The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis
Abstract
:1. Introduction
2. Results
- (1)
- Does phytochemical diversity differ between leaves and roots of the same plant and among P. australis lineages?
- (2)
- Does the chemical diversity of the RF top 10 features vary among P. australis lineages?
- (3)
- How does the chemical evenness of the RF top 10 features vary among flooding and scale infestation treatments?
- (4)
- Does an untargeted or targeted chemical approach provide more insight into plant responses to abiotic and biotic stressors?
3. Methods
3.1. Study System
3.2. Experimental Design
3.3. Chemical Analysis of Plant Metabolites
3.4. Statistical Analyses
Metabolite Name | Metabolite Class | Selected by | Stressor | Function of Metabolite |
---|---|---|---|---|
Abscisic acid | Sesquiterpene | Random Forest | flooding | Abscisic acid accumulation in leaves and roots regulates stomatal closure and osmolyte synthesis, mediating stress response. |
Citric acid | Organic acid | Random Forest | flooding | Citric acid accumulation during flooding supports anaerobic respiration and glycolysis, maintaining energy production and pH homeostasis by buffering the acidic environment in plant tissues. |
Chlorogenic acid | Carboxylic acid | The literature | flooding | Chlorogenic acid accumulation mitigates stress by regulating water content and oxidative stress. |
Proline | Amino acid | The literature | flooding | Proline mitigates flood damage by scavenging reactive oxygen species, regulating redox balance, reducing oxidative stress, and acting as an osmolyte to maintain cell turgor. |
Rutin | Flavonoid | The literature | flooding | Rutin accumulation in leaves, fruits, and seeds mediates oxidative damage during drought |
Trigonelline | Alkaloid | The literature | flooding | Trigonelline, involved in cell cycle regulation, nodulation, and methylation, is produced during droughts to enhance water storage. |
Jasmonic acid | Monocarboxylic acid | The literature | scale infestation | Jasmonic acid is induced by herbivory. Moreover, accumulation of jasmonic acid minimizes water loss by regulating stomatol opening and closing. |
Methyl jasmonate | Jasmonate ester | The literature | scale infestation | Methyl jasmonate is induced by herbivory and is a precursor to produce other secondary defenses (i.e., nicotine, caffeoylputrescine). |
Methyl dihydro-jasmonate | Jasmonate ester | The literature | scale infestation | Methyl dihydrojasmonate is induced by herbivory and is a precursor to produce other secondary defenses (i.e., nicotine, caffeoylputrescine). |
4. Discussion
4.1. Phragmites australis Lineages Use Distinct Strategies to Counter Multiple Stressors
4.2. The Costs of Dealing with Multiple Stressors
4.3. Environmental Stressors Differentially Affect Chemical Diversity of Leaf and Root Tissue
4.4. An Effective Machine Learning Approach to Select Metabolites from the Metabolome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mousavi, M.E.; Irish, J.L.; Frey, A.E.; Olivera, F.; Edge, B.L. Global Warming and Hurricanes: The Potential Impact of Hurricane Intensification and Sea Level Rise on Coastal Flooding. Clim. Chang. 2011, 104, 575–597. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M. No Saturation in the Accumulation of Alien Species Worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.E.; Roy, D.B.; Cunha, T.; Larsson, T.-B. A Pan-European Inventory of Alien Species: Rationale, Implementation and Implications for Managing Biological Invasions. Handb. Alien Species Eur. 2009, 3, 1–14. [Google Scholar]
- Kleinen, T.; Petschel-Held, G. Integrated Assessment of Changes in Flooding Probabilities Due to Climate Change. Clim. Chang. 2007, 81, 283–312. [Google Scholar] [CrossRef]
- Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of Climate Change on Submerged and Emergent Wetland Plants. Aquat. Bot. 2016, 135, 3–17. [Google Scholar] [CrossRef]
