah, R.; Ahmed, S.; Ahmed, N.A.A.H. Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In Global Decline of Insects; IntechOpen: London, UK, 2021. [Google Scholar]
- Chaudhary, S.; Yadav, S.K.; Verma, P.; Sagar, S.; Lal, M. Botanical Insecticides for Crop Protection: Major Classes and Possible Mechanisms of Action. In Insecticides in Pest Control—Impact, Challenges and Strategies; IntechOpen Limited: London, UK, 2024. [Google Scholar]
- Kumar, S.; Mahapatro, G.K.; Yadav, D.K.; Tripathi, K.; Koli, P.; Kaushik, P.; Sharma, K.; Nebapure, S. Essential oils as green pesticides: An overview. Indian J. Agric. Sci. 2022, 92, 1298–1305. [Google Scholar] [CrossRef]
- Yadav, S.P.S.; Sharma, R.; Ghimire, N.; Yadav, B. Chapter-4 History, Presence and Perspective of Botanical Insecticides against Insect Pests. Adv. Agric. Entomol. 2022, 18, 49–69. [Google Scholar]
- Parrella, M.Á. Biological control in ornamentals: Status and perspectives. Bull. SROP 1990, 13, 161–168. [Google Scholar]
- Rabb, R.; Stinner, R.; van den Bosch, R. Conservation and Augmentation of Natural Enemies; Academic Press: New York, NY, USA, 1976; Volume 233. [Google Scholar]
- Doutt, R.L.; Nakata, J. The Rubus leafhopper and its egg parasitoid: An endemic biotic system useful in grape-pest management. Environ. Entomol. 1973, 2, 381–386. [Google Scholar] [CrossRef]
- Van Emden, H.F. Pest and Vector Control; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Majerus, M.; Strawson, V.; Roy, H. The potential impacts of the arrival of the harlequin ladybird, Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae), in Britain. Ecol. Entomol. 2006, 31, 207–215. [Google Scholar] [CrossRef]
- Jeffries, D.L.; Chapman, J.; Roy, H.E.; Humphries, S.; Harrington, R.; Brown, P.M.; Handley, L.-J.L. Characteristics and drivers of high-altitude ladybird flight: Insights from vertical-looking entomological radar. PLoS ONE 2013, 8, e82278. [Google Scholar]
- Silvestri, L.C.; Mason, P.G. Improved access to biological control genetic resources: Navigating through the Convention on Biological Diversity and the Nagoya Protocol. BioControl 2023, 68, 299–310. [Google Scholar] [CrossRef]
- Dwivedi, S.; Tomer, A. Mass production and quality of biological control agents for pest management. In Recent Developments in Microbial Technologies; Springer: Singapore, 2021; pp. 243–266. [Google Scholar]
- Cortez-Madrigal, H.; Gutiérrez-Cárdenas, O.G. Enhancing biological control: Conservation of alternative hosts of natural enemies. Egypt. J. Biol. Pest Control 2023, 33, 25. [Google Scholar]
- Smagghe, F.; Spooner-Hart, R.; Chen, Z.-H.; Donovan-Mak, M. Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biol. Control 2023, 186, 105337. [Google Scholar]
- Van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar]
- Pradhan, G.; Meena, R.S.; Kumar, S.; Lal, R. Utilizing industrial wastes as compost in wheat-rice production to improve the above and below-ground ecosystem services. Agric. Ecosyst. Environ. 2023, 358, 108704. [Google Scholar]
- Meena, R.S.; Pradhan, G.; Kumar, S.; Lal, R. Using industrial wastes for rice-wheat cropping and food-energy-carbon-water-economic nexus to the sustainable food system. Renew. Sustain. Energy Rev. 2023, 187, 113756. [Google Scholar]
- Weintraub, P.; Berlinger, M. Physical control in greenhouses and field crops. In Insect Pest Management: Field and Protected Crops; Springer: Berlin/Heidelberg, Germany, 2004; pp. 301–318. [Google Scholar]
- Weintraub, P.G. Physical control: An important tool in pest management programs. In Biorational Control of Arthropod Pests: Application and Resistance Management; Springer: Dordrecht, The Netherlands, 2009; pp. 317–324. [Google Scholar]
