Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.)
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plants
4.2. Defoliation Treatments
4.3. Plant Responses to Defoliation
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, E.A.; Veas, E.; Jorquera, C.; San Martín, R.; Jara, P. Reintroduction of quinoa into arid Chile: Cultivation of two lowland races under extremely low irrigation. J. Agron. Crop Sci. 2009, 195, 1–10. [Google Scholar] [CrossRef]
- Ruiz-Carrasco, K.; Antognoni, F.; Coulibaly, A.K.; Lizardi, S.; Covarrubias, A.; Martínez, E.A.; Molina-Montenegro, M.A.; Biondi, S.; Zurita-Silva, A. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol. Biochem. 2011, 49, 1333–1341. [Google Scholar] [CrossRef]
- Alandia, G.; Rodriguez, J.; Jacobsen, S.-E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Talabi, A.O.; Vikram, P.; Thushar, S.; Rahman, H.; Ahmadzai, H.; Nhamo, N.; Shahid, M.; Singh, R.K. Orphan Crops: A best fit for dietary enrichment and diversification in highly deteriorated marginal environments. Front. Plant Sci. 2022, 13, 839704. [Google Scholar] [CrossRef] [PubMed]
- Cruces, L.; Callohuari, Y.; Carrera, C. Quinua Manejo Integrado de Plagas. In Estrategias en el Cultivo de la Quinua para Fortalecer el Sistema Agroalimentario en la Zona Andina; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Santiago, Chile, 2016; pp. 1–189. [Google Scholar]
- Stanschewski, C.S.; Rey, E.; Fiene, G.; Craine, E.B.; Wellman, G.; Melino, V.J.; Patiranage, D.S.R.; Johansen, K.; Schmöckel, S.M.; Bertero, D.; et al. Quinoa phenotyping methodologies: An international consensus. Plants 2021, 10, 1759. [Google Scholar] [CrossRef] [PubMed]
- Cranshaw, W.S.; Kondratieff, B.C.; Qian, T. Insect associated with Quinoa, Chenopodium quinoa, in Colorado. J. Kans. Entomol. Soc. 1990, 63, 195–199. [Google Scholar]
- Rasmussen, C.; Lagnaoui, A.; Esbjerg, P. Advances in the knowledge of quinoa pests. Food Rev. Int. 2003, 19, 61–75. [Google Scholar] [CrossRef]
- Gandarillas, A.; Saravia, R.; Plata, G.; Quispe, R.; Ortiz-Romero, R. Principle quinoa pests and diseases. In State of the Art Report of Quinoa in the World in 2013; FAO & CIRAD: Rome, Italy, 2015; pp. 192–215. [Google Scholar]
- Painter, R. Resistance of plants to insects. Annu. Rev. Entomol. 1958, 3, 267–290. [Google Scholar] [CrossRef]
- McNaughton, S.J. Compensatory plant growth as a response to herbivory. Oikos 1983, 40, 329–336. [Google Scholar] [CrossRef]
- Paige, K.N.; Whitham, T.G. Overcompensation in response to mammalian herbivory: The advantage of being eaten. Am. Nat. 1987, 129, 407–416. [Google Scholar] [CrossRef]
- Strauss, S.Y.; Agrawal, A.A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 1999, 14, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Stowe, K.A.; Marquis, R.J.; Hochwender, C.G.; Simms, E.L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 565–595. [Google Scholar] [CrossRef]
- Garcia, L.C.; Eubanks, M.D. Overcompensation for insect herbivory: A review and meta-analysis of the evidence. Ecology 2018, 100, e02585. [Google Scholar] [CrossRef]
- Smith, C. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; pp. 1–423. [Google Scholar]
