Assessment of Genetic Diversity in Quinoa Landraces Cultivated in the Ecuadorian Highlands Since the Early 1980s
Abstract
1. Introduction
2. Results
2.1. Genetic Diversity
2.2. Genetic Structure
2.3. Genetic Relationships Among Genotypes
3. Discussion
3.1. Genetic Diversity
3.2. Genetic Structure and Relationships Among Genotypes
4. Materials and Methods
4.1. Plant Material
4.2. DNA Extraction and Microsatellite Genotyping
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonjanic, A. la Quinua: Cultivo Milenario Para Contribuir a la Seguridad Alimentaria Mundial; Oficina Regional Para el Caribe y las Américas: Santiago, Chile, 2011; p. 66. [Google Scholar]
- Ain, Q.T.; Siddique, K.; Bawazeer, S.; Ali, I.; Mazhar, M.; Rasool, R.; Mubeen, B.; Ullah, F.; Unar, A.; Jafar, T.H. Adaptive mechanisms in quinoa for coping in stressful environments. PeerJ 2022, 11, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Bazile, D.; Fuentes, F.; Mujica, A. Historical perspectives and domestication. Parte 1. In Quinoa Botany Production and Uses; Bhargava, A., Srivastava, S., Eds.; CABI: Wallingford, UK, 2013; pp. 16–35. [Google Scholar]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.A.; Pratt, D.B.; Pratt, C.; Nelson, P.T.; Stevens, M.R.; Jellen, E.N.; Coleman, C.M.; Fairbanks, D.J.; Bonifacio, A.; Maughan, P.J. Assessment of genetic diversity in the USDA and CIP-FAO International nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet. Resour. 2007, 5, 82–95. [Google Scholar] [CrossRef]
- Hinojosa, L.; González, J.A.; Barrios-Masias, F.H.; Fuentes, F.; Murphy, K. Quinoa Abiotic Stress Responses: A Review. Plants 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Bazile, D.; Jacobsen, S.E.; Verniau, A. The global expansion of quinoa: Trends and Limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef]
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Sec. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Peralta, E.; Mazón, N. La Quinua en Ecuador. Capítulo 5.3. In Estado del Arte de la Quinua En El Mundo En 2013; Bazile, D., Bertero, D., Nieto, C., Eds.; FAO: Santiago, Chile; CIRAD: Montpillier, Francia, 2014; pp. 462–746. [Google Scholar]
- Tapia, C.; Peralta, E.; Mazón, N. Colección núcleo de quinua (Chenopodium quinoa Willd.) del Banco de Germoplasma del INIAP, Ecuador. Axioma 2015, 12, 5–9. [Google Scholar]
- Scanlin, L.; Lewis, K.A.; Dugger, P. Chapter 19—Quinoa as a Sustainable Protein Source: Production, Nutrition, and Processing. In Sustainable Protein Sources, 2nd ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 381–398. [Google Scholar] [CrossRef]
- FAO. Future Smart Food. In Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia, Executive Summary; Food & Agriculture Organization: Bangkok, Thailand, 2018; p. 36. [Google Scholar]
- Salazar, J.; De Lourdes Torres, M.; Gutierrez, B.; Torres, A.F. Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: Implications for conservation and breeding. Euphytica 2019, 215, 60. [Google Scholar] [CrossRef]
- Yugcha, T. Zonificación Potencial del Cultivo de la Quinua en el Callejón Interandino del Ecuador; Ministerio de Agricultura y Ganadería (MAG): Quito, Ecuador, 1996; p. 10. [Google Scholar]
- Hernández Medina, P.; Hernández Maqueda, R.; Gavilanes, P.; Marín Quevedo, K.P. Culture and Healthy Lifestyle: Factors Influencing the Decision to Buy Quinoa in the City of Latacunga in Cotopaxi Province, Ecuador. J. Food Prod. Mark. 2020, 26, 440–455. [Google Scholar] [CrossRef]
- Villacrés, E.; Peralta, E.; Egas, L.; Mazón, N. Potencial Agroindustrial de la Quinua. Boletín Divulgativo No. 146. Departamento de Nutrición y Calidad de los Alimentos; Estación Experimental Santa Catalina, INIAP: Quito, Ecuador, 2011; p. 32. [Google Scholar]
- Patrimonio Alimentario. Ministerio de Cultura y Patrimonio. Fascículo 4. La Quinua/ Grano Nutritivo de Origen Nativo. El Capulí/ Fruta Dulce de la Sierra Ecuatoriana. Available online: https://www.culturaypatrimonio.gob.ec/wp-content/uploads/downloads/2013/11/4-PA-corregido.pdf (accessed on 8 October 2024).