- Lastrucci, L.; Lazzaro, L.; Dell’Olmo, L.; Foggi, B.; Cianferoni, F. Impacts of Myriophyllum Aquaticum Invasion in a Mediterranean Wetland on Plant and Macro-Arthropod Communities. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2018, 152, 427–435. [Google Scholar] [CrossRef]
- Colombano, D.D.; Litvin, S.Y.; Ziegler, S.L.; Alford, S.B.; Baker, R.; Barbeau, M.A.; Cebrián, J.; Connolly, R.M.; Currin, C.A.; Deegan, L.A. Climate Change Implications for Tidal Marshes and Food Web Linkages to Estuarine and Coastal Nekton. Estuaries Coasts 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Hunter, M.D. The Phytochemical Landscape: Linking Trophic Interactions and Nutrient Dynamics; Princeton University Press: Princeton, NJ, USA, 2016; Volume 74. [Google Scholar]
- Dyer, L.A.; Philbin, C.S.; Ochsenrider, K.M.; Richards, L.A.; Massad, T.J.; Smilanich, A.M.; Forister, M.L.; Parchman, T.L.; Galland, L.M.; Hurtado, P.J.; et al. Modern Approaches to Study Plant–Insect Interactions in Chemical Ecology. Nat. Rev. Chem. 2018, 2, 50–64. [Google Scholar] [CrossRef]
- Myers, J.H. The Induced Defense Hypothesis: Does It Apply to the Population Dynamics of Insects? Chem. Mediat. Coevol. 1988, 1, 530–557. [Google Scholar]
- Agrawal, A.A.; Karban, R. Why Induced Defenses May Be Favored over Constitutive Strategies in Plants. Ecol. Evol. Inducible Def. 1999, 10, 45–61. [Google Scholar]
- Dicke, M.; Hilker, M. Induced Plant Defences: From Molecular Biology to Evolutionary Ecology. Basic Appl. Ecol. 2003, 4, 3–14. [Google Scholar] [CrossRef]
- Voesenek, L.; Bailey-Serres, J. Flooding Tolerance: O2 Sensing and Survival Strategies. Curr. Opin. Plant Biol. 2013, 16, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant Waterlogging/Flooding Stress Responses: From Seed Germination to Maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Voesenek, L.; Benschop, J.; Bou, J.; Cox, M.; Groeneveld, H.; Millenaar, F.; Vreeburg, R.; Peeters, A. Interactions between Plant Hormones Regulate Submergence-induced Shoot Elongation in the Flooding-tolerant Dicot Rumex Palustris. Ann. Bot. 2003, 91, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Vriezen, W.H.; Zhou, Z.; Van Der Straeten, D. Regulation of Submergence-induced Enhanced Shoot Elongation in Oryza Sativa L. Ann. Bot. 2003, 91, 263–270. [Google Scholar] [CrossRef]
- Armstrong, J.; Armstrong, W. Phragmites Australis–A Preliminary Study of Soil-oxidizing Sites and Internal Gas Transport Pathways. New Phytol. 1988, 108, 373–382. [Google Scholar] [CrossRef]
- White, T. The Abundance of Invertebrate Herbivores in Relation to the Availability of Nitrogen in Stressed Food Plants. Oecologia 1984, 63, 90–105. [Google Scholar] [CrossRef]
- Huberty, A.F.; Denno, R.F. Plant Water Stress and Its Consequences for Herbivorous Insects: A New Synthesis. Ecology 2004, 85, 1383–1398. [Google Scholar] [CrossRef]
- van Dam, N.M.; Oomen, M.W. Root and Shoot Jasmonic Acid Applications Differentially Affect Leaf Chemistry and Herbivore Growth. Plant Signal. Behav. 2008, 3, 91–98. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Hastings, A.P. Tissue-Specific Plant Toxins and Adaptation in a Specialist Root Herbivore. Proc. Natl. Acad. Sci. USA 2023, 120, e2302251120. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Meyerson, L.A.; Pyšek, P.; Lučanová, M.; Wigginton, S.; Tran, C.; Cronin, J.T. Plant Genome Size Influences Stress Tolerance of Invasive and Native Plants via Plasticity. Ecosphere 2020, 11, e03145. [Google Scholar] [CrossRef]
- Martínez-Megías, C.; Rico, A. Biodiversity Impacts by Multiple Anthropogenic Stressors in Mediterranean Coastal Wetlands. Sci. Total Environ. 2022, 818, 151712. [Google Scholar] [CrossRef] [PubMed]
- Van der Putten, W.H.; Vet, L.E.; Harvey, J.A.; Wäckers, F.L. Linking Above-and Belowground Multitrophic Interactions of Plants, Herbivores, Pathogens, and Their Antagonists. Trends Ecol. Evol. 2001, 16, 547–554. [Google Scholar] [CrossRef]
- Soler, R.; Van der Putten, W.H.; Harvey, J.A.; Vet, L.E.; Dicke, M.; Bezemer, T.M. Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. J. Chem. Ecol. 2012, 38, 755–767. [Google Scholar] [CrossRef]