- Stout, M.; Davis, J. Keys to the increased use of host plant resistance in integrated pest management. In Integrated Pest Management: Innovation-Development Process; Peshin, R., Dhawan, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 163–181. [Google Scholar]
- Ramsden, M.W.; Kendall, S.L.; Ellis, S.A.; Berry, P.M. A review of economic thresholds for invertebrate pests in UK arable crops. Crop Prot. 2017, 96, 30–43. [Google Scholar] [CrossRef]
- Tiffin, P. Mechanisms of tolerance to herbivore damage: What do we know? Evol. Ecol. 2000, 14, 523–536. [Google Scholar] [CrossRef]
- Wnuk, A.; Górny, A.G.; Bocianowski, J.; Kozak, M. Visualizing harvest index in crops. Commun. Biometry Crop Sci. 2013, 8, 48–59. [Google Scholar]
- Bertero, H.D.; De la Vega, A.J.; Correa, G.; Jacobsen, S.E.; Mujica, A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res. 2004, 89, 299–318. [Google Scholar] [CrossRef]
- Curti, R.N.; De la Vega, A.J.; Andrade, A.J.; Bramardi, S.J.; Bertero, H.D. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res. 2014, 166, 46–57. [Google Scholar] [CrossRef]
- Vásquez, S.C.; Del Pozo, A.; Castillo, D.; Matus, I.; Gómez-Pando, L.; Zamudio-Ayala, D.; Mignone, C.M.; Bertero, H.D.; Calderini, D.F. The critical period for yield and grain protein determination in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 2024, 306, 109207. [Google Scholar] [CrossRef]
- Boege, K. Influence of plant ontogeny on compensation to leaf damage. Am. J. Bot. 2005, 92, 1632–1640. [Google Scholar] [CrossRef]
- Hanley, M.E.; Fegan, E.L. Timing of cotyledon damage affects growth and flowering in mature plants. Plant Cell Environ. 2007, 30, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.R.; Welter, S.C. Tolerance to herbivory by a stem boring caterpillar in architecturally distinct maizes and wild relatives. Oecologia 1995, 102, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, H.; Yang, Y. The compensatory tillering in the forage grass Hordeum brevisubulatum after simulated grazing of different severity. Front. Plant Sci. 2020, 11, 792. [Google Scholar] [CrossRef]
- Bustos-Segura, C.; González-Salas, R.; Benrey, B. Early damage enhances compensatory responses to herbivory in wild lima bean. Front. Plant Sci. 2022, 13, 1037047. [Google Scholar] [CrossRef]
- Sadras, V.O. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Res. 2007, 100, 125–138. [Google Scholar] [CrossRef]
- Vargas-Ortiz, E.; Délano-Frier, J.P.; Tiessen, A. The tolerance of grain amaranth (Amaranthus cruentus L.) to defoliation during vegetative growth is compromised during flowering. Plant Physiol. Biochem. 2015, 91, 36–40. [Google Scholar] [CrossRef]
- James, L.E.A. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Martinez, E.; López, J.; Rodríguez, M.J.; Henríquez, K.; Fuentes, F. Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa Willd.) genotypes cultivated in Chile. Food Sci. Technol. 2012, 32, 835–843. [Google Scholar] [CrossRef]
- Fuentes, F.; Paredes-González, X. Nutraceutical Perspectives of Quinoa: Biological Properties and Functional Applications. In State of the Art Report on Quinoa Around the World in 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 286–299. [Google Scholar]
