A GIS Approach to Modeling the Ecological Niche of an Ecotype of Bouteloua curtipendula (Michx.) Torr. in Mexican Grasslands
Abstract
1. Introduction
2. Results and Discussion
2.1. Predicted Population Distribution
2.2. Validation of Predicted Population
2.3. Environmental Factors That Shape the Distribution of the Ecotype
2.4. Potential of Bouteloua curtipendula (Michx.) Torr. Ecotype B-31 as a Genetic Resource for the Rehabilitation of Grasslands in the Chihuahuan Desert
2.5. Limitation of the Approach
3. Materials and Methods
3.1. Study Area
3.2. Climatic Database and Edaphoclimatic Variables
- Td = Monthly average daytime temperature (°C)
- Tn = Monthly average night temperature (°C)
- Txm = Monthly average maximum temperature (°C)
- Tim = Monthly average minimum temperature (°C)
- Tm = Monthly average temperature (°C)
- To = 12–0.5 N
- N = Photoperiod (the value corresponding to the 15th of each month was used)
- Sin = Sine expressed in radians
- Π = 3.1416
3.3. Model Construction and Calibration
3.4. Model Validation
- (A)
- In the field, at least three georeferenced quadrants of 100 ha inside and outside of the predictive population distribution model were randomly selected from the digital mesh through the use of the Google Earth platform (which could be accessed in the field using a mobile device). A nested sampling strategy [94] was applied in each quadrant. This consisted of establishing, on each vertex of the quadrant and on the sides, a sampling sub-site. In this method, each quadrant had a total of eight sampling sub-sites with a longitudinal distance between sub-sites of approximately 3 ha. At each sub-site, sampling was performed following a circular route to cover an area of approximately 250 m in diameter, wherein an attempt was made to locate the ecotype that is the object of validation. Once located, the B. curtipendula specimens were verified for correct ecotype identification using ecotype-specific varietal descriptors established by the Sistema Nacional de Inspección y Certificación de Semillas [95].
- (B)
- The data collected in each quadrant were geographical location (latitude and longitude), quadrant number, and model being sampled. For the sub-sites, the data format included geographical location and a general description of the conditions that each sub-site presented, including aspects such as the type of dominant vegetation, dominant species, slope, geographic exposure, and presence of livestock.
- (C)
- Sampling was systematically applied to each distribution model, both in areas where the distribution of the ecotype was predicted and outside of the projected distribution areas. Overlapping areas in the two models were considered as predicted presence areas in both models. In areas where the non-presence of the ecotype was projected (i.e., outside of the predicted distribution area), sampling was similar to that in sub-sites of presence. The only difference was that the quadrants to be sampled were selected at a minimum distance of 450 m between the selected non-presence quadrant and where the model predicted the presence of the ecotype, i.e., they were sufficiently far from the distribution area predicted by the model.
3.5. Sensitivity Analysis
3.6. Statistical Analysis
- a = correctly predicted presence data
- b = incorrectly predicted presence data
- c = incorrectly predicted absence data
- d = correctly predicted absence data
- n = sum of a + b + c + d
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’connor, T.; O’farrell, P.; Smith, H.G. LindborgR Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Danhauser, C.; Coetzee, R.; Orosz, S.; Hajnáczki, S.; Penksza, K. Rangeland utilization by beef cattle in the dry Savanna areas of Southern Africa. Gyepgazdálkodási Közlemények 2017, 15, 3–8. [Google Scholar] [CrossRef]
