Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings
Abstract
:1. Introduction
2. Results
2.1. Effects of Different N Application Rates on Soil N Conversion-Related Enzymes and Microorganisms
2.2. Effects of Different N Application Rates on Soil N Content
2.3. Effects of Different N Application Rates on Root N Content
2.4. Effects of Different N Application Rates on Enzymes Related to Root N Transformation
2.5. Effects of Different N Application Rates on the Development of Citrus Root Systems
2.6. Effects of Different N Application Rates on the Growth of Citrus Seedlings
2.7. Effects of Different N Fertilizer Application Rates on N Uptake and Utilization Efficiency of Citrus Seedlings
2.8. Correlation Analysis and Principal Component and Partial Least Squares Path Analysis of N Absorption-Related Indicators
3. Discussion
3.1. Effects of N Application on Soil N Transformation and Supply
3.2. Effects of N Application on N Uptake and Transport-Related Indicators in Citrus Roots
3.3. Effects of N Application on the Root Morphology of Citrus
4. Materials and Methods
4.1. Experimental Location
4.2. Experimental Design
4.3. Determination of Total N and Root Morphology in Plant Roots, Branches, and Leaves
4.4. Determination of Soil Urease, Ammonia Nitrate N, Root Enzyme Activity, and Ammonia Nitrate N
4.5. Determination of Soil AOA and AOB
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Li, Z.; Yao, L.; Yuan, Y.; Hong, Z.; Huang, S.; Wang, Y.; Ye, J.; Zhang, L.; Ding, J. Geographical distribution and potential distribution prediction of thirteen species of Citrus L. in China. Environ. Sci. Pollut. Res. 2023, 31, 6558–6571. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT: Statistical Database. 2021. Available online: https://www.fao.org/faostat (accessed on 15 April 2023).
- Quaggio, J.A.; Souza, T.R.; Zambrosi, F.C.B.; Boaretto, R.M.; Mattos, D. Nitrogen-Fertilizer Forms Affect the 4Nitrogen-Use Efficiency in Fertigated Citrus Groves. J. Plant Nutr. Soil Sci. 2014, 177, 404–411. [Google Scholar] [CrossRef]
- Bouguyon, E.; Gojon, A.; Nacry, P. Nitrate Sensing and Signaling in Plants. Semin. Cell Dev. Biol. 2012, 23, 648–654. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate Transport, Sensing, and Responses in Plants. Mol. Plant 2016, 9, 837–856. [Google Scholar] [CrossRef]
- Peizhu, G. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis. Front. Plant Sci. 2017, 8, 1697. [Google Scholar]
- Christine, S.; Ullrich, W.R. Generation and Possible Roles of No in Plant Roots and their Apoplastic Space. J. Exp. Bot. 2002, 53, 2293–2303. [Google Scholar]
- Gödde, M.; Conrad, R. Influence of Soil Properties on the Turnover of Nitric Oxide and Nitrous Oxide by Nitrification and Denitrification at Constant Temperature and Moisture. Biol. Fertil. Soils 2000, 32, 120–128. [Google Scholar] [CrossRef]
- Lindhard, P.H.; Hansen, P. Effect of Timing of Nitrogen Supply on Growth, Bud, Flower and Fruit Development of Young Sour Cherries (Prunus cerasus L.). Sci. Hortic. 1997, 69, 181–188. [Google Scholar] [CrossRef]
- Chen, H.; Jia, Y.; Xu, H.; Wang, Y.; Zhou, Y.; Huang, Z.; Yang, L.; Li, Y.; Chen, L.; Guo, J. Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Sci. Hortic. Amst. 2020, 272, 109526. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, Y. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Glob. Ecol. Conserv. 2019, 19, e663. [Google Scholar] [CrossRef]
- Wei, G.S.; Hu, C.X.; Tan, Q.L.; Zhu, D.H.; Li, X.B. The effect of nitrogen and phosphorus fertilizer reduction on yield and quality of Guanxi pomelo. J. Plant Nutr. Fertil. 2018, 24, 471–478. [Google Scholar]