- Nissen, R.; George, A.; Waite, G.; Lloyd, A.; Hamacek, E. Innovative new production systems for low-chill stonefruit in Australia and South-East Asia: A review. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2004; pp. 247–251. [Google Scholar]
- Franck, A.; Bar-Joseph, M. Use of netting and whitewash spray to protect papaya plants against Nivun Haamir (NH)-dieback disease. Crop Prot. 1992, 11, 525–528. [Google Scholar]
- Benoit, D.L.; Vincent, C.; Chouinard, G. Management of weeds, apple sawfly (Hoplocampa testudinea Klug) and plum curcuclio (Conotrachelus nenuphar Herbst) with cellulose sheeting. Crop Prot. 2006, 25, 331–337. [Google Scholar]
- Akotsen-Mensah, C.; Boozer, R.T.; Fadamiro, H.Y. Influence of orchard weed management practices on soil dwelling stages of plum curculio, Conotrachelus nenuphar (Coleoptera: Curculionidae). Fla. Entomol. 2012, 95, 882–889. [Google Scholar] [CrossRef]
- Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2021, 2, 1872–1895. [Google Scholar] [CrossRef]
- Kumar, R.; Rai, B.; Gahlyan, S.; Kumar, G. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications. Express Polym. Lett. 2021, 15, 104–120. [Google Scholar] [CrossRef]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Unruh, T.; Knight, A.; Upton, J.; Glenn, D.; Puterka, G. Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. J. Econ. Entomol. 2000, 93, 737–743. [Google Scholar]
- Arif, M.J.; Gogi, M.D.; Sufyan, M.; Nawaz, A.; Sarfraz, R.M. Principles of insect pests management. In Sustainable Insect Pest Management; University of Agriculture Faisalabad: Faisalabad, Pakistan, 2017; pp. 17–47. [Google Scholar]
- Kumar, B.; Omkar. Insect Pest Management; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Bhattacharyya, B.; Gogoi, I.; Das, P.P.G.; Kalita, B. Management of agricultural insect pests for sustainable agriculture and environment. In Sustainable Agriculture and the Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 161–193. [Google Scholar]
- Alaphilippe, A.; Capowiez, Y.; Severac, G.; Simon, S.; Saudreau, M.; Caruso, S.; Vergnani, S. Codling moth exclusion netting: An overview of French and Italian experiences. IOBC-WPRS Bull. 2016, 112, 31–35. [Google Scholar]
- Marshall, A.T.; Beers, E.H. Net enclosures disrupt codling moth dispersal not establishment. Agric. For. Entomol. 2023, 25, 130–138. [Google Scholar]
- Pajač Živković, I.; Jemrić, T.; Fruk, M.; Buhin, J.; Barić, B. Influence of different netting structures on codling moth and apple fruit damages in northwest Croatia. Agric. Conspec. Sci. 2016, 81, 99–102. [Google Scholar]
- Erler, F.; Tosun, H.S. Mass-trapping the codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), using newly designed light trap reduces fruit damage in apple orchards. J. Plant Dis. Prot. 2023, 130, 795–807. [Google Scholar] [CrossRef]
- Kilani-Morakchi, S.; Morakchi-Goudjil, H.; Sifi, K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Front. Agron. 2021, 3, 676208. [Google Scholar] [CrossRef]
- Subramanya, S.; Sumanth, K.; Gupta, P.K.; Chayapathy, V.; Keshamma, E.; Murugan, K. Formulation of green nanoemulsions for controlling agriculture insects. In Bio-Based Nanoemulsions for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–176. [Google Scholar]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Divekar, P. Botanical pesticides: An eco-friendly approach for Management of Insect Pests. Acta Sci. Agric. 2023, 7, 75–81. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Dötterl, S.; Gershenzon, J. Chemistry, biosynthesis and biology of floral volatiles: Roles in pollination and other functions. Nat. Prod. Rep. 2023, 40, 1901–1937. [Google Scholar] [CrossRef]
