Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China
Abstract
1. Introduction
2. Result
2.1. Chronology Characteristics
2.2. Relationships Between Tree Radial Growth and Climatic Factors
2.3. Stability of Growth Response to Climate Change
2.4. Redundancy Analysis
3. Discussion
3.1. Common Climatic Responses in Radial Growth of Three Conifer Species
3.2. Differential Climatic Responses Among Species
3.3. Species-Specific Climatic Responses
4. Materials and Methods
4.1. Study Area and Species
4.2. Climate Data
4.3. Tree-Ring Sampling and Processing
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A.; et al. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. [Google Scholar]
- Wang, X.Y.; Zhao, C.Y.; Jia, Q.Y. Impacts of Climate Change on Forest Ecosystems in Northeast China. Adv. Clim. Chang. Res. 2013, 4, 230–241. [Google Scholar] [CrossRef]
- Wu, X.D.; Shao, X.M. Status of Dendroclimatological Study and Its Prospects in China. Adv. Earth Sci. 1993, 8, 31–35. [Google Scholar]
- Esper, J.; Cook, E.R.; Schweingruber, F.H. Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Science 2002, 295, 2250–2253. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.W.; Clark, C.W. Bioeconomic Modelling and Fisheries Management; Wiley-Interscience: New York, NY, USA, 1985; ISBN 978-0-471-87394-5. [Google Scholar]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P.A. Estimation of Carbon Sinks in Terrestrial Vegetation in China from 1981 to 2000. Sci. Sin. (Terrae) 2007, 37, 804–812. [Google Scholar]
- Mountain Research Initiative EDW Working Group. Elevation-Dependent Warming in Mountain Regions of the World. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Li, Y.Y.; Xiao, J.T.; Cong, N.; Yu, X.R.; Lin, Y.; Liu, T.; Qi, G.; Ren, P. Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan. Forests 2023, 14, 1769. [Google Scholar] [CrossRef]
- Zheng, L.L.; Shi, P.L.; Song, M.H.; Zhou, T.C.; Zong, N.; Zhang, X.Z. Climate Sensitivity of High Altitude Tree Growth across the Hindu Kush Himalaya. For. Ecol. Manag. 2021, 486, 118963. [Google Scholar] [CrossRef]
- Du, D.S.; Jiao, L.; Wu, X.; Xue, R.H.; Wei, M.Y.; Zhang, P.; Li, Q.; Wang, X.G. Drought Determines the Growth Stability of Different Dominant Conifer Species in Central Asia. Glob. Planet. Change 2024, 234, 104370. [Google Scholar] [CrossRef]
- Christie, D.A.; Lara, A.; Barichivich, J.; Villalba, R.; Morales, M.S.; Cuq, E. El Niño-Southern Oscillation Signal in the World’s Highest-Elevation Tree-Ring Chronologies from the Altiplano, Central Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 309–319. [Google Scholar] [CrossRef]
- Clark-Wolf, K.D.; Higuera, P.E.; McLauchlan, K.K.; Shuman, B.N.; Parish, M.C. Fire-regime Variability and Ecosystem Resilience over Four Millennia in a Rocky Mountain Subalpine Watershed. J. Ecol. 2023, 111, 2643–2661. [Google Scholar] [CrossRef]
- Obojes, N.; Buscarini, S.; Meurer, A.K.; Tasser, E.; Oberhuber, W.; Mayr, S.; Tappeiner, U. Tree Growth at the Limits: The Response of Multiple Conifers to Opposing Climatic Constraints along an Elevational Gradient in the Alps. Front. For. Glob. Change 2024, 7, 1332941. [Google Scholar] [CrossRef]
