Stand Structure Extraction and Analysis of Camellia taliensis Communities in Qianjiazhai, Ailao Mountain, China, Based on Backpack Laser Scanning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Workflow Overview
2.3. Data Acquisition and Pre-Processing
2.3.1. Field Data
2.3.2. The Acquisition and Pre-Processing of Backpack Laser Scanning Data
2.4. Extraction of Individual Tree Parameters
2.5. Quantification of Stand Structure
2.5.1. Spatial Structure Unit
2.5.2. Stand Structure Indices
2.6. Evaluation Metrics of DBH and H
3. Results
3.1. Accuracy Evaluation of DBH and TH Extraction Using BLS
3.2. Stand Spatial Structure Characteristics
3.3. Stand Non-Spatial Structure Characteristics
4. Discussion
4.1. Adaptability of Backpack Laser Scanning in the Study of the Stand Structure of Ancient Tea Tree Communities
4.2. The Stability of Ancient Tea Tree Community Structure and Function
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Abbreviation | Full Form |
---|---|
AGB | Aboveground Biomass |
AU | Average Uniform Angle |
AM | Average Mingling |
AD | Average Dominance |
BLS | Backpack Laser Scanning |
CSF | Cloth Simulation Filtering |
CSP | Comparative Shortest Path |
CW | Crown Width |
DBH | Diameter at Breast Height |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DEM | Digital Elevation Model |
GNSS | Global Navigation Satellite System |
IV | Importance Value |
IJS | Inverse J-shaped |
LiDAR | Light Detection and Ranging |
MAE | Mean Absolute Error |
MLS | Mobile Laser Scanning |
PEI | Pielou Evenness Index |
R2 | Coefficient of Determination |
RANSAC | Random Sample Consensus |
RMSE | Root Mean Square Error |
rRMSE | Relative Root Mean Square Error |
RTK | Real-Time Kinematic |
RTK-GPS | Real-Time Kinematic Global Positioning System |
SWDI | Shannon–Wiener Diversity Index |
SDI | Simpson Diversity Index |
SLAM | Simultaneous Localization and Mapping |
SOR | Statistical Outlier Removal |
TH | Tree Height |
TIN | Triangulated Irregular Network |
TLS | Terrestrial Laser Scanning |
Appendix A.2
Sample Plots | Species | Number of Individuals | Relative Abundance (%) | Relative Frequency (%) | Relative Dominance (%) | Important Value (%) |
---|---|---|---|---|---|---|
Plot 1 | Camellia taliensis | 9 | 39.13 | 31.58 | 40.30 | 37.00 |
Acer flabellatum | 2 | 8.70 | 10.53 | 20.20 | 13.14 | |
Prunus undulata | 3 | 13.04 | 10.53 | 10.31 | 11.29 | |
Actinidia callosa | 2 | 8.70 | 10.53 | 4.55 | 7.93 | |
Machilus gamblei | 1 | 4.35 | 5.26 | 8.90 | 6.17 | |
Symplocos ramosissima | 1 | 4.35 | 5.26 | 5.59 | 5.07 | |
Machilus salicina | 1 | 4.35 | 5.26 | 3.89 | 4.50 | |
Camellia pitardii | 1 | 4.35 | 5.26 | 1.89 | 3.84 | |
Castanopsis wattii | 1 | 4.35 | 5.26 | 1.81 | 3.81 | |
Symplocos congesta | 1 | 4.35 | 5.26 | 1.38 | 3.66 | |
unidentifiable | 1 | 4.35 | 5.26 | 1.17 | 3.59 | |
Plot 2 | Camellia taliensis | 27 | 51.92 | 41.67 | 53.42 | 49.00 |
Symplocos ramosissima | 7 | 13.46 | 11.11 | 10.44 | 11.67 | |
Lithocarpus xylocarpus | 3 | 5.77 | 8.33 | 12.10 | 8.73 | |
Castanopsis wattii | 3 | 5.77 | 8.33 | 10.14 | 8.08 | |
Prunus undulata | 4 | 7.69 | 8.33 | 5.78 | 7.27 | |
Machilus salicina | 3 | 5.77 | 8.33 | 2.61 | 5.57 | |
Actinodaphne forrestii | 2 | 3.85 | 5.56 | 1.97 | 3.79 | |
Myrsine semiserrata | 1 | 1.92 | 2.78 | 1.54 | 2.08 | |
unidentifiable | 1 | 1.92 | 2.78 | 1.18 | 1.96 | |
Camellia forrestii | 1 | 1.92 | 2.78 | 0.81 | 1.84 | |
Plot 3 | Camellia taliensis | 70 | 42.17 | 25.58 | 33.93 | 33.89 |
Manglietia insignis | 14 | 8.43 | 8.14 | 8.20 | 8.26 | |
Michelia floribunda | 11 | 6.63 | 6.98 | 6.89 | 6.83 | |