- Richards, L.A.; Glassmire, A.E.; Ochsenrider, K.M.; Smilanich, A.M.; Dodson, C.D.; Jeffrey, C.S.; Dyer, L.A. Phytochemical Diversity and Synergistic Effects on Herbivores. Phytochem. Rev. 2016, 15, 1153–1166. [Google Scholar] [CrossRef]
- Gershenzon, J.; Fontana, A.; Burow, M.; Wittstock, U.T.E.; Degenhardt, J. Mixtures of Plant Secondary Metabolites: Metabolic Origins and Ecological Benefits. Ecol. Plant Second. Metab. Genes Glob. Processes. Camb. Univ. Press Camb. 2012, 258, 56–77. [Google Scholar]
- McCloud, E.S.; Baldwin, I.T. Herbivory and Caterpillar Regurgitants Amplify the Wound-Induced Increases in Jasmonic Acid but Not Nicotine in Nicotiana Sylvestris. Planta 1997, 203, 430–435. [Google Scholar] [CrossRef]
- Thaler, J.S. Induced Resistance in Agricultural Crops: Effects of Jasmonic Acid on Herbivory and Yield in Tomato Plants. Environ. Entomol. 1999, 28, 30–37. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Inzé, D. The Pivotal Role of Ethylene in Plant Growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef]
- Lucci, N.; Mazzafera, P. Distribution of Rutin in Fava d’anta (Dimorphandra Mollis) Seedlings under Stress. J. Plant Interact. 2009, 4, 203–208. [Google Scholar] [CrossRef]
- Lee, D.; Xu, I.M.; Chiu, D.K.; Leibold, J.; Tse, A.P.; Bao, M.H.; Yuen, V.W.; Chan, C.Y.; Lai, R.K.; Chin, D.W. Induction of Oxidative Stress through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology 2019, 69, 1768–1786. [Google Scholar] [CrossRef] [PubMed]
- van Dam, N.M.; Harvey, J.A.; Wäckers, F.L.; Bezemer, T.M.; van der Putten, W.H.; Vet, L.E. Interactions between Aboveground and Belowground Induced Responses against Phytophages. Basic Appl. Ecol. 2003, 4, 63–77. [Google Scholar] [CrossRef]
- Harrison, J.G.; Philbin, C.S.; Gompert, Z.; Forister, G.W.; Hernandez-Espinoza, L.; Sullivan, B.W.; Wallace, I.S.; Beltran, L.; Dodson, C.D.; Francis, J.S. Deconstruction of a Plant-arthropod Community Reveals Influential Plant Traits with Nonlinear Effects on Arthropod Assemblages. Funct. Ecol. 2018, 32, 1317–1328. [Google Scholar] [CrossRef]
- Salgado, A.L.; Glassmire, A.E.; Sedio, B.E.; Diaz, R.; Stout, M.J.; Čuda, J.; Pyšek, P.; Meyerson, L.A.; Cronin, J.T. Metabolomic Evenness Underlies Intraspecific Differences among Lineages of a Wetland Grass. J. Chem. Ecol. 2023, 49, 437–450. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Zangerl, A.R. Phytochemical Diversity. In Phytochemical Diversity and Redundancy in Ecological Interactions; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–24. [Google Scholar]
- Firn, R.D.; Jones, C.G. Natural Products: A Simple Model to Explain Chemical Diversity. Nat. Prod. Rep. 2003, 20, 382. [Google Scholar] [CrossRef]
- Richards, L.A.; Dyer, L.A.; Forister, M.L.; Smilanich, A.M.; Dodson, C.D.; Leonard, M.D.; Jeffrey, C.S. Phytochemical Diversity Drives Plant–Insect Community Diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 10973–10978. [Google Scholar] [CrossRef]
- Clevering, O.A.; Lissner, J. Taxonomy, Chromosome Numbers, Clonal Diversity and Population Dynamics of Phragmites Australis. Aquat. Bot. 1999, 64, 185–208. [Google Scholar] [CrossRef]
- Lambertini, C.; Gustafsson, M.; Frydenberg, J.; Lissner, J.; Speranza, M.; Brix, H. A Phylogeographic Study of the Cosmopolitan Genus Phragmites (Poaceae) Based on AFLPs. Plant Syst. Evol. 2006, 258. [Google Scholar] [CrossRef]
- Chambersa, R.M.; Meyersonb, L.A.; Saltonstallc, K. Expansion of Phragmites Australis into Tidal Wetlands of North America. Aquat. Bot. 1999, 64, 261–273. [Google Scholar] [CrossRef]
- Packer, J.G.; Meyerson, L.A.; Skálová, H.; Pyšek, P.; Kueffer, C. Biological Flora of the British Isles: Phragmites Australis. J. Ecol. 2017, 105, 1123–1162. [Google Scholar] [CrossRef]
- Pellegrin, D.; Hauber, D.P. Isozyme Variation among Populations of the Clonal Species, Phragmites Australis (Cav.) Trin. Ex Steudel. Aquat. Bot. 1999, 63, 241–259. [Google Scholar] [CrossRef]