- Bakshi, M.; Bakshi, P.; Wali, V.; Rai, P.; Jasrotia, A. Effect of inorganic and organic fertilizers along with Azotobacter on growth, yield and quality of Kinnow mandarin. Indian J. Hortic. 2017, 74, 281–284. [Google Scholar] [CrossRef]
- Liu, M.; Song, F.; Yin, Z.; Chen, P.; Zhang, Z.; Qi, Z.; Wang, B.; Zheng, E. Effects of Reduced Nitrogen Fertilizer Rates on Its Fate in Maize Fields in Mollisols in Northeast China: A 15N Tracing Study. Agronomy 2022, 12, 3030. [Google Scholar] [CrossRef]
- Mobley, H.L.T.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Giagnoni, L.; Pastorelli, R.; Mocali, S.; Arenella, M.; Nannipieri, P.; Renella, G. Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Appl. Soil Ecol. 2016, 98, 30–38. [Google Scholar] [CrossRef]
- Fu, Y.F.; Zhang, Z.W.; Yang, X.Y.; Wang, C.Q.; Lan, T.; Tang, X.Y.; Chen, G.D.; Zeng, J.; Yuan, S. Nitrate reductase is a key enzyme responsible for nitrogen-regulated auxin accumulation in Arabidopsis roots. Biochem. Biophys. Res. Commun. 2020, 532, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Kolbert, Z.; Bartha, B.; Erdei, L. Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J. Plant Physiol. 2008, 165, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, J.; Han, Z.; Li, S.; Zhang, J.; Ma, H.; Han, Y. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC Plant Biol. 2022, 22, 478. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Espen, L. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Biol. 2015, 15, 96. [Google Scholar] [CrossRef]
- Singh, R.; Parihar, P.; Prasad, S.M. Sulfur and Calcium Simultaneously Regulate Photosynthetic Performance and Nitrogen Metabolism Status in As-Challenged Brassica juncea L. Seedlings. Front. Plant Sci. 2018, 9, 374618. [Google Scholar] [CrossRef]
- Nevins, C.J.; Inglett, P.W.; Reardon, C.L.; Strauss, S.L. Seasonality drives microbiome composition and nitrogen cycling in soil below biocrusts. Soil Biol. Biochem. 2022, 166, 108551. [Google Scholar] [CrossRef]
- Liao, L.; Dong, T.; Liu, X.; Dong, Z.; Qiu, X.; Rong, Y.; Sun, G.; Wang, Z. Correction: Effect of nitrogen supply on nitrogen metabolism in the citrus cultivar ‘Huangguogan’. PLoS ONE 2019, 14, e0216639. [Google Scholar] [CrossRef]
- Zheng, C. Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China. Agronomy 2021, 11, 1231. [Google Scholar]
- Liu, H.; Wu, X.; Wang, Q.; Wang, S.; Liu, D.; Liu, G. Responses of soil ammonia oxidation and ammonia-oxidizing communities to land-use conversion and fertilization in an acidic red soil of southern Chin-ScienceDirect. Eur. J. Soil Biol. 2017, 80, 110–120. [Google Scholar] [CrossRef]
- Huang, W.T.; Xie, Y.Z.; Chen, X.F.; Zhang, J.; Chen, H.H.; Ye, X.; Guo, J.X.; Yang, L.T.; Chen, L.S. Growth, Mineral Nutrients, Photosynthesis and Related Physiological Parameters of Citrus in Response to Nitrogen Deficiency. Agronomy 2021, 11, 1859. [Google Scholar] [CrossRef]
- Zheng, W.; Dong, H.; Wang, Z.; Tao, Y. Effect of Straw Returning and Nitrogen Application Rate on Soil Enzymatic Activities. Agric. Res. 2023, 12, 163–171. [Google Scholar] [CrossRef]
- Sun, R.; Li, W.; Hu, C.; Liu, B. Long-term urea fertilization alters the composition and increases the abundance of soil ureolytic bacterial communities in an upland soil. FEMS Microbiol. Ecol. 2019, 95, fiz044. [Google Scholar] [CrossRef]
- Sawicka, B.; Krochmal-Marczak, B.; Pszczolkowski, P.; Bielińska, J.; Skiba, D. Effect of Differentiated Nitrogen Fertilization on the Enzymatic Activity of the Soil for Sweet Potato (Ipomoea batatas L. [Lam.]) Cultivation. Agronomy 2020, 10, 1970. [Google Scholar] [CrossRef]
- Stakhurlova, L.D.; Shcherbakov, A.P. The effect of different means of introducing nitrogen fertilizers on the dynamics of mineral compounds of nitrogen and enzyme activity in leached chernozem. Eurasian Soil Sci. 1996, 29, 922–927. [Google Scholar]