Prunus undulata | 9 | 5.42 | 8.14 | 5.60 | 6.39 | |
Quercus stewardiana | 8 | 4.82 | 6.98 | 4.11 | 5.30 | |
Betula alnoides | 6 | 3.61 | 4.65 | 7.10 | 5.12 | |
Schima noronhae | 5 | 3.01 | 2.33 | 6.86 | 4.07 | |
Symplocos ramosissima | 5 | 3.01 | 3.49 | 4.17 | 3.56 | |
Machilus gamblei | 4 | 2.41 | 4.65 | 2.93 | 3.33 | |
Symplocos groffii | 4 | 2.41 | 3.49 | 1.50 | 2.47 | |
Castanopsis wattii | 3 | 1.81 | 2.33 | 2.27 | 2.13 | |
Styrax perkinsiae | 2 | 1.20 | 1.16 | 3.50 | 1.96 | |
Lithocarpus confinis | 2 | 1.20 | 2.33 | 2.17 | 1.90 | |
Kadsura coccinea | 4 | 2.41 | 1.16 | 1.64 | 1.74 | |
Eurya obliquifolia | 2 | 1.20 | 2.33 | 0.49 | 1.34 | |
Neolitsea polycarpa | 2 | 1.20 | 2.33 | 0.45 | 1.33 | |
Stewartia pteropetiolata | 2 | 1.20 | 1.16 | 1.18 | 1.18 | |
Ilex manneiensis | 2 | 1.20 | 1.16 | 0.97 | 1.11 | |
Carrierea calycina | 2 | 1.20 | 1.16 | 0.89 | 1.09 | |
Tetracentron sinense | 1 | 0.60 | 1.16 | 1.49 | 1.08 | |
Prunus cerasoides | 1 | 0.60 | 1.16 | 1.22 | 0.99 | |
Acer flabellatum | 1 | 0.60 | 1.16 | 0.59 | 0.78 | |
unidentifiable | 1 | 0.60 | 1.16 | 0.37 | 0.71 | |
Camellia pitardii | 1 | 0.60 | 1.16 | 0.35 | 0.71 | |
Symplocos sumuntia | 1 | 0.60 | 1.16 | 0.34 | 0.70 | |
Ternstroemia gymnanthera | 1 | 0.60 | 1.16 | 0.28 | 0.68 | |
Meliosma kirkii | 1 | 0.60 | 1.16 | 0.27 | 0.68 | |
Skimmia arborescens | 1 | 0.60 | 1.16 | 0.25 | 0.67 | |
Plot 4 | Camellia taliensis | 29 | 25.89 | 25.89 | 24.02 | 23.66 |
Prunus undulata | 19 | 16.96 | 16.96 | 18.08 | 16.94 | |
Actinodaphne forrestii | 11 | 9.82 | 9.82 | 10.61 | 9.88 | |
Machilus yunnanensis | 10 | 8.93 | 8.93 | 6.56 | 8.23 | |
Camellia pitardii | 9 | 8.04 | 8.04 | 9.01 | 7.87 | |
Symplocos ramosissima | 6 | 5.36 | 5.36 | 7.49 | 6.04 | |
Manglietia insignis | 4 | 3.57 | 3.57 | 6.21 | 5.01 | |
Lithocarpus xylocarpus | 4 | 3.57 | 3.57 | 3.76 | 4.20 | |
Apocynum pictum | 5 | 4.46 | 4.46 | 4.08 | 4.17 | |
Castanopsis ceratacantha | 3 | 2.68 | 2.68 | 2.08 | 2.47 | |
Litsea pungens | 2 | 1.79 | 1.79 | 1.83 | 2.08 | |
Daphne papyracea | 2 | 1.79 | 1.79 | 1.75 | 2.05 | |
Prunus serrulata | 2 | 1.79 | 1.79 | 1.50 | 1.97 | |
Heptapleurum heptaphyllum | 2 | 1.79 | 1.79 | 1.01 | 1.81 | |
Lithocarpus hancei | 2 | 1.79 | 1.79 | 0.92 | 1.78 | |
Castanopsis wattii | 1 | 0.89 | 0.89 | 0.70 | 0.97 | |
Actinidia chinensis | 1 | 0.89 | 0.89 | 0.38 | 0.86 | |
Plot 5 | Camellia taliensis | 11 | 21.57 | 18.60 | 17.90 | 19.36 |
Machilus yunnanensis | 7 | 13.73 | 11.63 | 5.87 | 10.41 | |
Lithocarpus xylocarpus | 3 | 5.88 | 6.98 | 17.79 | 10.21 | |
Actinodaphne forrestii | 5 | 9.80 | 6.98 | 8.37 | 8.38 | |
Litsea pungens | 5 | 9.80 | 9.30 | 5.96 | 8.35 | |
Prunus undulata | 4 | 7.84 | 9.30 | 7.52 | 8.22 | |
Symplocos ramosissima | 3 | 5.88 | 6.98 | 5.93 | 6.26 | |
Actinidia chinensis | 2 | 3.92 | 4.65 | 8.24 | 5.60 | |
Castanopsis wattii | 3 | 5.88 | 6.98 | 3.04 | 5.30 | |
Castanopsis ceratacantha | 2 | 3.92 | 4.65 | 4.70 | 4.42 | |
Symplocos glauca | 1 | 1.96 | 2.33 | 6.95 | 3.75 | |
Manglietia insignis | 2 | 3.92 | 4.65 | 2.60 | 3.72 | |
Itoa orientalis | 1 | 1.96 | 2.33 | 2.00 | 2.09 | |
Apocynum pictum | 1 | 1.96 | 2.33 | 1.73 | 2.00 | |
Camellia pitardii | 1 | 1.96 | 2.33 | 1.43 | 1.90 | |
Plot 6 | Camellia taliensis | 14 | 24.56 | 17.07 | 22.61 | 21.41 |
Lithocarpus xylocarpus | 5 | 8.77 | 9.76 | 19.65 | 12.73 | |
Prunus undulata | 7 | 12.28 | 12.20 | 7.37 | 10.61 | |
Camellia pitardii | 4 | 7.02 | 7.32 | 6.71 | 7.01 | |
Michelia floribunda | 4 | 7.02 | 7.32 | 5.47 | 6.60 | |
Manglietia insignis | 3 | 5.26 | 7.32 | 7.20 | 6.59 | |
Castanopsis wattii | 2 | 3.51 | 4.88 | 8.86 | 5.75 | |