- Yin, D.C.; Xu, D.R.; Tian, K.; Xiao, D.R.; Zhang, W.G.; Sun, D.C.; Sun, H.; Zhang, Y. Radial Growth Response of Abies Georgei to Climate at the Upper Timberlines in Central Hengduan Mountains, Southwestern China. Forests 2018, 9, 606. [Google Scholar] [CrossRef]
- Shen, J.Y.; Li, S.F.; Huang, X.B.; Lei, Z.Q.; Shi, X.Q.; Su, J.R. Radial Growth Responses to Climate Warming and Drying in Pinus yunnanensis in Nanpan River Basin. Chin. J. Plant Ecol. 2019, 43, 946–958. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, D.C.; Sun, M.; Wang, H.; Tian, K.; Xiao, D.R.; Zhang, W.G. Variations of Climate-Growth Response of Major Conifers at Upper Distributional Limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China. Forests 2017, 8, 377. [Google Scholar] [CrossRef]
- Huang, F.Y.; Duan, Z.X. Research on the Variation Characteristics and Causes of Seasonal Drought in the Southeast Side (Yunnan) of the Qinghai–Tibet Plateau. Yunnan Sci. Technol. Manag. 2022, 35, 77. [Google Scholar]
- Zhang, Y.X.; Fan, Z.X.; Fu, P.L.; Zhang, H.; Dujie, C.T.; He, Z.H. Stem Radial Growth of Dominant Subalpine Coniferous Species and Their Responses to Moisture Variability in Northwest Yunnan, China. Chin. J. Appl. Ecol. 2025, 36, 1043–1052. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, D.C.; Zhang, W.G. Response of Radial Growth of Abies Georgei to Climate Change at Different Altitudes in Haba Snow Mountain, northwestern Yunnan Plateau. Sci. Technol. Eng. 2020, 20, 6778–6783. [Google Scholar]
- Xie, S.Y.; Zhang, Y.; Kang, Y.Y.; Yan, T.; Yue, H.T. The Growth–Climate Relationships of Three Dominant Subalpine Conifers on the Baima Snow Mountain in the Southeastern Tibetan Plateau. Plants 2024, 13, 1645. [Google Scholar] [CrossRef]
- Yang, R.Q.; Fan, Z.X.; Li, Z.S.; Wen, Q.Z. Radial Growth of Pinus yunnanensis at Different Elevations and Their Responses to Climatic Factors in the Yulong Snow Mountain, Northwest Yunnan, China. Acta Ecol. Sin. 2018, 38, 8983–8991. [Google Scholar] [CrossRef]
- Jiang, W.J.; Kang, Y.H.; Chen, Y.; Wang, S.J. The Influence of Different Mulching Methods on the Distribution of Soil Water and Heat. Chin. J. Soil Sci. 2022, 53, 74–80. [Google Scholar]
- Ping, J.Y.; Cui, E.Q.; Du, Y.; Wei, N.; Zhou, J.; Wang, J.; Niu, S.L.; Luo, Y.Q.; Xia, J.Y. Enhanced Causal Effect of Ecosystem Photosynthesis on Respiration during Heatwaves. Sci. Adv. 2023, 9, eadi6395. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.M.; Sun, B.G.; Chen, C.X.M.; Yang, Z.X.; Duan, Z.Y. Relationship between Geographical Distribution of Pinus yunnanensis and Climate. For. Res. 2012, 25, 163–168. [Google Scholar]
- Sun, L.; Cai, Y.P.; Zhou, Y.; Shi, S.Y.; Zhao, Y.S.; Gunnarson, B.E.; Jaramillo, F. Radial Growth Responses to Climate of Pinus yunnanensis at Low Elevations of the Hengduan Mountains, China. Forests 2020, 11, 1066. [Google Scholar] [CrossRef]
- Wang, T.; Shen, J.F.; Ye, Y.Z.; Gao, H.Q.; Xu, M. Response Analysis between Climate Chang and Tree-Ring Widths of Pinus Armandi in Funiu Mountain. Henan Sci. 2010, 28, 1549–1551. [Google Scholar]
- Hou, D.L.; Li, J.K.; Peng, J.F.; Li, J.X.; Peng, M.; Wei, X.X.; Ma, Y.T.; Lu, R.S. Responses of Pinus armandii Franch Ring Growth to Climatic Factors from Multi-Source at the Top of Longchiman in the Eastern Qinling mountains, China. Acta Ecol. Sin. 2024, 44, 1191–1202. [Google Scholar] [CrossRef]