- Mastebroek, H.D.; Limburg, H.; Gilles, T.; Marvin, H.J.P. Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 2000, 80, 152–156. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC–MS profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd.) grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef]
- Kuljanabhagavad, T.; Thongphasuk, P.; Chamulitrat, W.; Wink, M. Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 2008, 69, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Chen, M.S. Inducible direct plant defense against insect herbivores: A review. Insect Sci. 2008, 15, 101–114. [Google Scholar] [CrossRef]
- Zhou, S.; Lou, Y.R.; Tzin, V.; Jander, G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 2015, 169, 1488–1498. [Google Scholar] [CrossRef]
- Karban, R.; Baldwin, I.T. Induced Responses to Herbivory; The University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Sosa-Zúñiga, V.; Brito, V.; Fuentes, F.; Steinfort, U. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 2017, 171, 117–124. [Google Scholar] [CrossRef]
- Batistela, M.J.; Bueno, A.F.; Nishikawa, M.A.N.; Bueno, R.C.O.F.; Hidalgo, G.; Silva, L.; Corbo, E.; Silva, R.B. Re-evaluation of leaf-lamina consumer thresholds for IPM decisions in short-season soybeans using artificial defoliation. Crop Prot. 2012, 32, 7–11. [Google Scholar] [CrossRef]
- Hoback, W.W.; Hayashida, R.; Ziems, J.; Zechmann, B.; Bueno, A.F.; Higley, L.G. Yield response of determinate chipping potato to artificial defoliation. J. Econ. Entomol. 2021, 114, 371–376. [Google Scholar] [CrossRef]
- Poston, F.L.; Pedigo, L.P.; Welch, S.M. Economic injury levels: Reality and practicality. Bull. Entomol. Soc. Am. 1983, 29, 49–53. [Google Scholar] [CrossRef]
- Pedigo, L.P.; Hutchins, S.H.; Higley, L.G. Economic injury levels in theory and practice. Annu. Rev. Entomol. 1986, 31, 341–368. [Google Scholar] [CrossRef]
- Gambín, B.L.; Borrás, L. Resource distribution and the trade-off between seed number and seed weight: A comparison across crop species. Ann. Appl. Biol. 2010, 156, 91–102. [Google Scholar] [CrossRef]
- Dumschott, K.; Wuyts, N.; Alfaro, C.; Castillo, D.; Fiorani, F.; Zurita-Silva, A. Morphological and physiological traits associated with yield under reduced irrigation in Chilean coastal lowland quinoa. Plants 2022, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Bertero, H.D.; Ruiz, R.A. Determination of seed number in sea-level quinoa (Chenopodium quinoa Willd.) cultivars. Eur. J. Agron. 2008, 28, 186–194. [Google Scholar] [CrossRef]
- Vargas-Ortiz, E.; Espitia-Rangel, E.; Tiessen, A.; Délano-Frier, J.P. Grain amaranths are defoliation-tolerant crop species capable of utilizing stem and root carbohydrate reserves to sustain vegetative and reproductive growth after leaf loss. PLoS ONE 2013, 8, e67879. [Google Scholar] [CrossRef]
- Bertero, H.D.; King, R.W.; Hall, A.J. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 1999, 63, 19–34. [Google Scholar] [CrossRef]
- Eustis, A.; Murphy, K.M.; Barrios-Masias, F.H. Leaf gas exchange performance of ten quinoa genotypes under a simulated heat wave. Plants 2020, 9, 81. [Google Scholar] [CrossRef]
- Cruces, L.; de la Peña, E.; De Clercq, P. Seasonal phenology of the major insect pests of quinoa (Chenopodium quinoa Willd.) and their natural enemies in a traditional zone and two new production zones of Peru. Agriculture 2020, 10, 644. [Google Scholar] [CrossRef]