- Chen, Z.; Wang, H.; Liu, X.; Zhao, X.; Lu, D.; Zhou, J.; Li, C. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil Tillage Res. 2017, 165, 121–127. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; Stephen, J.R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55, 485–529. [Google Scholar] [CrossRef]
- Shen, J.P.; Cao, P.; Hu, H.W.; He, J.Z. Differential response of archaeal groups to land use change in an acidic red soil. Sci. Total Environ. 2013, 461–462, 742–749. [Google Scholar] [CrossRef]
- He, J.Z.; Shen, J.P.; Zhang, L.M.; Zhu, Y.G.; Zheng, Y.M.; Xu, M.G.; Ding, H.J. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 2007, 9, 2364. [Google Scholar] [CrossRef]
- Guo, D.; Bayu, B.; Pan, K.; Shen, S.; Zhang, J.; Jiang, X.; Yu, Z.; Li, J.; Luo, H. Response of nitrification and nitrifying microorganisms to different nitrogen sources in the acid Ultisols of Jinyun Mountain. Soil Sci. Plant Nutr. 2021, 67, 576–584. [Google Scholar] [CrossRef]
- Xu, A.; Li, L.; Xie, J.; Gopalakrishnan, S.; Zhang, R.; Luo, Z.; Cai, L.; Liu, C.; Wang, L.; Anwar, S.; et al. Changes in Ammonia-Oxidizing Archaea and Bacterial Communities and Soil Nitrogen Dynamics in Response to Long-Term Nitrogen Fertilization. Int. J. Environ. Res. Public Health 2022, 19, 2732. [Google Scholar] [CrossRef]
- Gu, Y.; Mi, H.; Xie, Y.; Ma, Q.; Wu, L.; Hu, Z.; Dai, F. Nitrapyrin affects the abundance of ammonia oxidizers rather than community structure in a yellow clay paddy soil. J. Soils Sediments 2018, 19, 872–882. [Google Scholar] [CrossRef]
- Liu, K.; Du, J.; Zhong, Y.; Shen, Z.; Yu, X. The response of potato tuber yield, nitrogen uptake, soil nitrate nitrogen to different nitrogen rates in red soil. Sci. Rep. 2021, 11, 22506. [Google Scholar] [CrossRef]
- Liu, Y.X.; Pan, Y.Q.; Yang, L.; Ahmad, S.; Zhou, X. Stover return and nitrogen application affect soil organic carbon and nitrogen in a double-season maize field. Plant Biol. 2021, 24, 387–395. [Google Scholar] [CrossRef]
- Duan, P.; Sun, Y.; Zhang, Y.; Fan, Q.; Yu, N.; Dang, X.; Zou, H. Assessing the Response of Tomato Yield, Fruit Composition, Nitrogen Absorption, and Soil Nitrogen Fractions to Different Fertilization Management Strategies in the Greenhouse. Am. Soc. Hortic. Sci. 2019, 54, 537–546. [Google Scholar] [CrossRef]
- Xu, Y.G.; Yu, W.T.; Ma, Q.; Zhou, H. Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years. Biol. Fert. Soils 2012, 48, 827–837. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.M.; Shen, J.P.; Hu, Z.H.; He, J.Z. Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. J. Soils Sediments 2010, 10, 1510–1516. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Shen, J.; Winefield, C.S.; O’Callaghan, M.; Bowatte, S.; He, J.Z. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 2010, 72, 386–394. [Google Scholar] [CrossRef]
- Wang, J.Z.; Huang, G.B.; Zhang, C.N.; Yang, Y.J.; Zhao, H.J.; Zhu, X.Y.; Ma, P.F. Influence of nitrogen fertilizer rate on carbon-nitrogen metabolism and nitrogen use efficiency of summer maize under high and medium yield levels. Acta Ecol. Sin. 2009, 29, 2045–2052. [Google Scholar]
- Yan, F.; Wang, K.; Luo, Q.; Luo, C. [Effects of NH4(+)-N/NO3(-)-N ratio in applied supplementary fertilizer on nitrogen metabolism, photosynthesis and growth of Isatis indigotica]. China J. Chin. Mater. Medica 2009, 34, 2039–2042. [Google Scholar]
- Zhang, Z.M.; Wan, S.B.; Ning, T.Y.; Dai, L.X.; Ning, T.Y.; Song, W.W. Effects of Nitrogen Application Rates on Nitrogen Metabolism and Related Enzyme Activities of Two Different Peanut Cultivars. Sci. Agric. Sin. 2011, 44, 280–290. (In Chinese) [Google Scholar]