- Rolland, C. Tree-ring and Climate Relationships for Abies alba in the Internal Alps. Tree-Ring Bull. 1993, 53, 1–11. [Google Scholar]
- Mao, M.; Pan, X.B.; Bai, J.L.; Liu, Y.; Yuan, J.F.; Xu, X.Y. Relationship between Soil Temperature and Moisture and Root Growth of Tobacco in Panzhihua City. Hubei Agric. Sci. 2022, 61, 107. [Google Scholar]
- Bazzoffi, P.; Nieddu, S. Effects of Waterlogging on the Soil Structure of Some Italian Soils in Relation to the GAEC Cross-Compliance Standard Maintenance of Farm Channel Networks and Field Convexity. Ital. J. Agron. 2011, 6, 63–73. [Google Scholar] [CrossRef]
- Cao, R.J.; Yin, D.C.; Tian, K.; Xiao, D.R.; Li, Z.J.; Zhang, X.G.; Li, Z.H.; Zhang, Y. Response of Radial Growth of Abies georgei and Tsuga dumosa to Climate Change at Upper Distributional Limits on Laojun Mountain, Lijiang, Yunnan, China. Acta Ecol. Sin. 2020, 40, 6067–6076. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Zhang, H.; Ren, S.Y.; Li, L.X.; Pan, N.; Yuan, Z.L.; Ye, Y.Z. Response of Conifer Trees Radial Growth to Climate Change in Baotianman National Nature Reserve, Central China. Acta Ecol. Sin. 2016, 36, 5324–5332. [Google Scholar]
- Shao, X.M.; Huang, L.; Liu, H.B.; Liang, E.Y.; Fang, X.Q. Millennial Precipitation Changes in Delingha Area, Qinghai Province Recorded by Tree Rings. Sci. China Ser. D Earth Sci. 2004, 34, 145–153. [Google Scholar]
- Zhang, W.G.; Xiao, D.R.; Tian, K.; Chen, G.L.; He, R.H.; Zhang, Y. Response of Radial Growth of Three Conifer Species to Climate at Their Respective Upper Distributional Limits on Yulong Snow Mountain. Acta Ecol. Sin. 2017, 37, 3796–3804. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Tan, L.Y.; Kang, D.W.; Liu, Q.J.; Li, J.Q. Responses of Picea likiangensis Radial Growth to Climate Change in the Small Zhongdian Area of Yunnan Province, Southwest China. Chin. J. Appl. Ecol. 2012, 23, 603–609. [Google Scholar]
- Briffa, K.R.; Jones, P.; Vogel, R.; Schweingruber, F.; Baillie, M.; Shiyatov, S.; Vaganov, E. European Tree Rings and Climate in the 16th Century. Clim. Change 1999, 43, 151–168. [Google Scholar] [CrossRef]
- Gao, L.S.; Wang, S.M.; Zhao, X.H. Response of Pinus koraiensis and Picea jezoensis Var. komarovii to Climate in the Transition Zone of Changbai Mountain, China. Chin. J. Plant Ecol. 2011, 35, 27. [Google Scholar] [CrossRef]
- Yao, Q.C.; Wang, X.C.; Xiao, X.W. Climate-Growth Relationships of Picea koraiensis and Causes of Its Recent Decline in Xiaoxing’an Mountains, China. Chin. J. Appl. Ecol. 2015, 26, 1935–1944. [Google Scholar]
- Yu, J.; Chen, J.J.; Zhou, G.; Liu, G.H.; Wang, Y.P.; Li, J.Q.; Liu, Q.J. Response of Radial Growth of Abies forrestii and Picea likiangensis to Climate Factors in the Central Hengduan Mountains, Southwest China. Sci. Silave Sin. 2021, 56, 28–38. [Google Scholar]
- Kong, L.L.; Zhu, G.Y.; Lyu, Y. Response of Individual Tree Radial Growth to Climate Change in Subtropical Cunninghamia Lanceolata Plantation. J. Cent. South Univ. For. Technol. 2025, 45, 71–81. [Google Scholar]
- Chen, Z.J.; Sun, Y.; He, X.Y.; Chen, W.; Shao, X.M.; Zhang, H.Y.; Wang, Z.Y.; Liu, M.Y. Chinese Pine Tiee Ring Width Chronology and Its Relations to Climatic Conditions in Qianshan Mountains. Chin. J. Appl. Ecol. 2007, 18, 2191–2201. [Google Scholar]