- Jurado-Guerra, P.; Velázquez-Martínez, M.; Sánchez-Gutiérrez, R.A.; Álvarez-Holguín, A.; Domínguez-Martínez, P.A.; Gutiérrez-Luna, R.; Garza-Cedillo, R.D.; Luna-Luna, M.; Chávez-Ruiz, M.G. Los pastizales y matorrales de zonas áridas y semiáridas de México: Estatus actual, retos y perspectivas. Rev. Mex. Cienc. Pecu. 2021, 12, 261–285. [Google Scholar] [CrossRef]
- Lindstrom, J.; Ahlering, M.; Hamilton, J. Seed sourcing for climate-resilient grasslands: The role of seed source diversity during early restoration establishment. Ecol. Evol. 2023, 13, e10756. [Google Scholar] [CrossRef] [PubMed]
- Iracheta-Lara, I.Z.; Hernández-Quiroz, N.S.; Pinedo-Alvarez, A.; Santellano-Estrada, E.; Prieto-Amparán, J.A.; Villarreal-Guerrero, F.; Morales-Nieto, C.R. Potential distribution of five native grass species in northern Mexico and their dynamics due to climate variability. Pol. J. Ecol. 2021, 69, 73–83. [Google Scholar] [CrossRef]
- Gutiérrez, L.R.; Echavarría, C.F.G. Colecta de semillas de zacates nativos, una opción para la reconversión productiva. In XVII Semana Internacional de Agronomía; Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango: Durango, Mexico, 2005; pp. 55–63. [Google Scholar]
- Sánchez-Arroyo, J.F.; Wehenkel, C.; Carrete-Carreón, F.Ó.; Murillo-Ortiz, M.; Herrera-Torres, E.; Quero-Carrillo, A.R. Establishment attributes of Bouteloua curtipendula (Michx.) Torr. populations native to Mexico. Rev. Fitotec. Mex. 2018, 41, 237–243. [Google Scholar] [CrossRef]
- Álvarez-Holguín, A. Registro Varietal de Nuevos Genotipos Élite y Generación de Tecnología Para Producción de Semilla de Pastos, Report Number 1023334741; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Unpublished work. 2019.
- Morales-Nieto, C.R.; Quero-Carrillo, A.; Pérez-Pérez, J.; Hernández-Garay, A.; Le-Blanc, O. Caracterización morfológica de poblaciones nativas de pasto banderita [Bouteloua curtipendula (Michx.) Torr.] En. México. Agrociencia 2008, 42, 767–775. [Google Scholar]
- Sierra-Tristán, J.S.; Royo-Márquez, M.H.; Gutiérrez-Ronquillo, E. El zacate banderilla [Bouteloua curtipendula (Michx.) Torr.J] en Chihuahua. In Folleto Técnico Número. 48. Sitio Experimental La Campana; CIRNOC-INIFAP: Aldama, Mexico, 2014; 42p. [Google Scholar]
- Monzón-Burgos, C.G. Relación Entre Capacidad de Establecimiento y Germinación Bajo Estrés Osmótico en Pasto Banderita (Bouteloua curtipendula). Master’s Thesis, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico, 2022; 60p. Available online: http://repositorio.uach.mx/489/1/Tesis%20Carlos%20Gustavo%20Monz%C3%B3n.pdf (accessed on 2 March 2023).
- Gutierrez, C.J. Infiltration, Sediment, and Erosion Under Grass Shrub Cover in the Southern High Plains. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 1994. Available online: https://ttu-ir.tdl.org/items/268ab559-4b73-45d4-b8eb-b8ba4f6b1cc6 (accessed on 8 July 2024).
- USDA-NRCS Side-Oats Grama [Bouteloua curtipendula (Michx.) Torr.]. Plant Guide. Available online: https://plants.usda.gov/DocumentLibrary/plantguide/pdf/pg_bocu.pdf (accessed on 8 July 2024).
- Vallejo-Trujillo, A.; Kebede, A.; Lozano-Jaramillo, M.; Dessie, T.; Smith, J.; Hanotte, O.; Gheyas, A.A. Ecological niche modelling for delineating livestock ecotypes and exploring environmental genomic adaptation: The example of Ethiopian village chicken. Front. Ecol. Evol. 2022, 10, 866587. [Google Scholar] [CrossRef]
- Morales-Nieto, C.R.; Avendaño, A.C.; Melgoza, C.A.; Gil Vega, K.D.; Quero-Carrillo, A.; Jurado-Guerra, P.; Martinez, S.M. Morphological and molecular characterization of sideoats grama (Bouteloua curtipendula) populations in Chihuahua, Mexico. Rev. Mex. Cienc. Pecu. 2016, 7, 455–469. [Google Scholar]
- INEGI Instituto Nacional de Estadística y Geografía. Síntesis de Información Geográfica del Estado de Chihuahua. Mexico. 2003. Available online: http://internet.contenidos.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825224332/702825224332_1.pdf (accessed on 2 March 2024).