- Ma, X.; Zhu, C.; Yang, N.; Gan, L.; Xia, K. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. Physiol. Plant. 2016, 158, 389–401. [Google Scholar] [CrossRef]
- De Souza, S.R.; De Souza, E.S.O.E.; Louro Berbara, R.L.; Fernandes, M.S.; Stark, E.M. Enzymes of Nitrogen Metabolism and Proteases Activity in Hairy Roots of Clover and Carrots, with and without Arbuscular Mycorrhizal Fungi. J. Plant Nutr. 2007, 30, 1185–1204. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, Z.; Lu, J.; Ye, R.; Qu, M.; Wang, J.; Xu, G.; Ying, Z.; Chen, S. De novo transcriptome analysis reveals the molecular regulatory mechanism underlying the response to excess nitrogen in Azolla spp. Aquat. Toxicol. 2022, 248, 106202. [Google Scholar] [CrossRef]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef]
- Smith, S.; Smet, I. Root system architecture: Insights from Arabidopsis and cereal crops Introduction. Phil. Trans. R. Soc. B 2012, 367, 1441–1452. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Yanai, R.D. The Ecology of Root Lifespan. Adv. Ecol. Res. 1997, 27, 1–60. [Google Scholar]
- Fan, W.G.; Ge, H.M. Effects of Nitrogen Fertilizer of Different Forms and Ratios on the Growth, Nitrogen Absorption and Utilization of Young Navel Orange Trees Grafted on Poncirus trifoliata. Sci. Agric. Sin. 2015, 48, 2666–2675. (In Chinese) [Google Scholar]
- Bittsánszky, A.; Pilinszky, A.; Gyulai, G.; Komives, T. Overcoming ammonium toxicity. Plant Sci. Int. J. Exp. Plant Biol. 2015, 231, 184–190. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, J.; Gong, L. The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest. Sci. Rep. 2021, 11, 3839. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Zhang, S.; Ge, C.; Shen, Q.; Ma, H.; Zhang, X.; Dong, H.; Zhao, X.; Pang, C. Nitrogen modulates cotton root morphology by affecting abscisic acid (ABA) and salicylic acid (SA) content. Arch. Agron. Soil Sci. 2021, 67, 1722–1738. [Google Scholar] [CrossRef]
- Junior, G.B.D.S.; de Mello Prado, R.; Silva, S.L.O.; Campos, C.N.S.; Castellanos, L.G.; dos Santos, L.C.N.; Barreto, R.F.; Teodoro, P.E. Nitrogen concentrations and proportions of ammonium and nitrate in the nutrition and growth of yellow passion fruit seedlings. J. Plant Nutr. 2020, 43, 2533–2547. [Google Scholar]
- Fan, J.B.; Zhang, Y.; Turner, D.; Duan, Y.; Wang, D.; Shen, Q. Root Physiological and Morphological Characteristics of Two Rice Cultivars with Different Nitrogen-Use Efficiency. Pedosphere 2010, 20, 446–455. (In English) [Google Scholar] [CrossRef]
- Wang, Z.R.; Rui, Y.K.; Shen, J.B.; Zhang, F.S. Effects of N fertilizer on root growth in Zea mays L. seedlings. Span. J. Agric. Res. 2008, 6, 677–682. [Google Scholar]
- Scheible, W.; Lauerer, M.; Schulze, E.D.; Caboche, M.; Stitt, M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 1997, 11, 671–691. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Zhang, Q.; Fang, L.; Ma, L.; Ruan, J. Effects of Long-Term Nitrogen Application on Soil Acidification and Solution Chemistry of a Tea Plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Wan, S.; Gu, H.; Yang, Q.; Hu, X.; Fang, X.; Singh, A.N.; Chen, F. Long-Term Fertilization Increases Soil Nutrient Accumulations but Decreases Biological Activity in Navel Orange Orchards of Subtropical China. J. Soils Sediments 2017, 17, 2346–2356. [Google Scholar] [CrossRef]
- Group, I.W. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. In Word Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; pp. 172–173. [Google Scholar]
- Staff, S.S. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; US Department of Agriculture, Soil Conservation Service: Lanham, MD, USA, 1999.