Symplocos ramosissima | 3 | 5.26 | 7.32 | 3.75 | 5.44 | |
Machilus yunnanensis | 3 | 5.26 | 7.32 | 2.81 | 5.13 | |
Symplocos glauca | 3 | 5.26 | 4.88 | 2.62 | 4.26 | |
Myrsine semiserrata | 4 | 7.02 | 2.44 | 3.21 | 4.22 | |
Eriobotrya bengalensis | 1 | 1.75 | 2.44 | 5.86 | 3.35 | |
Mahonia fortunei | 1 | 1.75 | 2.44 | 1.13 | 1.78 | |
Apocynum pictum | 1 | 1.75 | 2.44 | 1.10 | 1.76 | |
Litsea pungens | 1 | 1.75 | 2.44 | 0.90 | 1.70 | |
Actinodaphne forrestii | 1 | 1.75 | 2.44 | 0.75 | 1.65 | |
Plot 7 | Camellia taliensis | 20 | 27.03 | 20.00 | 17.46 | 21.50 |
Manglietia insignis | 8 | 10.81 | 10.91 | 25.35 | 15.69 | |
Machilus yunnanensis | 11 | 14.86 | 12.73 | 9.57 | 12.39 | |
Prunus undulata | 10 | 13.51 | 12.73 | 10.78 | 12.34 | |
Actinodaphne forrestii | 4 | 5.41 | 7.27 | 7.31 | 6.66 | |
Symplocos ramosissima | 4 | 5.41 | 7.27 | 7.14 | 6.61 | |
Camellia pitardii | 4 | 5.41 | 7.27 | 3.23 | 5.30 | |
Heptapleurum heptaphyllum | 4 | 5.41 | 7.27 | 2.50 | 5.06 | |
Quercus stewardiana | 2 | 2.70 | 3.64 | 6.83 | 4.39 | |
Michelia floribunda | 2 | 2.70 | 3.64 | 4.92 | 3.75 | |
Litsea pungens | 2 | 2.70 | 1.82 | 2.11 | 2.21 | |
Castanopsis wattii | 1 | 1.35 | 1.82 | 1.41 | 1.53 | |
Eriobotrya bengalensis | 1 | 1.35 | 1.82 | 0.85 | 1.34 | |
Prunus serrulata | 1 | 1.35 | 1.82 | 0.53 | 1.23 |
References
- Li, M.-M. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese assam tea (Camellia sinensis var. assamica). Plant Divers. 2024, 46, 229–237. [Google Scholar] [CrossRef]
- Qi, D.-H.; Guo, H.-J.; Sheng, C.-Y. Assessment of plant species diversity of ancient tea garden communities in Yunnan, Southwest of China. Agrofor. Syst. 2013, 87, 465–474. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, X.; Wang, Z.; Cui, K.; Liao, S. The future potential distribution and sustainable management of ancient pu’er tea trees (Camellia sinensis var. assamica (J. W. Mast.) Kitam.). Forests 2022, 13, 983. [Google Scholar] [CrossRef]
- Peng, J.; Li, C.; Tan, Y.; Wen, L.; Zhang, F.; Ye, J.; Huang, S.; Deng, H. Clustering analysis for wild ancient tea germplasm resources in debao county and longlin county, guangxi based on SSR molecular markers. J. South. Agric. 2019, 50, 1–7. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, D.; Wan, R.; Wang, C.; Xie, J.; Ma, C.; Li, Y. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: Compared with modern tea plantations. BMC Plant Biol. 2022, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Song, Q.; Bai, D.; Niu, S.; He, Y.; Qiao, D.; Chen, Z.; Li, C.; Luo, J.; Li, F. Population structure analysis to explore genetic diversity and geographical distribution characteristics of cultivated-type tea plant in Guizhou Plateau. BMC Plant Biol. 2022, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Zi, H.; Jiang, Y.; Cheng, X.; Li, W.; Huang, X. Change of rhizospheric bacterial community of the ancient wild tea along elevational gradients in Ailao mountain, China. Sci. Rep. 2020, 10, 9203. [Google Scholar] [CrossRef]
- Qi, D.; Liu, W. Comparison of community structure of Camellia talinensis in different slope directions in Qianjiazhai, Yunnan. Guangdong Agric. Sci. 2014, 41, 20–24. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 144, 137–179. [Google Scholar] [CrossRef]
- Hyyppä, E.; Kukko, A.; Kaartinen, H.; Yu, X.; Muhojoki, J.; Hakala, T.; Hyyppä, J. Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system. Sci. Remote Sens. 2022, 5, 100050. [Google Scholar] [CrossRef]