- Álvarez-Holguín, A. Informe Técnico y Financiero Final de Proyecto Financiado Por el INIFAP. Resultados y Productos de Proyectos de Investigación, Validación y Transferencia de Tecnología, Report Number 1023334741; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Unpublished work. 2023.
- Baez-Gonzalez, A.D.; Alcala-Carmona, K.A.; Melgoza-Castillo, A.; Titulaer, M.; Kiniry, J.R. Loss and Gain in Potential Distribution of Threatened Wild Cotton Gossypium thurberi in Mexico under Future Climate. Sustainability 2022, 13, 13144. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Melgoza-Castillo, A.; Royo-Marquez, M.H.; Kiniry, J.R.; Meki, M.N. Modeling the Distribution of Wild Cotton Gossypium aridum in Mexico Using Flowering Growing Degree Days and Annual Available Soil Water. Sustainability 2022, 24, 6383. [Google Scholar] [CrossRef]
- Pearce, J.; Boyce, M.S. Modeling distribution and abundance with presence-only data. J. Appl. Ecol. 2006, 43, 405–412. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G. Habitat suitability modeling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [Google Scholar] [CrossRef]
- Peterson, A.T. Predicting species’ geographic distributions based on ecological niche modeling. Condor 2001, 103, 599–605. [Google Scholar] [CrossRef]
- Soberon, J.; Nakamura, M. Niches and Distribution areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef] [PubMed]
- Brotons, L.; Thuiller, W.; Araujo, M.; Hirzel, A. Presence-absence versus presence-only modeling methods for predicting bird habitat suitability. Ecography 2004, 27, 437–448. [Google Scholar] [CrossRef]
- Álvarez-Holguín, A.; Morales-Nieto, C.R.; Corrales-Lerma, R.; Ochoa-Rivero, J.M.; Ponce-García, O.C.; Prieto-Amparán, J.A.; Vega-Mares, J.H.; Villarreal-Guerrero, F. Grass species with potential for rangelands restoration in northern Mexico: An assessment with environmental niche modeling. Sci Rep. 2024, 14, 6318. [Google Scholar] [CrossRef]
- Araujo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Picard, R.R.; Berk, K.N. Data splitting. Am. Stat. 1990, 44, 140–147. [Google Scholar] [CrossRef]
- Joseph, V.R.; Vakayil, A. SPlit: An optimal method for data splitting. Technometrics 2022, 64, 166–176. [Google Scholar] [CrossRef]
- Stockwell, D.R.; Peterson, A. Effects of sample size on accuracy of species distribution models. Ecol. Model. 2002, 148, 1–13. [Google Scholar] [CrossRef]
- Erickson, K.D.; Smith, A.B. Modeling the rarest of the rare: A comparison between multi-species distribution models, ensembles of small models, and single-species models at extremely low sample sizes. Ecography 2023, 2023, e06500. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Pearson, R.H. Recommended Sample Size for Conducting Exploratory Factor Analysis on Dichotomous Data. Ph.D. Thesis, University of Northern Colorado, Greeley, CO, USA, 2008; p. 3322462. [Google Scholar]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Lomba, A.; Pellissier, L.; Randin, C.; Vicente, J.; Horondo, J.; Guisan, A. Overcoming the rare species modeling para dox: A novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 2010, 143, 2647–2657. [Google Scholar] [CrossRef]
- Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P. Overcoming limitations of modeling rare species by using ensembles of small models. Methods Ecol. Evol. 2015, 6, 1210–1218. [Google Scholar] [CrossRef]
- Zipkin, E.F.; DeWan, A.; Royle, J.A. Impacts of forest fragmentation on species richness: A hierarchical approach to community modelling. J. Appl. Ecol. 2009, 46, 815–822. [Google Scholar] [CrossRef]