- Yang, L.; Li, J.R.; Peng, J.F.; Huo, J.X.; Chen, L. Temperature Variation and Influence Mechanism of Pinus tabulaeformis Ring Width Recorded since 1801 at Yao Mountain, He’nan Province. Acta Ecol. Sin. 2021, 41, 79–91. [Google Scholar] [CrossRef]
- Xiao, J.Y.; Zhang, W.Y.; Mou, Y.M.; Lu, L.X. Differences of drought tolerance of the main tree species in Dongling Mountain, Beijing, China as indicated by tree rings. Chin. J. Appl. Ecol. 2021, 32, 3487–3496. [Google Scholar] [CrossRef]
- Li, J.F.; Yuan, Y.J. Research and Application of Tree Rotation Hydrology; Science Press: Beijing, China, 2000; ISBN 7-03-007792-X. [Google Scholar]
- Zhang, M.; Shi, S.L.; Shi, C.M.; Bai, H.; Li, Z.S.; Peng, P.H. Radial growth responses of four typical coniferous species to climatic factors in the Western Sichuan Plateau, China. Chin. J. Ecol. 2021, 40, 1947–1957. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Griçar, J.; Seo, J.-W.; Rathgeber, C.B.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical Temperatures for Xylogenesis in Conifers of Cold Climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Xie, C.S.; Li, J.J.; Gao, Y.Y.; Shi, S.L.; Peng, P.H.; Yang, X.; Feng, W.N. Tree-Ring Width Based Autumn and Winter Mean Temperature Reconstruction and Its Variation over the Past 137 Years in Southwestern Sichuan Province. Quat. Sci. 2020, 40, 252–263. [Google Scholar]
- Deng, X.; Huang, B.; Wen, Q.; Hua, C.; Tao, J. A Research on the Distribution of Pinus yunnanensis Forest in Yunnan Province. J. Yunnan Univ. Nat. Sci. Ed. 2013, 35, 843–848. [Google Scholar]
- Huo, H.; Sun, C.P. Distributional Range Shifts in Response to Climate Change: A Case Study of Conifer Species Endemic to Southwestern China. Appl. Ecol. Environ. Res. 2023, 21, 41–58. [Google Scholar] [CrossRef]
- Li, X.W. A Review of Researches on Pinus yunnanensis. J. Sichuan Agric. Univ. 1995, 13, 309–314. [Google Scholar] [CrossRef]
- Zhao, G.W. Investigation and Research on the Growth Pattern of Pinus armandii. J. Liaoning For. Sci. Technol. 1994, 30–31+4. [Google Scholar]
- Zhang, Y.Y.; Cai, H.Q. Geographical Distribution and Community Ecological Characteristics of Pinus armandii. Hunan For. Sci. Technol. 1989, 16, 5–8. [Google Scholar]
- LI, Q.F.; Wang, J.H.; Jia, Z.R.; Qi, X.L.; Qi, D.X.; Hou, X.Z.; An, S.P. Altitudinal Variation of Needle Functional Traits in Natural Population of Picea likiangensis. For. Res. 2013, 26, 781–785. [Google Scholar]
- Wu, Z.Y.; Zhu, Y.C. Yunnan Vegetation; Science Press: Beijing, China, 1987; ISBN 13031-3376. [Google Scholar]
- Wei, J.; Ma, Z.G. Comparison of Palmer Severity Index, Percentage of Precipitation Anomaly and Surface Humid Index. Acta Geogr. Sin. 2003, 58, 117–124. [Google Scholar]
- Zhang, Y.; Yin, D.C.; Tian, K.; He, R.H.; He, M.Z.; Li, Y.C.; Sun, D.C.; Zhang, W.G. Relationship between Radial Growth of Abies georgei and Climate Factors at Different Altitudeson the Eastern Slope of Yulong Snow mountain, China. Chinese J. Appl. Ecol. 2018, 29, 2355–2361. [Google Scholar] [CrossRef]
- Stokes, M.A. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996. [Google Scholar]
- Larsson, L. CDendro, v. 7.3.; Cybis Elektronik & Data AB: Saltsjöbaden, Sweden, 2010.