- Salcedo, S.; Santiváñez, T. Recetario Internacional de la Quinua: Tradición y Vanguardia; FAO: Santiago, Chile, 2014; p. 29. [Google Scholar]
- Ruas, P.; Bonifacio, A.; Ruas, C.; Fairbanks, D.; Anderson, W. Genetic relationship among 19 accessions of six species of Chenopodium L. by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 1999, 105, 25–32. [Google Scholar] [CrossRef]
- Del Castillo, C.; Winkel, T.; Mahy, G.; Bizoux, J.P. Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet. Resour. Crop Evol. 2007, 54, 897–905. [Google Scholar] [CrossRef]
- Morillo, A.C.; Castro, M.; Morillo, Y. Caracterización de la diversidad genética de una colección de quinua (Chenopodium quinoa Willd). Biotec. Sect. Agrop. Agroindust. 2017, 15, 49–56. [Google Scholar]
- Saad-Allah, K.M.; Youssef, M.S. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiol. Mol. Biol. Plants 2018, 24, 617–629. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Isla, M.T. Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and Highland accessions. J. Plant Breed. Crop Sci. 2009, 1, 210–216. [Google Scholar]
- Chura, E.; Mujica, A.; Flores, A.L. Determinación del parentesco y distancias genéticas en variedades nativas y parientes silvestres de quinua (Chenopodium quinoa Willd.) por métodos moleculares. Rev. Investig. Altoandinas 2014, 16, 33–36. [Google Scholar] [CrossRef]
- Coles, N.D.; Coleman, C.E.; Christensen, S.A.; Jellen, E.N.; Stevens, M.R.; Bonifacio, A.; Rojas-Beltran, J.A.; Fairbanks, D.J.; Maughan, P.J. Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci. 2005, 168, 439–447. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, M.; Liu, Y.; Lv, Y.; Zhou, L.; Lu, H.; Liang, S.; Bao, H.; Zhao, H. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genom. 2017, 18, 685. [Google Scholar] [CrossRef]
- Maughan, P.J.; Bonifacio, A.; Jellen, E.N.; Stevens, M.R.; Coleman, C.E.; Ricks, M.; Mason, S.L.; Jarvis, D.E.; Gardunia, B.W.; Fairbanks, D.J. Genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor. Appl. Genet. 2004, 109, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.L.; Stevens, M.R.; Jellen, E.N.; Bonifacio, A.; Fairbanks, D.J.; Coleman, C.E.; McCarty, R.R.; Rasmussen, A.G.; Maughan, P.J. Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci. 2005, 45, 1618–1630. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Kopp, O.R.; Jellen, E.N.; Mallory, M.A.; Pattee, J.; Bonifacio, A.; Coleman, C.E.; Stevens, M.R.; Fairbanks, D.J.; Maughan, P.J. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J. Genet. 2008, 87, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, F.F.; Martínez, E.A.; Hinrichsen, P.V.; Jellen, E.R.; Maughan, P.J. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv. Genet. 2009, 10, 369–377. [Google Scholar] [CrossRef]
- Fuentes, F.F.; Bazile, D.; Bhargava, A.; Martínez, E.A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci. 2012, 150, 702–716. [Google Scholar] [CrossRef]
- Costa, S.; Manifesto, M.; Bramardi, S.; Bertero, D. Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conservat. Genet. 2012, 13, 1027–1038. [Google Scholar] [CrossRef]
- Romero, M.; Mujica, A.; Pineda, E.; Ccamapaza, Y.; Zavalla, N. Genetic identity based on simple sequence repeat (SSR) markers for Quinoa (Chenopodium quinoa Willd.). Cienc. Investig. Agrar. 2019, 46, 166–178. [Google Scholar] [CrossRef]
- Morillo, A.C.; Manjarres-Hernández, E.H.; Reyes, W.L.; Morillo, Y. Molecular characterization of intrapopulation genetic diversity in Chenopodium quinoa (Chenopodiaceae). Genet. Mol. Res. 2020, 19, gmr18667. [Google Scholar] [CrossRef]
- Manjarres-Hernández, E.H.; Morillo, A.C. Genetic diversity of Colombian quinoa (Chenopodium quinoa Willd.): Implications for breeding programs. Genet. Resour. Crop Evol. 2022, 69, 2447–2458. [Google Scholar] [CrossRef]