- Hui, F.K.C.; Warton, D.I.; Foster, S.D.; Dunstan, P.K. To mix or not to mix: Comparing the predictive performance of mixture models vs separate species distribution models. Ecology 2013, 94, 1913–1919. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Abrego, N. Joint species distribution modeling. In Joint Species Distribution Modelling: With Applications in R; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Jeliazkov, A.; Gavish, Y.; Marsh, C.J.; Geschke, J.; Brummit, N.; Rocchini, D.; Haase, P.; Kunin, W.E.; Henle, K. Sampling and modeling rare species: Conceptual guidelines for the neglected majority. Glob. Change Biol. 2022, 28, 3754–3777. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, D.C. Geographic distribution and dispersal mechanisms of Bouteloua curtipendula in the Appalachian mountains. Am. Midl. Nat. 2003, 149, 268–281. [Google Scholar] [CrossRef]
- Dickie, J.A.; Parsons, A.J. Eco-geomorphological processes within grasslands, shrublands and badlands in the semi-arid Karoo, South Africa. Land. Degrad. Dev. 2012, 23, 534–547. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological feedbacks in global desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef]
- Tongway, D.J.; Ludwig, J.A. Small-scale resource heterogeneity in semi-arid landscapes. Pac. Conserv. Biol. 1994, 1, 201–208. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Raikes, J.A.; Hartley, A.E.; Cross, A.F. On the spatial pattern of soil nutrients in desert ecosystems: Ecological archives E077-002. Ecology 1996, 77, 364–374. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 2002, 241, 279–291. [Google Scholar] [CrossRef]
- Rietkerk, M.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Van Langevelde, F.; Kiema, A.; Van De Koppel, J.; Van Andel, J.; Hearne, J.; Skidmore, A.K.; et al. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel. Plant Soil 2002, 239, 69–77. [Google Scholar] [CrossRef]
- Saltelli, A. What is sensitivity analysis? In Sensitivity Analysis, 1st ed.; Saltelli, A., Chan, K., Scott, E.M., Eds.; John Wiley and Sons: West Sussex, UK, 2005; pp. 3–14. [Google Scholar]
- Xian, Y.; Lu, Y.; Liu, G. Is climate change threatening or beneficial to the habitat distribution of global pangolin species? Evidence from species distribution modeling. Sci. Total Environ. 2022, 811, 151385. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Sun, C.; Xi, B.; Li, D.; Chen, Z.; He, Q.; Weng, X.; Jia, L. Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios. Sci. Rep. 2021, 11, 19740. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Coleman, O.H.; Bailey, J.E.; Freeman, K.C. Heritabllity of early maturity, induced by low temperatures, in sweet sorghum. Agron. Absts. 1968. 5p. CABI Record Number: 19711601417. [Google Scholar]
- Long, S.P.C. C4 Photosynthesis at low temperatures. Plant Cell Environ. 2006, 6, 345–363. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Zhou, D. Using GIMMS NDVI time series to estimate the impacts of grassland vegetation cover on surface air temperatures in the temperate grassland region of China. Remote. Sens. Lett. 2016, 7, 229–238. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Li, S.; Zhang, J.; Ni, X. The different impacts of the daytime and nighttime land surface temperatures on the alpine grassland phenology. Ecosphere 2021, 12, e03578. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, X.; Xiao, J.; Zhang, K.; Wang, Y.; He, H.; Li, W.; Chen, H. Daytime and nighttime warming has no opposite effects on vegetation phenology and productivity in the northern hemisphere. Sci. Total Environ. 2022, 822, 153386. [Google Scholar] [CrossRef]
- Ma, R.; Shen, X.; Zhang, J.; Xia, C.; Liu, Y.; Wu, L.; Wang, Y.; Jiang, M.; Lu, X. Variation of vegetation autumn phenology and its climatic drivers in temperate grasslands of China. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103064. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Tong, S.; Lu, X. Daytime and nighttime temperatures exert different effects on vegetation net primary productivity of marshes in the western Songnen Plain. Ecol. Indic. 2022, 1, 108789. [Google Scholar] [CrossRef]