- Saltonstall, K. Cryptic Invasion by a Non-Native Genotype of the Common Reed, Phragmites Australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 2445–2449. [Google Scholar] [CrossRef]
- Hauber, D.P.; Saltonstall, K.; White, D.A.; Hood, C.S. Genetic Variation in the Common Reed, Phragmites Australis, in the Mississippi River Delta Marshes: Evidence for Multiple Introductions. Estuaries Coasts 2011, 34, 851–862. [Google Scholar] [CrossRef]
- Lambertini, C.; Sorrell, B.K.; Riis, T.; Olesen, B.; Brix, H. Exploring the Borders of European Phragmites within a Cosmopolitan Genus. AoB Plants 2012, 2012, pls020. [Google Scholar] [CrossRef] [PubMed]
- Rooth, J.E.; Stevenson, J.C.; Cornwell, J.C. Increased Sediment Accretion Rates Following Invasion by Phragmites Australis: The Role of Litter. Estuaries 2003, 26, 475–483. [Google Scholar] [CrossRef]
- Kiviat, E. Ecosystem Services of Phragmites in North America with Emphasis on Habitat Functions. AoB Plants 2013, 5, plt008. [Google Scholar] [CrossRef]
- Knight, I.A.; Wilson, B.E.; Gill, M.; Aviles, L.; Cronin, J.T.; Nyman, J.A.; Schneider, S.A.; Diaz, R. Invasion of Nipponaclerda Biwakoensis (Hemiptera: Aclerdidae) and Phragmites Australis Die-Back in Southern Louisiana, USA. Biol. Invasions 2018, 20, 2739–2744. [Google Scholar] [CrossRef]
- Cronin, J.T.; Johnston, J.; Diaz, R. Multiple Potential Stressors and Dieback of Phragmites Australis in the Mississippi River Delta, USA: Implications for Restoration. Wetlands 2020, 40, 2247–2261. [Google Scholar] [CrossRef]
- Elsey-Quirk, T.; Lynn, A.; Jacobs, M.D.; Diaz, R.; Cronin, J.T.; Wang, L.; Huang, H.; Justic, D. Vegetation Dieback in the Mississippi River Delta Triggered by Acute Drought and Chronic Relative Sea-Level Rise. Nat. Commun. 2024, 15, 3518. [Google Scholar] [CrossRef]
- Knight, I.A.; Cronin, J.T.; Gill, M.; Nyman, J.A.; Wilson, B.E.; Diaz, R. Investigating Plant Phenotype, Salinity, and Infestation by the Roseau Cane Scale as Factors in the Die-Back of Phragmites Australis in the Mississippi River Delta, USA. Wetlands 2020, 40, 1327–1337. [Google Scholar] [CrossRef]
- Macel, M.; de Vos, R.C.; Jansen, J.J.; van der Putten, W.H.; van Dam, N.M. Novel Chemistry of Invasive Plants: Exotic Species Have More Unique Metabolomic Profiles than Native Congeners. Ecol. Evol. 2014, 4, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Sedio, B.E.; Devaney, J.L.; Pullen, J.; Parker, G.G.; Wright, S.J.; Parker, J.D. Chemical Novelty Facilitates Herbivore Resistance and Biological Invasions in Some Introduced Plant Species. Ecol. Evol. 2020, 10, 8770–8792. [Google Scholar] [CrossRef] [PubMed]
- Skubel, S.A.; Su, X.; Poulev, A.; Foxcroft, L.C.; Dushenkov, V.; Raskin, I. Metabolomic Differences between Invasive Alien Plants from Native and Invaded Habitats. Sci. Rep. 2020, 10, 9749. [Google Scholar] [CrossRef]
- Glassmire, A.E.; Philbin, C.; Richards, L.A.; Jeffrey, C.S.; Snook, J.S.; Dyer, L.A. Proximity to Canopy Mediates Changes in the Defensive Chemistry and Herbivore Loads of an Understory Tropical Shrub, Piper Kelleyi. Ecol. Lett. 2019, 22, 332–341. [Google Scholar] [CrossRef]
- Meyerson, L.; Saltonstall, K.; Windham, L.; Kiviat, E.; Findlay, S. A Comparison of Phragmites Australis in Freshwater and Brackish Marsh Environments in North America. Wetl. Ecol. Manag. 2000, 2, 89–103. [Google Scholar] [CrossRef]
- Martin, L.J.; Blossey, B. The Runaway Weed: Costs and Failures of Phragmites Australis Management in the USA. Estuaries Coasts 2013, 36, 626–632. [Google Scholar] [CrossRef]
- Lee, H.; Diaz, R.; Cronin, J.T. Dieback and Dredge Soils of Phragmites Australis in the Mississippi River Delta Negatively Impact Plant Biomass. Sci. Rep. 2024, 14, 1935. [Google Scholar] [CrossRef]
- Colin, R.; Eguiarte, L. Phylogeographic Analyses and Genetic Structure Illustrate the Complex Evolutionary History of Phragmites Australis in Mexico. Am. J. Bot. 2016, 103, 876–887. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016); US Geological Survey: Reston, VA, USA, 2017.