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Holmes, R.L.; Adams, R.K.; Fritts, H.C. Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin with Procedures Used in the Chronology Development Work Including Users Manuals for Computer Programs COFECHA and ARSTAN; Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1986. [Google Scholar]
- Biondi, F.; Waikul, K. DENDROCLIM2002: A C++ Program for Statistical Calibration of Climate Signals in Tree-Ring Chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Blasing, T.J.; Solomon, A.M.; Duvick, D.N. Response Functions Revisited. Tree-Ring Bull. 1984, 44, 1–15. [Google Scholar]
- Ter Braak, C.J.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). 2002. Available online: https://research.wur.nl/en/publications/canoco-reference-manual-and-canodraw-for-windows-users-guide-soft (accessed on 1 May 2002).
- Ter Braak, C.J. Canonical Community Ordination. Part I: Basic Theory and Linear Methods. Ecoscience 1994, 1, 127–140. [Google Scholar] [CrossRef]
Chronology | P. armandii | P. yunnanensis | P. likiangensis |
---|---|---|---|
Sample No. | 25/45 | 26/50 | 26/48 |
Chronology/a | 1937–2023 | 1913–2024 | 1906–2024 |
Mean sensitivity (MS) | 0.09 | 0.08 | 0.07 |
Common interval/a | 1969–2022 | ||
Variance in first eigenvector/% (VFE) | 35.45 | 30.80 | 33.18 |
Standard deviation | 0.07 | 0.07 | 0.06 |
Signal-to-noise ratio (SNR) | 11.26 | 14.67 | 13.60 |
Expressed population signal (EPS) | 0.92 | 0.94 | 0.93 |
P. armandii | P. yunnanensis | P. likiangensis | |
---|---|---|---|
Elevation/m | 3145 | 3210 | 3082 |
Latitude (N) | 27°40′38″ | 27°40′34.39″ | 27°40′39.33″ |
Longitude (E) | 100°44′30″ | 100°44′30.45″ | 100°44′26.6″ |
Number of trees/tree cores | 26/53 | 26/52 | 26/52 |
Aspect | SW | S | SE |
Slope (°) | 10° | 10° | 6° |
Elevation range | 1600–3200 m | 1500–3200 m | 2800–3500 m |
Suitable temperature | 12–18 °C | 15–20 °C | 7–12 °C |
Suitable precipitation | 478–1870 mm | 800–1200 mm | 500–1000 mm |
Distribution areas | Central China Western China Southwestern China | Southwestern China | Southwestern China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Kang, Y.; Xie, S.; Tao, C.; Li, L.; Li, X.; Wang, Q.; Zhang, Y. Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China. Plants 2025, 14, 2508. https://doi.org/10.3390/plants14162508
Yan T, Kang Y, Xie S, Tao C, Li L, Li X, Wang Q, Zhang Y. Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China. Plants. 2025; 14(16):2508. https://doi.org/10.3390/plants14162508
Chicago/Turabian StyleYan, Tao, Yaoyao Kang, Siyu Xie, Chun Tao, Lianxiang Li, Xuefen Li, Qiong Wang, and Yun Zhang. 2025. "Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China" Plants 14, no. 16: 2508. https://doi.org/10.3390/plants14162508
APA StyleYan, T., Kang, Y., Xie, S., Tao, C., Li, L., Li, X., Wang, Q., & Zhang, Y. (2025). Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China. Plants, 14(16), 2508. https://doi.org/10.3390/plants14162508