- An, H.; Zhai, J.; Song, X.; Wang, G.; Zhong, Y.; Zhang, K.; Sun, W. Impacts of Extreme Precipitation and Diurnal Temperature Events on Grassland Productivity at Different Elevations on the Plateau. Remote Sens. 2024, 16, 317. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Williams, A.S.; Jacot, J. Eastern Gamagrass Model Simulation Parameters for Diverse Ecotypes: Leaf Area Index, Light Extinction Coefficient, and Radiation Use Efficiency. Agronomy 2024, 14, 441. [Google Scholar] [CrossRef]
- Hamilton, N.S. Is local provenance important in habitat creation? A reply. J. Appl. Ecol. 2001, 38, 1371–1373. [Google Scholar]
- Vaughn, K.J.; Porensky, L.M.; Wilkerson, M.L.; Balachowski, J.; Peffer, E.; Riginos, C.; Young, T.P. Restoration ecology. Nat. Educ. Knowl. 2010, 3, 66. [Google Scholar]
- Valliere, J.M.; Ruscalleda, A.J.; Cross, A.T.; Lewandrowski, W.; Riviera, F.; Stevens, J.C.; Tomlinson, S.; Tudor, E.P.; Wong, W.S.; Yong, J.W.; et al. Restoration ecophysiology: An ecophysiological approach to improve restoration strategies and outcomes in severely disturbed landscapes. Restor. Ecol. 2022, 30, e13571. [Google Scholar] [CrossRef]
- Choi, Y.; Ha, Y.H.; Choi, J. Genetic diversity assessment of a plant for forest restoration on the Korean Peninsula: A case study of Lespedeza cuneata G. Don. (Fabaceae). J. Asia-Pac. Biodivers. 2024, 17, 35–42. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Busby, J.R.; Margules, C.R.; Austin, M.P. Cost Effective Biological Surveys and Data Analysis. In Nature Conservation; Margules, C.R., Austin, M.P., Eds.; CSIRO: Melbourne, Australia, 1991; p. 64. [Google Scholar]
- Farber, O.; Kadmon, R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 2003, 160, 115–130. [Google Scholar] [CrossRef]
- Collart, F.; Guisan, A. Small to train, small to test: Dealing with low sample size in model evaluation. Ecol. Inform. 2023, 75, 102106. [Google Scholar] [CrossRef]
- Jimenez-Valverde, A. Sample size for the evaluation of presence-absence models. Ecol. Indic. 2020, 114, 106289. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Peterson, A.T. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 2002, 78, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Feria, P.; Peterson, A.T. Prediction of bird community composition based on point-occurrence data and inferential algorithms: A valuable tool in biodiversity assessments. Divers. Distrib. 2002, 8, 49–56. [Google Scholar] [CrossRef]
- Raxworthy, C.J.; Martinez-Meyer, E.; Horning, N.; Nussbaum, R.A.; Schneider, G.E.; Ortega-Huerta, M.A.; Townsend, P.A. Predicting distributions of known and unknown reptile species in Madagascar. Nature 2003, 426, 837–841. [Google Scholar] [CrossRef]
- Sanchez-Cordero, V.; Martínez-Meyer, E. Museum specimen data predict crop damage by tropical rodents. Proc. Natl. Acad. Sci. USA 2000, 97, 7074–7077. [Google Scholar] [CrossRef]
- Davis, A.J.; Jenkinson, L.S.; Lawton, J.H.; Shorrocks, B.; Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 1998, 391, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Maiorano, L.; Cˇengic, M.; Huijbregts, M.A.J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 2021, 27, 1035–1050. [Google Scholar] [CrossRef]
- Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010, 3, 54–89. [Google Scholar]
- INEGI Instituto Nacional de Estadística y Geografía. Climatología. Available online: https://www.inegi.org.mx/temas/climatologia (accessed on 21 August 2021).
- INEGI. Instituto Nacional de Estadística y Geografía. Modelos de Elevación Digital LiDAR de Alta Resolución, con Resolución de 5 m Area. ASCII. E14D29C4. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825796341#:~:text=Un%20Modelo%20Digital%20de%20Elevaci%C3%B3n,a%20trav%C3%A9s%20of%20the%20light (accessed on 12 February 2021).