- Hakula, A.; Ruoppa, L.; Lehtomäki, M.; Yu, X.; Kukko, A.; Kaartinen, H.; Taher, J.; Matikainen, L.; Hyyppä, E.; Luoma, V.; et al. Individual tree segmentation and species classification using high-density close-range multispectral laser scanning data. ISPRS Open J. Photogramm. Remote Sens. 2023, 9, 100039. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A new method for estimating above-ground biomass from TLS point clouds. Remote Sens. 2020, 12, 3089. [Google Scholar] [CrossRef]
- Jin, S.; Sun, X.; Wu, F.; Su, Y.; Li, Y.; Song, S.; Xu, K.; Ma, Q.; Baret, F.; Jiang, D.; et al. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS J. Photogramm. Remote Sens. 2021, 171, 202–223. [Google Scholar] [CrossRef]
- Disney, M. Terrestrial Li DAR: A three-dimensional revolution in how we look at trees. New Phytol. 2019, 222, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, T.; Wang, X.; Chen, X.; Pang, S.; Hu, J.; Wang, A.; Chen, L.; Shen, Z. Applying a Portable Backpack Lidar to Measure and Locate Trees in a Nature Forest Plot: Accuracy and Error Analyses. Remote Sens. 2022, 14, 1806. [Google Scholar] [CrossRef]
- Jarron, L.R.; Coops, N.C.; MacKenzie, W.H.; Tompalski, P.; Dykstra, P. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sens. Environ. 2020, 244, 111770. [Google Scholar] [CrossRef]
- Tao, S.; Wang, D.; Xie, H.; Zhang, W.; Zhang, Z.; Dong, X.; Chen, Y.; Qi, J.; Cheng, K.; Yang, Z.; et al. Review and prospects of the development of LiDAR in ecology and geosciences. Natl. Remote Sens. Bull. 2025, 29, 1963–2004. [Google Scholar] [CrossRef]
- Pronk, M.; Eleveld, M.; Ledoux, H. Assessing vertical accuracy and spatial coverage of ICESat-2 and GEDI spaceborne lidar for creating global terrain models. Remote Sens. 2024, 16, 2259. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; van Lier, O.R.; Hermosilla, T. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, H.; Cheng, Y.; Xie, M.; Nan, D. An individual tree detection and segmentation method from TLS and MLS point clouds based on improved seed points. Forests 2024, 15, 1083. [Google Scholar] [CrossRef]
- Levick, S.R.; Whiteside, T.; Loewensteiner, D.A.; Rudge, M.; Bartolo, R. Leveraging TLS as a calibration and validation tool for MLS and ULS mapping of savanna structure and biomass at landscape-scales. Remote Sens. 2021, 13, 257. [Google Scholar] [CrossRef]
- Gomes, M.G.; Tomé, A. A digital and non-destructive integrated methodology for heritage modelling and deterioration mapping. The case study of the moorish castle in sintra. Dev. Built Environ. 2023, 14, 100145. [Google Scholar] [CrossRef]
- Kociuba, W.; Kubisz, W.; Zagórski, P. Use of terrestrial laser scanning (TLS) for monitoring and modelling of geomorphic processes and phenomena at a small and medium spatial scale in Polar environment (Scott River—Spitsbergen). Geomorphology 2014, 212, 84–96. [Google Scholar] [CrossRef]
- Ali, J.S.; Chen, L.; Liao, B.; Wang, C.; Zhang, F.; Bhutto, Y.A.; Junejo, S.A.; Nian, Y. Integration of UAS and Backpack-LiDAR to estimate aboveground biomass of Picea crassifolia forest in eastern Qinghai, China. Remote Sens. 2025, 17, 681. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, L.; Li, X.; Zhao, Y.; Yu, J.; Lv, L.; Du, H. Optimizing the Spatial Structure of Metasequoia Plantation Forest Based on UAV-LiDAR and Backpack-LiDAR. Remote Sens. 2023, 15, 4090. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Chen, X.; Pang, S.; Zeng, H.; Shen, Z. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. For. Ecosyst. 2020, 7, 33. [Google Scholar] [CrossRef]