- Lu, R.K. Methods of Soil and Agrochemical Analyses; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Ye, X.X.; Xiong, Q.C.; Jim, F.R.; Xu, G.; Tian, D.; Sun, R.B.; Chen, X.H.; Wang, Z. Reform and Practice of Advanced Plant Nutrition Research Methods for Graduate Programs in Agricultural Resources and Environment. Hortic. Seedl. 2023, 43, 58–60. [Google Scholar]
- Lu, J.; Chen, F.; Wang, Y.; Liu, D.; Wan, Y.; Yu, C. Effects of nitrogen, phosphorus and potassium fertilizers on the growth and development of young citrus and on fruit yield and quality in red soil areas. J. Plant Nutr. Fertil. 2004, 10, 413. [Google Scholar]
- Xiong, H.; Ma, H.; Hu, B.; Zhao, H.; Wang, J.; Rennenberg, H.; Shi, X.; Zhang, Y. Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. J. Plant Physiol. 2021, 267, 153556. [Google Scholar] [CrossRef]
- Li, C.; Qi, Y.; Zhang, J.; Yang, L.; Wang, D.; Ye, X.; Lai, N.; Tan, L.; Lin, D.; Chen, L. Magnesium-Deficiency-Induced Al-terations of Gas Exchange, Major Metabolites and Key Enzymes Differ Among Roots, and Lower and Upper Leaves of Citrus Sinensis Seedlings. Tree Physiol. 2017, 37, 1564–1581. [Google Scholar] [CrossRef]
- Zahoor, R.; Zhao, W.; Abid, M.; Dong, H.; Zhou, Z. Title: Potassium Application Regulates Nitrogen Metabolism and Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Functional Leaf Under Drought Stress. J. Plant Physiol. 1952, 215, 30–38. [Google Scholar] [CrossRef]
- Mao, Y.; Yannarell, A.C.; Mackie, R.I. Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops. PLoS ONE 2011, 6, e24750. [Google Scholar] [CrossRef]
Total Root Length | Root Surface Area | Root Volume | Total Biomass | |
---|---|---|---|---|
mg/kg | cm | cm² | cm³ | g/Plant DW |
N0 | 2369 ± 180.40 ab | 477 ± 110.24 ab | 7.68 ± 1.10 b | 9.88 ± 0.77 b |
N50 | 2525 ± 245.79 ab | 494 ± 60.36 ab | 7.85 ± 0.57 b | 11.47 ± 0.48 b |
N100 | 3222 ± 249.72 a | 587 ± 49.73 a | 10.11 ± 0.61 a | 14.24 ± 1.03 a |
N400 | 1673 ± 384.24 c | 333 ± 68.13 b | 5.71 ± 0.92 c | 6.95 ± 0.99 c |
Treatment | Leaf | Branch | Root | Shoot | Root/Shoot Ratio |
---|---|---|---|---|---|
mg/kg | g/Plant DW | g/Plant DW | g/Plant DW | g/Plant DW | g/Plant DW |
N0 | 5.54 ± 0.74 b | 3.90 ± 0.79 b | 9.88 ± 0.77 b | 9.35 ± 0.17 c | 1.06 ± 0.08 ab |
N50 | 5.86 ± 0.49 b | 4.97 ± 0.44 ab | 11.47 ± 0.48 b | 10.83 ± 0.72 b | 1.06 ± 0.03 ab |
N100 | 7.42 ± 0.89 a | 5.30 ± 0.63 a | 14.24 ± 1.03 a | 12.72 ± 0.31 a | 1.12 ± 0.07 a |