- Ruiz, C.J.A.; Medina, G.G. Metodologia de la caractetizacion edafoclimática de áreas cañeras. In Caracteristicas Climaticas y Edaficas de las Zonas de Abastecimiento de Ingenios Cañeros en Mexico, 1st ed.; Baez-Gonzalez, A.D., Medina-Garcia, G., Ruiz-Corral, J.A., Ramos-Gonzalez, J.L., Eds.; INIFAP: Zacatecas, Mexico, 2012; pp. 3–28. [Google Scholar]
- Guarino, L.; Jarvis, A.; Hijmans, R.J.; Maxted, N. Geographic Information Systems (GIS) and the Conservation and Use of Plant Genetic Resources. In Managing Plant Genetic Resources Diversity, Proceedings of the International Conference, Kuala Lumpur, Malaysia, 12–16 June 2000; Engels, J.M.M., Rao, V.R., Brown, A.H.D., Jackson, M.T., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 387–404. [Google Scholar]
- Scheldeman, X.; Zonneveld, M.V. Training Manual on Spatial Analysis of Plant Diversity and Distribution; Bioversity International: Rome, Italy, 2010; Available online: https://www.bioversityinternational.org/fileadmin/user_upload/online_library/publications/pdfs/1431.pdf (accessed on 2 February 2022).
- Gaston, K.J.; Blackburn, T.M. Mapping biodiversity using surrogates for species richness: Macro-scales and New World birds. Proc. R. Soc. B Biol. Sci. 1995, 262, 335–341. [Google Scholar]
- Lawton, J.H. Patterns in Ecology. Oikos 1996, 75, 145–147. [Google Scholar]
- Gaston, K.J.; Blackburn, T.M. A Critique for Macroecology. Oikos 1999, 84, 353–368. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Peterson, A.T.; Benz, B.W.; Papeş, M. Highly pathogenic H5N1 avian influenza: Entry pathways into North America via bird migration. PLoS ONE 2007, 28, e261. [Google Scholar] [CrossRef]
- Richardson, J.R.; Berish, C.W. Data and information issues in modeling for resource management decision making: Communication is the key. In Ecological Modeling for Resource Management, 1st ed.; Dale, V.H., Ed.; Springer: New York, NY, USA, 2003; pp. 167–179. [Google Scholar]
- Stohlgren, T.J.; Bull, K.A.; Otsuki, Y. Comparison of rangeland vegetation sampling techniques in the Central Grasslands. J. Range Manag. 1998, 51, 164–172. [Google Scholar] [CrossRef]
- SNICS, Servicio Nacional de Inspección y Certificación de Semillas. Guía Técnica para la Descripción Varietal del Pasto BANDERITA [Bouteloua curtipendula (Michx.) Torr.]. 2014. Available online: https://www.gob.mx/cms/uploads/attachment/file/120834/Pasto_Banderita.pdf (accessed on 12 February 2019).