- Souri Laki, E.; Rabiei, B.; Marashi, H.; Jokarfardl, V.; Börner, A. Association study of morpho-phenological traits in quinoa (Chenopodium quinoa Willd.) using SSR markers. Sci. Rep. 2024, 14, 5991. [Google Scholar] [CrossRef]
- Delgado, H.; Tapia, C.; Manjarres-Hernández, E.H.; Borja, E.; Naranjo, E.; Martín, J.P. Phenotypic Diversity of Quinoa Landraces Cultivated in the Ecuadorian Andean Region: In Situ Conservation and Detection of Promising Accessions for Breeding Programs. Agriculture 2024, 14, 336. [Google Scholar] [CrossRef]
- Gandarillas, H.; Nieto, C.; Castillo, R. Razas de Quinua en Ecuador. Boletín Técnico No.67. Estación Experimental Santa Catalina; Instituto Nacional de Investigaciones Agropecuarias: Quito, Ecuador, 1989; p. 22. [Google Scholar]
- Winkel, T.; Aguirre, M.G.; Arizio, C.M.; Aschero, C.A.; Babot, M.D.P.; Benoit, L.; Burgarella, C.; Costa-Tártara, S.; Dubois, M.-P.; Gay, L.; et al. Discontinuities in quinoa biodiversity in the dry Andes: An 18-century perspective based on allelic genotyping. PLoS ONE 2018, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H. Allozyme variation and morphological relationships of Chenopodium hircinum (s.1.). Syst. Bot. 1988, 13, 215–228. [Google Scholar] [CrossRef]
- Zurita-Silva, A.; Fuentes, F.; Zamora, P.; Jacobsen, S.E.; Schwember, A.R. Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Mol. Breed. 2014, 34, 13–30. [Google Scholar] [CrossRef]
- Gómez, L.; Aguilar, E. Guía de Cultivo de la Quinua; Organización de las Naciones Unidas para la Alimentación; la Agricultura, Universidad Nacional Agraria La Molina, Programa de Investigación; Proyección Social de Cereales; Granos Nativos Facultad de Agronomía: Lima, Peru, 2016; p. 130. [Google Scholar]
- Balaguera, E.; Beleño, S. Caracterización Molecular y Agromorfológica de Accesiones de Quinua (Chenopodium quinoa Willd.) en Boyacá. Bachelor’s Thesis, Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia, 2019. [Google Scholar]
- DENAREF (Departamento Nacional de Recursos Fitogenéticos); Banco Nacional de Germoplasma. Estación Experimental Santa Catalina; INIAP: Quito, Ecuador, 2016; p. 34. [Google Scholar]
- Kolano, B.; McCann, J.; Orzechowska, M.; Siwinskaa, D.; Temsch, E.; Weiss-Schneeweiss, H. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol. Phylogenet. Evol. 2016, 100, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Monteros, A. Rendimientos de Quinua en el Ecuador. In Dirección de Análisis y Procesamiento de la Información Coordinación General del Sistema de Información Nacional Ministerio de Agricultura; Ganadería, Acuacultura y Pesca: Quito, Ecuador, 2016; p. 9. [Google Scholar]
- Hinojosa, L.; Leguizamo, A.; Carpio, C.; Muñoz, D.; Mestanza, C.; Ochoa, J.; Castillo, C.; Murillo, A.; Villacréz, E.; Monar, C.; et al. Quinoa in Ecuador: Recent Advances under Global Expansion. Plants 2021, 10, 298. [Google Scholar] [CrossRef]
- Peralta, E.; Mazón, N.; Murillo, Á.; Villacrés, E.; Rivera, M. Catalogó de Variedades Mejoradas de Granos Andino: Chocho, Quinua, Amaranto, Sangorache, Para la Sierra Ecuatoriana. Publicación Miscelánea No. 151. Tercera Edición. Programa Nacional de Leguminosas y Granos Andinos; Estación Experimental Santa Catalina INIAP: Quito, Ecuador, 2013; p. 63. [Google Scholar]
- Costa, S. Variabilidad genética de Chenopodium quinoa Willd. en el Noroeste Argentino y su Relación Con la Dispersión de la Especie. Ph.D. Thesis, Universidad Nacional de la Plata, Buenos Aires, Argentina, 2014. [Google Scholar]
- Tapia, E.; Rosas, A. Agrobiodiversidad en La Encañada. Sistematización de las Experiencias de Conservación in Situ de los Recursos Fitogenéticos, Cajamarca; Condesan, Aspaderuc, CIP, GTZ: Cajamarca, Perú, 1998; p. 26. [Google Scholar]
- INABIO (Instituto Nacional de Biodiversidad). Metas AICHI. 13: Diversidad Genética Mantenida. 2019. Available online: http://inabio.biodiversidad.gob.ec/2019/01/30/13-diversidad-genetica-mantenida/ (accessed on 5 November 2024).