- Hyyppä, E.; Kukko, A.; Kaijaluoto, R.; White, J.C.; Wulder, M.A.; Pyörälä, J.; Liang, X.; Yu, X.; Wang, Y.; Kaartinen, H.; et al. Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 2020, 161, 246–262. [Google Scholar] [CrossRef]
- Popa, I.; Nechita, C.; Hofgaard, A. Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians. Sci. Total Environ. 2017, 598, 1050–1057. [Google Scholar] [CrossRef]
- Wan, P.; Zhang, G.; Wang, H.; Zhao, Z.; Hu, Y.; Zhang, G.; Hui, G.; Liu, W. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inform. 2019, 50, 86–94. [Google Scholar] [CrossRef]
- Chanthorn, W.; Hartig, F.; Brockelman, W.Y. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 2017, 404, 100–107. [Google Scholar] [CrossRef]
- Pommerening, A. Approaches to quantifying forest structures. Forestry 2002, 75, 305–324. [Google Scholar] [CrossRef]
- Gong, Z.; Kang, X.; Gu, L.; Zhao, J.; Zheng, Y.; Yang, H. Research methods on natural forest stand structure: A review. J. Zhejiang For. Coll. 2009, 26, 434–443. [Google Scholar]
- Li, Y.; Ye, S.; Hui, G.; Hu, Y.; Zhao, Z. Spatial structure of timber harvested according to structure-based forest management. For. Ecol. Manag. 2014, 322, 106–116. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Ripley, B.D. Modeling spatial patterns. J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 172–192. [Google Scholar] [CrossRef]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- Zhang, G.; Hui, G.; Zhao, Z.; Hu, Y.; Wang, H.; Liu, W.; Zang, R. Composition of basal area in natural forests based on the uniform angle index. Ecol. Inform. 2018, 45, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Hui, G.; Zhao, Z.; Hu, Y.; Ye, S. Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest—Validating the bivariate distribution of structural parameters from the point of tree population. For. Ecol. Manag. 2014, 314, 17–25. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Pan, L.; Sun, Y. Hegyi competition index decomposition to improve estimation accuracy of larix olgensis crown radius. Ecol. Indic. 2022, 143, 109322. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, G.; Liu, C.; Lin, J. Exploring 3D spatial structure variations of a forest stand caused by Moso bamboo expansion using terrestrial laser scanner. Ecol. Indic. 2024, 166, 112570. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Tan, H.; Zhang, Y.; Yu, S.; Chen, X.; Yu, K.; Liu, J. Extraction of the spatial structure of Chinese fir plantations stands based on unmanned aerial vehicle and its effect on AGB. For. Ecol. Manag. 2024, 558, 121800. [Google Scholar] [CrossRef]
- Maestre, F.T.; Castillo-Monroy, A.P.; Bowker, M.A.; Ochoa-Hueso, R. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J. Ecol. 2012, 100, 317–330. [Google Scholar] [CrossRef]
- Gamito, S. Caution is needed when applying Margalef diversity index. Ecol. Indic. 2010, 10, 550–551. [Google Scholar] [CrossRef]
- She, Y.; Li, X.; Li, C.; Yang, P.; Song, Z.; Zhang, J. Relationship between species diversity and community stability in degraded alpine meadows during bare patch succession. Plants 2023, 12, 3582. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, M.; Xin, H.; Han, B.; Jia, H.; Wu, F.; Wu, Y.; Ma, J.; Song, Y. Relationship between species diversity and community stability of vegetation patches in Thymus mongolicus Steppe, China. Plants 2025, 14, 1237. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wei, L. Stable reverse J-shaped diameter distribution occurs in an old-growth karst forest. J. For. Res. 2024, 35, 107. [Google Scholar] [CrossRef]