- Chorbadjian, R.A.; Ahumada, M.I.; Urra, F.; Elgueta, M.; Gilligan, T.M. Biogeographical patterns of herbivore arthropods associated with Chenopodium quinoa grown along the latitudinal gradient of Chile. Plants 2021, 10, 2811. [Google Scholar] [CrossRef]
- Rojas, W.; Pinto, M.; Alanoca, C.; Gómez Pando, L.; León-Lobos, P.; Alercia, A.; Diulgheroff, S.; Padulosi, S.; Bazile, D. Quinoa genetic resources and ex situ conservation. In State of the Art Report on Quinoa around the World in 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 56–82. [Google Scholar]
- Poveda, K.; Díaz, M.F.; Ramírez, A. Can overcompensation increase crop production? Ecology 2018, 99, 270–280. [Google Scholar] [CrossRef]
- Poveda, K.; Jimenez, M.I.G.; Kessler, A. The enemy as ally: Herbivore-induced increase in crop yield. Ecol. Appl. 2010, 20, 1787–1793. [Google Scholar] [CrossRef]
- Shelton, A.M.; Hoy, C.W.; Baker, P.B. Response of cabbage head weight to simulated Lepidoptera defoliation. Entomol. Exp. Appl. 1990, 54, 181–187. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Briceño-Pinzón, I.D.; Carreño-Patiño, J.A. Tolerance of spinach (Spinacia oleracea) plants to partial defoliation. Gesunde Pflanz. 2021, 73, 427–434. [Google Scholar] [CrossRef]
- Baldwin, I.T.; Preston, C.A. The eco-physiological complexity of plant responses to insect herbivores. Planta 1999, 208, 137–145. [Google Scholar] [CrossRef]
- Walling, L.L. The myriad plant responses to herbivores. J. Plant Growth Regul. 2000, 19, 195–216. [Google Scholar] [CrossRef]
- Yábar, E.; Gianoli, E.; Echegaray, E.R. Insect pests and natural enemies in two varieties of quinoa (Chenopodium quinoa) at Cusco, Peru. J. Appl. Entomol. 2002, 126, 275–280. [Google Scholar] [CrossRef]
- McCartney, N.B.; Ahumada, M.I.; Muñoz, M.P.; Rosales, I.M.; Fierro, A.M.; Chorbadjian, R.A. Effects of saponin-rich quinoa (Chenopodium quinoa Willd.) bran and bran extract in diets of adapted and non-adapted quinoa pests in laboratory bioassays. Cienc. Investig. Agrar. 2019, 46, 125–136. [Google Scholar] [CrossRef]
- Sylwia, G.; Bogumil, L.; Wieslaw, O. Effect of low and high-saponin lines of alfalfa on pea aphid. J. Insect Physiol. 2006, 52, 737–743. [Google Scholar] [CrossRef]
- Nielsen, J.K.; Nagao, T.; Okabe, H.; Shinoda, T. Resistance in the plant Barbarea vulgaris and counter-adaptations in flea beetles mediated by saponins. J. Chem. Ecol. 2010, 36, 277–285. [Google Scholar] [CrossRef]
- Badenes-Perez, F.R.; Gershenzon, J.; Heckel, D.G. Insect attraction versus plant defense: Young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS ONE 2014, 9, e95766. [Google Scholar] [CrossRef]
- Adel, M.M.; Sehnal, F.; Jurzysta, M. Effects of alfalfa saponins on the moth Spodoptera littoralis. J. Chem. Ecol. 2000, 26, 1065–1078. [Google Scholar] [CrossRef]
- Nozzolillo, C.; Arnason, J.T.; Campos, F.; Donskov, N.; Jurzysta, M. Alfalfa leaf saponins and insect resistance. J. Chem. Ecol. 1997, 23, 995–1002. [Google Scholar] [CrossRef]
- Agrell, J.; Oleszek, W.; Stochmal, A.; Olsen, M.; Anderson, P. Herbivore-induced responses in alfalfa (Medicago sativa). J. Chem. Ecol. 2003, 29, 303–320. [Google Scholar] [CrossRef]