N400 | 4.94 ± 0.49 b | 4.20 ± 0.74 ab | 6.95 ± 0.99 c | 9.14 ± 1.22 c | 0.78 ± 0.22 c |
Treatment | Root Total N and N Accumulation | Stem Total N and N Accumulation | Leave Total N and N Accumulation | Total Plant N Accumulation | NUE | |||
---|---|---|---|---|---|---|---|---|
mg/kg | g/kg DW | g/Plant DW | g/kg DW | g/Plant DW | g/kg DW | g/Plant DW | g/Plant DW | % |
N0 | 8.66 ± 0.52 d | 0.09 ± 0.11 c | 8.19 ± 0.31 d | 0.03 ± 0.01 c | 15.28 ± 0.18 d | 0.08 ± 0.01 c | 0.2 ± 0.01 d | - |
N50 | 15.30 ± 0.25 c | 0.18 ± 0.01 b | 14.51 ± 0.69 c | 0.07 ± 0.01 b | 25.34 ± 0.49 b | 0.15 ± 0.01 b | 0.4 ± 0.02 b | 48.90 |
N100 | 25.13 ± 0.79 a | 0.36 ± 0.06 a | 18.04 ± 0.12 a | 0.10 ± 0.01 a | 26.92 ± 0.78 a | 0.20 ± 0.03 a | 0.65 ± 0.05 a | 56.60 |
N400 | 20.25 ± 1.58 b | 0.14 ± 0.03 b | 16.27 ± 0.60 b | 0.07 ± 0.01 b | 25.03 ± 0.29 c | 0.12 ± 0.01 b | 0.33 ± 0.02 c | 4.14 |
pH Soil:Water = 1:2.5 | Bulk Density | OM | TN | NO3−-N | NH4+-N | Olsen-P | Available K |
---|---|---|---|---|---|---|---|
g/cm³ | g/kg | g/kg | mg/kg | mg/kg | mg/kg | mg/kg | |
5.47 | 1.43 | 8.82 | 0.57 | 12.5 | 2.95 | 37.4 | 161 |
Functional Genes | Primers | Primer Sequence | Fragment Length |
---|---|---|---|
amoA | amoAF | 5′-STAATGGTCTGGCTTAGACG-3′ | 600 bp |
amoAR | 5′-GCGGCCATCCATCTGTATGT-3′ | ||
bamoA | bamoA-1F | 5′-GGGGTTTCTACTGGTGGT-3′ | 491 bp |
bamoA-2R | 5′-CCCCTCKGSAAAGCCTTCTTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Zhuang, Y.; Lali, M.N.; Zhao, L.; Xie, J.; Xiong, H.; Wang, Y.; He, X.; Shi, X.; Zhang, Y. Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings. Plants 2024, 13, 938. https://doi.org/10.3390/plants13070938
Niu R, Zhuang Y, Lali MN, Zhao L, Xie J, Xiong H, Wang Y, He X, Shi X, Zhang Y. Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings. Plants. 2024; 13(7):938. https://doi.org/10.3390/plants13070938
Chicago/Turabian StyleNiu, Runzheng, Yuan Zhuang, Mohammad Naeem Lali, Li Zhao, Jiawei Xie, Huaye Xiong, Yuheng Wang, Xinhua He, Xiaojun Shi, and Yueqiang Zhang. 2024. "Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings" Plants 13, no. 7: 938. https://doi.org/10.3390/plants13070938
APA StyleNiu, R., Zhuang, Y., Lali, M. N., Zhao, L., Xie, J., Xiong, H., Wang, Y., He, X., Shi, X., & Zhang, Y. (2024). Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings. Plants, 13(7), 938. https://doi.org/10.3390/plants13070938