- Syed, Z.; Leal, W.S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. USA 2008, 105, 13598–13603. [Google Scholar] [CrossRef]
- Dennis, E.J.; Goldman, O.V.; Vosshall, L.B. Aedes aegypti mosquitoes use their legs to sense DEET on contact. Curr. Biol. 2019, 29, 1551–1556.e1555. [Google Scholar] [CrossRef]
- Bell, H.A.; Cuthbertson, A.G.; Audsley, N. The potential use of allicin as a biopesticide for the control of the house fly, Musca domestica L. Int. J. Pest Manag. 2016, 62, 111–118. [Google Scholar]
- Sayed, S.; Soliman, M.M.; Al-Otaibi, S.; Hassan, M.M.; Elarrnaouty, S.-A.; Abozeid, S.M.; El-Shehawi, A.M. Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Kaur, R.; Kaur, S. Essential oil used as larvicides and ovicides. In Essential Oils: Extraction Methods and Applications; Wiley: Hoboken, NJ, USA, 2023; pp. 427–442. [Google Scholar]
- Koshariya, A.K.; Sharma, N.; Satapathy, S.N.; Thilagam, P.; Akanksha, L.T.; Laxman, T.; Rai, S.; Singh, B. Safeguarding agriculture: A comprehensive review of plant protection strategies. Int. J. Environ. Clim. Change 2023, 13, 272–281. [Google Scholar]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Bottrell, D.; Schoenly, K. Integrated pest management for resource-limited farmers: Challenges for achieving ecological, social and economic sustainability. J. Agric. Sci. 2018, 156, 408–426. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, M.S. Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Hessel, R.; Wyseure, G.; Panagea, I.S.; Alaoui, A.; Reed, M.S.; Van Delden, H.; Muro, M.; Mills, J.; Oenema, O.; Areal, F. Soil-improving cropping systems for sustainable and profitable farming in Europe. Land 2022, 11, 780. [Google Scholar] [CrossRef]
- Damalas, C.A. Safe food production with minimum and judicious use of pesticides. In Food Safety: Basic Concepts, Recent Issues, and Future Challenges; Springer: Cham, Switzerland, 2016; pp. 43–55. [Google Scholar]
- Sookhtanlou, M.; Allahyari, M.S.; Surujlal, J. Health risk of potato farmers exposed to overuse of chemical pesticides in Iran. Saf. Health Work 2022, 13, 23–31. [Google Scholar]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Sekaran, U.; Franzluebbers, A.J. Cover cropping and conservation tillage improve soil health in the southeastern United States. Agron. J. 2022, 114, 296–316. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R.; Vieli, L.; Vazquez, L.L. Agroecology and the limits to resilience: Extending the adaptation capacity of agroecosystems to drought. Front. Agron. 2025, 7, 1534370. [Google Scholar] [CrossRef]
- Mossa, A.-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Indu; Baghel, A.S.; Bhardwaj, A.; Ibrahim, W. Optimization of pesticides spray on crops in agriculture using machine learning. Comput. Intell. Neurosci. 2022, 2022, 9408535. [Google Scholar] [CrossRef]
- Khare, B.K. AI and Emerging Technologies for Precision Agriculture: A Survey. In Optimizing AI Applications for Sustainable Agriculture; Wiley: Hoboken, NJ, USA, 2025; pp. 1–32. [Google Scholar]
- Bagdatli, M.C.; Elsheikh, W. Estimation of Horticulture Area Expansion and Crop Yield Quantification by Using Remotely Sensed Data and Geographic Information Systems. In Novel Approach to Sustainable Temperate Horticulture; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–23. [Google Scholar]