- Luo, D.; Wang, C.-S.; Dao, B.-H.; Zhao, Z.-G.; Guo, J.-J.; Zeng, J. Species composition and diversity of Betula alnoides natural forests at dehong prefecture, yunnan province. For. Res. 2021, 34, 159–167. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Chen, X.; Wen, Q.; Duan, Z.; Lai, X. Comparison of community structures and species diversity in natural forests and forest plantation of Pinus yunnanensis. J. For. Res. 2010, 23, 515–522. [Google Scholar]
- Wang, F.; Cheng, X.; Cheng, S.; Li, W.; Huang, X. Genetic diversity of the wild ancient tea tree (Camellia taliensis) populations at different altitudes in Qianjiazhai. PLoS ONE 2023, 18, e0283189. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Vitter, J.S. Faster methods for random sampling. Commun. ACM 1984, 27, 703–718. [Google Scholar] [CrossRef]
- Yang, A.; Wu, Z.; Yang, F.; Su, D.; Ma, Y.; Zhao, D.; Qi, C. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation. ISPRS J. Photogramm. Remote Sens. 2020, 163, 49–61. [Google Scholar] [CrossRef]
- Li, F.; Zhu, H.; Li, W.; Liu, C.; Ma, J.; Li, L. Generation of an optimal triangulated irregular network for topographic surface via optimal transport theory. Geo-Spat. Inf. Sci. 2025, 28, 1–16. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef]
- He, M.; Hu, Y.; Zhao, J.; Li, Y.; Wang, B.; Zhang, J.; Noguchi, H. Exploring stand parameters using terrestrial laser scanning in Pinus tabuliformis plantation forests. Remote Sens. 2025, 17, 1228. [Google Scholar] [CrossRef]
- Chernov, N.; Lesort, C. Least squares fitting of circles. J. Math. Imaging Vis. 2005, 23, 239–252. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J.; Janicka, J. Tree position estimation from TLS data using hough transform and robust least-squares circle fitting. Remote Sens. Appl. Soc. Environ. 2023, 29, 100863. [Google Scholar] [CrossRef]
- Tang, M.P.; Chen, Y.G.; Shi, Y.J.; Zhou, G.M.; Zhao, M.S. Intraspecific and interspecific competition analysis of community dominant plant populations based on voronoi diagram. Acta Ecol. Sin. 2007, 27, 4707–4716. [Google Scholar]
- Wang, Y.; Li, J.; Cao, X.; Liu, Z.; Lv, Y. The multivariate distribution of stand spatial structure and tree size indices using neighborhood-based variables in coniferous and broad mixed forest. Forests 2023, 14, 2228. [Google Scholar] [CrossRef]
- Su, R.; Du, W.; Shan, Y.; Ying, H.; Rihan, W.; Li, R. Aboveground Carbon Stock Estimation Based on Backpack LiDAR and UAV Multispectral Imagery at the Forest Sample Plot Scale. Remote Sens. 2024, 16, 3927. [Google Scholar] [CrossRef]
- Mulindwa, D.B.; Du, S.; Liu, Q. Three-dimensional instance segmentation using the Generalized Hough Transform and the adaptive n-shifted shuffle attention. Sensors 2024, 24, 7215. [Google Scholar] [CrossRef]
- Heinzel, J.; Huber, M. Tree stem diameter estimation from volumetric TLS image data. Remote Sens. 2017, 9, 614. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 2014, 6, 4323–4344. [Google Scholar] [CrossRef]
- Jiao, C.; Heitzler, M.; Hurni, L. A survey of road feature extraction methods from raster maps. Trans. GIS 2021, 25, 2734–2763. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Xu, Z.; Dong, K.; Li, Z.; Liu, Y. Cleaning of abnormal wind speed power data based on quartile RANSAC regression. Energies 2024, 17, 5697. [Google Scholar] [CrossRef]
- Heo, H.K.; Lee, D.K.; Park, J.H.; Thorne, J.H. Estimating the heights and diameters at breast height of trees in an urban park and along a street using mobile LiDAR. Landsc. Ecol. Eng. 2019, 15, 253–263. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Gardi, O.; Morsdorf, F.; Thürig, E.; Schellenberger, A.; Mathys, L. Above-ground biomass references for urban trees from terrestrial laser scanning data. Ann. Bot. 2021, 128, 709–724. [Google Scholar] [CrossRef]