- Sepúlveda-Chavera, G.; Salvatierra-Martínez, R.; Andía-Guardia, R. The alternative control of powdery mildew complex (Leveillula taurica and Erysiphe sp.) in tomato in the Azapa Valley, Chile. Cienc. Investig. Agrar. 2013, 40, 119–130. [Google Scholar] [CrossRef]
- Contreras, S.; Molina, J.; García, M.; Sánchez, J.; Chorbadjian, R.A.; Fuentes, F.; Albornoz, F. Seeds yield and quality of quinoa (Chenopodium quinoa Willd.) plants grown under different nitrogen fertilization doses. Int. J. Agric. Nat. Resour. 2024, 51, 68–74. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins, and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, total polyphenols, and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.A.M.; Serna, L.A. Quinoa (Chenopodium quinoa Willd.) as a source of dietary fiber and other functional components. Food Sci. Technol. 2011, 31, 225–230. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef]
Defoliation | Total Phenols | Antioxidant Capacity | HE | OA | PA | SA | Total Sapogenins | |
---|---|---|---|---|---|---|---|---|
Method | Intensity (%) | |||||||
Insect | 0 | 282.8 ± 11.1 | 53.2 ± 1.9 | 5.1 ± 0.4 | 5.4 ± 0.3 | 3.2 ± 0.2 | 0.7 ± 0.03 | 14.3 ± 0.9 |
20 | 291.8 ± 15.8 | 49.9 ± 0.9 | 4.8 ± 0.6 | 4.9 ± 0.5 | 3.0 ± 0.3 | 0.6 ± 0.05 | 13.3 ± 1.5 | |
40 | 292.8 ± 15.1 | 53.8 ± 1.2 | 5.9 ± 1.0 | 5.6 ± 0.5 | 3.2 ± 0.3 | 0.7 ± 0.05 | 15.5 ± 1.6 | |
60 | 310.0 ± 11.7 | 54.0 ± 0.8 | 4.6 ± 0.4 | 4.8 ± 0.3 | 3.0 ± 0.3 | 0.6 ± 0.04 | 13.1 ± 1.0 | |
Artificial | 0 | 297.6 ± 15.4 | 52.1 ± 1.3 | 5.1 ± 0.6 | 5.5 ± 0.5 | 3.1 ± 0.3 | 0.7 ± 0.06 | 14.4 ± 1.4 |
20 | 300.3 ± 7.4 | 51.3 ± 1.2 | 5.6 ± 0.6 | 5.8 ± 0.5 | 3.5 ± 0.4 | 0.7 ± 0.05 | 15.5 ± 1.5 | |
40 | 301.9 ± 14.8 | 50.2 ± 0.8 | 6.8 ± 0.8 | 6.7 ± 0.6 | 4.0 ± 0.4 | 0.8 ± 0.04 | 18.3 ± 1.8 | |
60 | 283.5 ± 18.1 | 51.4 ± 1.4 | 5.1 ± 0.4 | 5.2 ± 0.4 | 3.3 ± 0.3 | 0.7 ± 0.05 | 14.3 ± 1.1 | |
Method effects | F1,70 = 0.02 p = 0.881 | F1,70 = 2.87 p = 0.095 | F1,70 = 1.70 p = 0.197 | F1,70 = 3.48 p = 0.066 | F1,70 = 3.21 p = 0.077 | F1,70 = 1.47 p = 0.230 | F1,70 = 2.73 p = 0.103 | |
Intensity effects | F3,70 = 0.11 p = 0.953 | F3,70 = 1.23 p = 0.304 | F3,70 = 2.41 p = 0.074 | F3,70 = 2.26 p = 0.089 | F3,70 = 0.97 p = 0.410 | F3,70 = 1.11 p = 0.353 | F3,70 = 2.08 p = 0.110 | |
Interaction effects | F3,70 = 0.88 p = 0.455 | F3,70 = 1.61 p = 0.195 | F3,70 = 0.18 p = 0.910 | F3,70 = 0.50 p = 0.686 | F3,70 = 0.58 p = 0.631 | F3,70 = 0.31 p = 0.817 | F3,70 = 0.37 p = 0.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahumada, M.I.; McCartney, N.B.; Chorbadjian, R.A. Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.). Plants 2025, 14, 413. https://doi.org/10.3390/plants14030413
Ahumada MI, McCartney NB, Chorbadjian RA. Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.). Plants. 2025; 14(3):413. https://doi.org/10.3390/plants14030413
Chicago/Turabian StyleAhumada, Maria I., Nathaniel B. McCartney, and Rodrigo A. Chorbadjian. 2025. "Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.)" Plants 14, no. 3: 413. https://doi.org/10.3390/plants14030413
APA StyleAhumada, M. I., McCartney, N. B., & Chorbadjian, R. A. (2025). Effects of Defoliation Timing and Intensity on Yield Components and Grain Quality of Quinoa (Chenopodium quinoa Willd.). Plants, 14(3), 413. https://doi.org/10.3390/plants14030413