- Koumoulidis, D.; Efthimiadou, A.; Katsenios, N.; Hadjimitsis, D. A Review: Soil properties mapping estimation using remote and proximal sensing data. In Proceedings of the Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), Paphos, Cyprus, 8–9 April 2024; pp. 59–72. [Google Scholar]
- Benaissa, O.; Taoussi, M.; Legrifi, I.; Belabess, Z.; Lazraq, A.; Lahlali, R. Strengthening Tomato Resilience: Harnessing Microbial Consortia to Overcome Biotic and Abiotic Stress. Phyton 2025, 94, 1453. [Google Scholar] [CrossRef]
- Benaissa, O.; Leghrifi, I.; Laasli, S.-E.; Bourak, K.; Sagouti, T.; Belabess, Z.; Lahlali, R. The role of microbial consortia in controlling soil-borne pathogens. In Plant Stress Tolerance; CRC Press: Boca Raton, FL, USA, 2025; pp. 318–338. [Google Scholar]
- Hanamasagar, Y.; Ramesha, N.; Mahapatra, S.; Panigrahi, C.K.; Vidhya, C.; Agnihotri, N.; Satapathy, S.N. Advancing RNAi for sustainable insect management: Targeted solutions for eco-friendly pest control. J. Exp. Agric. Int. 2024, 46, 740–775. [Google Scholar] [CrossRef]
- Suvarna, C.; Saikumar, P. Advancing Breeding Strategies for Mechanical Harvesting-Optimized Cotton Cultivars in Indian Agro-Climatic Zones. In Advances in Genetics and Plant Breeding (Volume-22); Chapter-3 Current Understanding of Genome Editing Techniques & Its Applications in Plant Breeding; AkiNik Publications: New Delhi, India, 2023; p. 31. Available online: https://www.researchgate.net/publication/377267925_Advancing_Breeding_Strategies_for_Mechanical_Harvesting-Optimized_Cotton_Cultivars_in_Indian_Agro-Climatic_Zones (accessed on 23 September 2023).
- Sookhtanlou, M.; Allahyari, M.S. Farmers’ health risk and the use of personal protective equipment (PPE) during pesticide application. Environ. Sci. Pollut. Res. 2021, 28, 28168–28178. [Google Scholar] [CrossRef] [PubMed]


| Group | Plant Source | Active Compound | Action | Use in Regenerative Systems |
|---|---|---|---|---|
| Neem products | Azadirachta indica | Azadirachtin | Growth inhibition | Broad, low-resistance control |
| Pyrethrum | Chrysanthemum cinerariifolium | Pyrethrins | Neurotoxicity | Targeted insect control |
| Essential oils | Thymus, Mentha, Cymbopogon, Eucalyptus, Citrus spp. | Terpenoids | Repellent/fumigant | Short-term suppression |
| Alkaloid extracts | Nicotiana tabacum, Capsicum spp. | Nicotine, capsaicin | Deterrence | Localized use |
| Rotenoid plants | Derris, Lonchocarpus spp. | Rotenone | Respiration inhibition | Limited historical use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hassan, M.A.; Raza, A.; Bashir, S.; Song, J.; Sajad, S.; Khan, A.; Malik, L.; Awan, Z.A. Regenerative Agriculture and Sustainable Plant Protection: Enhancing Resilience Through Natural Strategies. Plants 2026, 15, 113. https://doi.org/10.3390/plants15010113
Hassan MA, Raza A, Bashir S, Song J, Sajad S, Khan A, Malik L, Awan ZA. Regenerative Agriculture and Sustainable Plant Protection: Enhancing Resilience Through Natural Strategies. Plants. 2026; 15(1):113. https://doi.org/10.3390/plants15010113
Chicago/Turabian StyleHassan, Muhammad Ahmad, Ali Raza, Saba Bashir, Jueping Song, Shoukat Sajad, Ahsan Khan, Laraib Malik, and Zoia Arshad Awan. 2026. "Regenerative Agriculture and Sustainable Plant Protection: Enhancing Resilience Through Natural Strategies" Plants 15, no. 1: 113. https://doi.org/10.3390/plants15010113
APA StyleHassan, M. A., Raza, A., Bashir, S., Song, J., Sajad, S., Khan, A., Malik, L., & Awan, Z. A. (2026). Regenerative Agriculture and Sustainable Plant Protection: Enhancing Resilience Through Natural Strategies. Plants, 15(1), 113. https://doi.org/10.3390/plants15010113