- Ko, C.; Kang, J.; Park, J.; Lee, M. Assessing forest resources with terrestrial and backpack LiDAR: A case study on leaf-on and leaf-off conditions in Gari Mountain, Hongcheon, Republic of Korea. Forest 2024, 15, 2230. [Google Scholar] [CrossRef]
- Fradette, M.-S.; Leboeuf, A.; Riopel, M.; Bégin, J. Method to Reduce the Bias on Digital Terrain Model and Canopy Height Model from LiDAR Data. Remote Sens. 2019, 11, 863. [Google Scholar] [CrossRef]
- Srinivasan, S.; Popescu, S.C.; Eriksson, M.; Sheridan, R.D.; Ku, N.-W. Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sens. 2015, 7, 1877–1896. [Google Scholar] [CrossRef]
- Guzmán, Q.J.A.; Park, M.H.; Williams, L.J.; Cavender-Bares, J. Seasonal structural stability promoted by forest diversity and composition explains overyielding. Ecology 2025, 106, e70055. [Google Scholar] [CrossRef]
- Condit, R.; Ashton, P.S.; Baker, P.; Bunyavejchewin, S.; Gunatilleke, S.; Gunatilleke, N.; Hubbell, S.P.; Foster, R.B.; Itoh, A.; LaFrankie, J.V.; et al. Spatial patterns in the distribution of tropical tree species. Science 2000, 288, 1414–1418. [Google Scholar] [CrossRef]
- Loreau, M.; De Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The influence of functional diversity and composition on ecosystem processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef]
- Del Río, M.; Pretzsch, H.; Ruíz-Peinado, R.; Ampoorter, E.; Annighöfer, P.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Drössler, L.; et al. Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J. Ecol. 2017, 105, 1032–1043. [Google Scholar] [CrossRef]
- MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Edmondson, W.T.; Elton, C.S. The ecology of invasions by animals and plants. AIBS Bull. 1960, 10, 35. [Google Scholar] [CrossRef]
- Li, G.; Shi, H.; Meng, G.; Fang, X.; Chai, Y.; He, L.; Zhang, Z.; Yang, Y. Community structural properties and species diversity in primary pinus yunnanensis forest. J. Zhejiang For. Coll. 2007, 24, 396–400. [Google Scholar]
- Tilman, D. The Ecological Consequences of Changes in Biodiversity: A Search for General Principles101. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Gardner, M.R.; Ashby, W.R. Connectance of large dynamic (Cybernetic) systems: Critical values for stability. Nature 1970, 228, 784. [Google Scholar] [CrossRef]
- Keren, S.; Diaci, J.; Motta, R.; Govedar, Z. Stand structural complexity of mixed old-growth and adjacent selection forests in the Dinaric Mountains of Bosnia and Herzegovina. For. Ecol. Manag. 2017, 400, 531–541. [Google Scholar] [CrossRef]
- Rouvinen, S.; Kuuluvainen, T. Tree diameter distributions in natural and managed old Pinus sylvestris-dominated forests. For. Ecol. Manag. 2005, 208, 45–61. [Google Scholar] [CrossRef]
- Spies, T.A. Forest Structure: A Key to the Ecosystem. Northwest Sci. 1998, 72, 34–39. [Google Scholar]
- Lähde, E.; Laiho, O.; Norokorpi, Y. Diversity-oriented silviculture in the Boreal Zone of Europe. For. Ecol. Manag. 1999, 118, 223–243. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 2007, 95, 27–40. [Google Scholar] [CrossRef]
- Ruhan, A.; Du, W.; Ying, H.; Wei, B.; Shan, Y.; Dai, H. Estimation of aboveground biomass of individual trees by backpack LiDAR based on parameter-optimized quantitative structural models (AdQSM). Forests 2023, 14, 475. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet + +: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA, 2018; pp. 4490–4499. [Google Scholar]