- Mazón, N.; Rivera, M.; Peralta, E.; Estrella, J.; Tapia, C. Catálogo del Banco de Germoplasma de Quinua (Chenopodium quinoa Willd.); de INIAP-Ecuador: Quito, Ecuador, 2001; p. 97. [Google Scholar]
- Peakal, R.; Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A. Blood samples: Probability of discrimination. J. Forensic Sci. Soc. 1972, 12, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Martín del Puerto, M.; Martínez García, F.; Mohanty, A.; Martín, J.P. Genetic Diversity in Relict and Fragmented Populations of Ulmus glabra Hudson in the Central System of the Iberian Peninsula. Forests 2017, 8, 143. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomy Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction sites. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Worthington, M.; Soleri, D.; Aragón-Cuevas, F.; Gepts, P. Genetic composition and spatial distribution of farmer-managed Phaseolus bean plantings: An example from a village in Oaxaca, Mexico. Crop Sci. 2012, 52, 1721–1735. [Google Scholar] [CrossRef]
No._Locus | Na | Ne | Ng | Ho | He | I | C | D |
---|---|---|---|---|---|---|---|---|
1_QAAT022 | 19 | 4.725 | 67 | 0.298 | 0.788 | 1.987 | 0.127 | 0.873 |
2_QAAT024 | 14 | 3.647 | 36 | 0.312 | 0.726 | 1.636 | 0.159 | 0.841 |
3_QAAT050 | 16 | 6.621 | 69 | 0.347 | 0.849 | 2.144 | 0.072 | 0.928 |
4_QAAT070 | 12 | 3.756 | 31 | 0.291 | 0.734 | 1.566 | 0.159 | 0.841 |
5_QAAT076 | 11 | 2.980 | 35 | 0.318 | 0.664 | 1.503 | 0.203 | 0.797 |
6_QAAT097 | 16 | 4.640 | 59 | 0.339 | 0.784 | 1.852 | 0.112 | 0.888 |
7_QAAT100 | 24 | 7.787 | 96 | 0.348 | 0.872 | 2.375 | 0.066 | 0.934 |
8_QAAT106 | 12 | 3.226 | 30 | 0.262 | 0.690 | 1.509 | 0.201 | 0.799 |
Mean | 15.5 | 4.673 | 52.9 | 0.314 | 0.763 | 1.821 | - | - |
Cumulative | 124 | - | 423 | - | - | - | 0.0000000699 | 0.9999999301 |
Provinces (Collection) | G | Na | Ne | Ho | He | I |
---|---|---|---|---|---|---|
Chimborazo (A) | 72 | 8.88 | 4.345 | 0.158 *** | 0.725 | 1.622 |
Cotopaxi (A) | 79 | 10.38 | 4.816 | 0.261 | 0.771 | 1.828 |
Imbabura (A) | 77 | 9.88 | 4.126 | 0.258 | 0.750 | 1.693 |
Mean Collection A | 76.0 | 9.71 | 4.429 | 0.226 * | 0.748 | 1.714 |
Chimborazo (B) | 597 | 12.38 | 4.222 | 0.383 *** | 0.712 | 1.649 |
Cotopaxi (B) | 98 | 10.00 | 5.078 | 0.268 | 0.791 | 1.825 |
Imbabura (B) | 132 | 9.00 | 3.861 | 0.193 | 0.724 | 1.576 |
Mean Collection B | 275.7 | 10.46 | 4.387 | 0.281 * | 0.742 | 1.683 |
Chimborazo_A | Cotopaxi_A | Imbabura_A | Chimborazo_B | Cotopaxi_B | Imbabura_B | |
---|---|---|---|---|---|---|
Chimborazo_A | --- | |||||
Cotopaxi_A | 0.332 | --- | ||||
Imbabura_A | 0.200 | 0.201 | --- | |||