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Forbes, A.D. Classification-algorithm evaluation: Five performance measures based on confusion matrices. J. Clin. Monit. 1995, 11, 189–206. [Google Scholar] [CrossRef]
- Manel, S.; Williams, H.C. Ormerod SJ. Evaluating presence–absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2001, 38, 921–931. [Google Scholar] [CrossRef]
Model A (Model with Direct Variables) | Model B (Model with Derived Variables) |
---|---|
Max. Temp. in June = 31.8–32.3 °C ¥ | Day Temp. in June = 27.3–27.8 °C ¥ |
Max. Temp. in January = 18.4–18.9 °C | Day Temp. in January = 14.8–15.3 °C |
Min. Temp. in January = 0.9–1.4 °C | Night Temp. in January = 4.6–4.9 °C |
Min. Temp. in July = 14.8–15.3 °C | Night Temp. in July = 19.2–19.7 °C |
Ppt in August = 118–138 mm ¥ | |
Soil Type = Foezem |
Model | Georeferenced Sites | |
---|---|---|
Presence | Absence | |
A | ||
Presence | 23 | 2 |
Absence | 8 | 13 |
B | ||
Presence | 25 | 5 |
Absence | 8 | 10 |
Precision and Certainty Statistics | Model | |
---|---|---|
A | B | |
Overall Accuracy | 0.78 | 0.73 |
Error | 0.22 | 0.27 |
Sensitivity | 0.74 | 0.76 |
Specificity | 0.87 | 0.67 |
Positive Likelihood Rate | 5.56 | 2.27 |
Negative Likelihood Rate | 0.30 | 0.36 |
Positive Predictive Power | 0.92 | 0.83 |
Negative Predictive Power | 0.62 | 0.56 |
Odds Ratio | 19 | 6 |
Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|
Soil Type | T Max June | T Max January | T Min January | T Min July | Ppt August | ||||
Model /Submodel | Foezem | 31.8–32.3 °C | 18.4–18.9 °C | 0.9–1.4 °C | 14.8–15.3 °C | 118–138 mm | Negative LR ¥ | TSS £ | Area (ha) |
A | 0.30 | 0.61 | 18,158 | ||||||
1 | 0.42 | 0.48 | 57,964 | ||||||
2 | 0.30 | 0.61 | 19,860 | ||||||
3 | 0.30 | 0.61 | 18,158 | ||||||
4 | 0.30 | 0.61 | 18,158 | ||||||
5 | 0.30 | 0.61 | 24,686 | ||||||
6 | 0.30 | 0.61 | 18,210 |
Direct Variables | Derived Variables |
---|---|
Altitude (amsl) | Average Annual Day Temperature (°C) |
Annual Maximum Temperature (°C) | Average Monthly Day Temperature (°C) |
Monthly Maximum Temperature (°C) | Average Annual Night Temperature (°C) |
Annual Minimum Temperature (°C) | Average Monthly Night Temperature (°C) |
Monthly Minimum Temperature (°C) | |
Annual Mean Temperature (°C) | |
Monthly Mean Temperature (°C) | |
Annual Precipitation (mm) | |
Monthly Precipitation (mm) | |
Soil Type | |
Evapotranspiration (mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baez-Gonzalez, A.D.; Prieto-Rivero, J.M.; Alvarez-Holguin, A.; Melgoza-Castillo, A.; Royo-Marquez, M.H.; Ochoa-Rivero, J.M. A GIS Approach to Modeling the Ecological Niche of an Ecotype of Bouteloua curtipendula (Michx.) Torr. in Mexican Grasslands. Plants 2025, 14, 2090. https://doi.org/10.3390/plants14142090
Baez-Gonzalez AD, Prieto-Rivero JM, Alvarez-Holguin A, Melgoza-Castillo A, Royo-Marquez MH, Ochoa-Rivero JM. A GIS Approach to Modeling the Ecological Niche of an Ecotype of Bouteloua curtipendula (Michx.) Torr. in Mexican Grasslands. Plants. 2025; 14(14):2090. https://doi.org/10.3390/plants14142090
Chicago/Turabian StyleBaez-Gonzalez, Alma Delia, Jose Miguel Prieto-Rivero, Alan Alvarez-Holguin, Alicia Melgoza-Castillo, Mario Humberto Royo-Marquez, and Jesus Manuel Ochoa-Rivero. 2025. "A GIS Approach to Modeling the Ecological Niche of an Ecotype of Bouteloua curtipendula (Michx.) Torr. in Mexican Grasslands" Plants 14, no. 14: 2090. https://doi.org/10.3390/plants14142090
APA StyleBaez-Gonzalez, A. D., Prieto-Rivero, J. M., Alvarez-Holguin, A., Melgoza-Castillo, A., Royo-Marquez, M. H., & Ochoa-Rivero, J. M. (2025). A GIS Approach to Modeling the Ecological Niche of an Ecotype of Bouteloua curtipendula (Michx.) Torr. in Mexican Grasslands. Plants, 14(14), 2090. https://doi.org/10.3390/plants14142090