Sample Plots | Number of Individual Trees | Average DBH (cm) | Average TH (m) | Max DBH (cm) | Min DBH (cm) | Max TH (m) | Min TH (m) | Slope (°) | Aspect | DEM (m) |
---|---|---|---|---|---|---|---|---|---|---|
Plot 1 | 23 | 33.41 | 12.88 | 82.34 | 8.97 | 20.04 | 3.86 | 15 | NW | (2390–2399) |
Plot 2 | 52 | 31.52 | 11.14 | 118.20 | 8.00 | 16.89 | 3.87 | 20 | NW | (2298–2308) |
Plot 3 | 166 | 16.08 | 7.59 | 82.48 | 5.00 | 14.37 | 1.31 | 15 | SW | (2258–2262) |
Plot 4 | 112 | 18.37 | 7.40 | 113.06 | 6.24 | 21.89 | 2.20 | 15 | NW | (2217–2241) |
Plot 5 | 51 | 24.57 | 9.20 | 122.62 | 6.00 | 16.61 | 3.21 | 18 | NW | (2217–2241) |
Plot 6 | 57 | 23.25 | 8.14 | 85.76 | 5.70 | 20.80 | 2.93 | 20 | NW | (2217–2241) |
Plot 7 | 74 | 23.27 | 8.02 | 95.40 | 5.92 | 18.70 | 2.15 | 21 | NW | (2217–2241) |
Sample Plots | Species | Number of Individuals | Relative Abundance (%) | Relative Frequency (%) | Relative Dominance (%) | Important Value (%) |
---|---|---|---|---|---|---|
Plot 1 | Camellia taliensis | 9 | 39.13 | 31.58 | 40.30 | 37.00 |
Acer flabellatum | 2 | 8.70 | 10.53 | 20.20 | 13.14 | |
Prunus undulata | 3 | 13.04 | 10.53 | 10.31 | 11.29 | |
Plot 2 | Camellia taliensis | 27 | 51.92 | 41.67 | 53.42 | 49.00 |
Symplocos ramosissima | 7 | 13.46 | 11.11 | 10.44 | 11.67 | |
Lithocarpus xylocarpus | 3 | 5.77 | 8.33 | 12.10 | 8.73 | |
Plot 3 | Camellia taliensis | 70 | 42.17 | 25.58 | 33.93 | 33.89 |
Manglietia insignis | 14 | 8.43 | 8.14 | 8.20 | 8.26 | |
Michelia floribunda | 11 | 6.63 | 6.98 | 6.89 | 6.83 | |
Plot 4 | Camellia taliensis | 29 | 25.89 | 25.89 | 24.02 | 23.66 |
Prunus undulata | 19 | 16.96 | 16.96 | 18.08 | 16.94 | |
Actinodaphne forrestii | 11 | 9.82 | 9.82 | 10.61 | 9.88 | |
Plot 5 | Camellia taliensis | 11 | 21.57 | 18.60 | 17.90 | 19.36 |
Machilus yunnanensis | 7 | 13.73 | 11.63 | 5.87 | 10.41 | |
Lithocarpus xylocarpus | 3 | 5.88 | 6.98 | 17.79 | 10.21 | |
Plot 6 | Camellia taliensis | 14 | 24.56 | 17.07 | 22.61 | 21.41 |
Lithocarpus xylocarpus | 5 | 8.77 | 9.76 | 19.65 | 12.73 | |
Prunus undulata | 7 | 12.28 | 12.20 | 7.37 | 10.61 | |
Plot 7 | Camellia taliensis | 20 | 27.03 | 20.00 | 17.46 | 21.50 |
Manglietia insignis | 8 | 10.81 | 10.91 | 25.35 | 15.69 | |
Machilus yunnanensis | 11 | 14.86 | 12.73 | 9.57 | 12.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Shi, X.; Xu, W.; Lan, Z.; He, J.; Wang, H.; Wang, L.; Lu, N.; Ou, G. Stand Structure Extraction and Analysis of Camellia taliensis Communities in Qianjiazhai, Ailao Mountain, China, Based on Backpack Laser Scanning. Plants 2025, 14, 2485. https://doi.org/10.3390/plants14162485
Gao X, Shi X, Xu W, Lan Z, He J, Wang H, Wang L, Lu N, Ou G. Stand Structure Extraction and Analysis of Camellia taliensis Communities in Qianjiazhai, Ailao Mountain, China, Based on Backpack Laser Scanning. Plants. 2025; 14(16):2485. https://doi.org/10.3390/plants14162485
Chicago/Turabian StyleGao, Xiongfu, Xiaoqing Shi, Weiheng Xu, Zengquan Lan, Juxiang He, Huan Wang, Leiguang Wang, Ning Lu, and Guanglong Ou. 2025. "Stand Structure Extraction and Analysis of Camellia taliensis Communities in Qianjiazhai, Ailao Mountain, China, Based on Backpack Laser Scanning" Plants 14, no. 16: 2485. https://doi.org/10.3390/plants14162485
APA StyleGao, X., Shi, X., Xu, W., Lan, Z., He, J., Wang, H., Wang, L., Lu, N., & Ou, G. (2025). Stand Structure Extraction and Analysis of Camellia taliensis Communities in Qianjiazhai, Ailao Mountain, China, Based on Backpack Laser Scanning. Plants, 14(16), 2485. https://doi.org/10.3390/plants14162485