Chimborazo_B | 0.069 | 0.451 | 0.265 | --- | ||
Cotoplaxi_B | 0.214 | 0.159 | 0.207 | 0.207 | --- | |
Imbabura_B | 0.238 | 0.280 | 0.122 | 0.221 | 0.113 | --- |
Provinces (Collection) | Cluster 1 | Cluster 2 | Not Assigned |
---|---|---|---|
Chimborazo (A) | 15 (20.5%) | 50 (68.5%) | 8 (11.0%) |
Cotopaxi (A) | 73 (92.4%) | 3 (3.8%) | 3 (3.8%) |
Imbabura (A) | 67 (87.0%) | 6 (7.8%) | 4 (5.2%) |
Chimborazo (B) | 60 (10.0%) | 507 (84.2%) | 35 (5.8%) |
Cotopaxi (B) | 61 (61.6%) | 32 (32.3%) | 6 (6.1%) |
Imbabura (B) | 114 (83.2%) | 18 (13.1%) | 5 (3.6%) |
Total | 390 (36.6%) | 616 (57.7%) | 61(5.7%) |
Na | Ne | Ho | He | I | |
---|---|---|---|---|---|
Cluster 1 | 13.63 a | 4.672 a | 0.233 a | 0.776 a | 1.832 a |
Cluster 2 | 12.25 a | 4.144 a | 0.364 b | 0.695 a | 1.591 a |
Mean | 12.94 | 4.408 | 0.298 | 0.736 | 1.711 |
No._Locus a | Forward Sequence (5′-3′) Reverse Sequence (5′-3′) | Linkage Group b | Repeat Motif | Fluorescent Dye c | Annealing Temp. (°C) |
---|---|---|---|---|---|
1_QAAT022 | TGGTCGATATAGATGAACCAAA GGAGCCCAGATTGTATCTCA | 23 | (TTA)29 | CFR590 | 52 |
2_QAAT024 | ACCATAACAGCACCCACCTT AGGGATCAATCTTGTTCATTCA | 15 | (ATT)10 | FAM | 52 |
3_QAAT050 | GGCACGTGCTGCTACTCATA ATGGCGAATGGTTAATTTGC | 13 | (ATT)17 | FAM | 52 |
4_QAAT070 | TGAACAGGATCGTCATAGTCAA CGTTCATCATCTGACCCAAT | ND | (ATT)15 | CFG540 | 50 |
5_QAAT076 | GCTTCATGTGTTATAAAATGCCAAT TCTCGGCTTCCCACTAATTT | ND | (ATT)30 | FAM | 50 |
6_QAAT097 | AAATCATTTGACTTTGTAGGTTT GATGTGATAAGGAATAATCCAA | 1 | (AAT)18 | Q570 | 50 |
7_QAAT100 | GGCATCCAGAGGTCAGTCTT GCAATTCTTCCTAATAACAACAACAA | 10 | (ACTACC)8ACTGTT(ATTGTT)23 (ATT)5GTT(ATT)2(ACT)11 | FAM | 50 |
8_QAAT106 | TCAGTAAGATAATACCCATCAGTAAG AAAATCCCCTCTATAATTACCAA | 28 | (TAA)9 | FAM | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, H.; Martín, J.P. Assessment of Genetic Diversity in Quinoa Landraces Cultivated in the Ecuadorian Highlands Since the Early 1980s. Plants 2025, 14, 635. https://doi.org/10.3390/plants14050635
Delgado H, Martín JP. Assessment of Genetic Diversity in Quinoa Landraces Cultivated in the Ecuadorian Highlands Since the Early 1980s. Plants. 2025; 14(5):635. https://doi.org/10.3390/plants14050635
Chicago/Turabian StyleDelgado, Hipatia, and Juan Pedro Martín. 2025. "Assessment of Genetic Diversity in Quinoa Landraces Cultivated in the Ecuadorian Highlands Since the Early 1980s" Plants 14, no. 5: 635. https://doi.org/10.3390/plants14050635
APA StyleDelgado, H., & Martín, J. P. (2025). Assessment of Genetic Diversity in Quinoa Landraces Cultivated in the Ecuadorian Highlands Since the Early 1980s. Plants, 14(5), 635. https://doi.org/10.3390/plants14050635