- Achenbach, L.; Eller, F.; Nguyen, L.X.; Brix, H. Differences in Salinity Tolerance of Genetically Distinct Phragmites Australis Clones. AoB Plants 2013, 5, plt019. [Google Scholar] [CrossRef]
- Brix, H.; Ye, S.; Laws, E.A.; Sun, D.; Li, G.; Ding, X.; Yuan, H.; Zhao, G.; Wang, J.; Pei, S. Large-Scale Management of Common Reed, Phragmitesaustralis, for Paper Production: A Case Study from the Liaohe Delta, China. Ecol. Eng. 2014, 73, 760–769. [Google Scholar] [CrossRef]
- Schneider, S.A.; Broadley, H.J.; Andersen, J.C.; Elkinton, J.S.; Hwang, S.-Y.; Liu, C.; Noriyuki, S.; Park, J.-S.; Dao, H.T.; Lewis, M.L. An Invasive Population of Roseau Cane Scale in the Mississippi River Delta, USA Originated from Northeastern China. Biol. Invasions 2022, 24, 2735–2755. [Google Scholar] [CrossRef]
- Snook, J.S. (Louisiana State University, Baton Rouge, LA, USA); Diaz, R. (Louisiana State University, Baton Rouge, LA, USA). Unpublished work.
- Knight, I.A. (Louisiana State University, Baton Rouge, LA, USA); Suir, G. (Louisiana State University, Baton Rouge, LA, USA); Diaz, R (Louisiana State University, Baton Rouge, LA, USA). Unpublished work.
- Bhattarai, G.P.; Meyerson, L.A.; Cronin, J.T. Geographic Variation in Apparent Competition between Native and Invasive Phragmites Australis. Ecology 2017, 98, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Croy, J.R.; Meyerson, L.A.; Allen, W.J.; Bhattarai, G.P.; Cronin, J.T. Lineage and Latitudinal Variation in Phragmites Australis Tolerance to Herbivory: Implications for Invasion Success. Oikos 2020, 129, 1341–1357. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, J.; Raftery, D. Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Anal. Chem. 2020, 92, 12925–12933. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, D.; Xie, T.; Xie, J.; Tian, H.; Ai, L.; Chen, C. Comprehensive Two-dimensional Gas Chromatography Mass Spectrometry-based Untargeted Metabolomics to Clarify the Dynamic Variations in the Volatile Composition of Huangjiu of Different Ages. J. Food Sci. 2022, 87, 1563–1574. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable Selection Using Random Forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Menze, B.H.; Petrich, W.; Hamprecht, F.A. Multivariate Feature Selection and Hierarchical Classification for Infrared Spectroscopy: Serum-Based Detection of Bovine Spongiform Encephalopathy. Anal. Bioanal. Chem. 2007, 387, 1801–1807. [Google Scholar] [CrossRef]
- Oksanen, F.J.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package. R Package Version 2.4-1. 2017. Available online: https://CRAN.R-project.org/package=vegan (accessed on 28 August 2024).
- Hanley, M.E.; Gove, T.L.; Cawthray, G.R.; Colmer, T.D. Differential Responses of Three Coastal Grassland Species to Seawater Flooding. J. Plant Ecol. 2017, 10, 322–330. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The Crosstalks between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. J. Math. Methods Biosci. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Allen, W.J.; Young, R.E.; Bhattarai, G.P.; Croy, J.R.; Lambert, A.M.; Meyerson, L.A.; Cronin, J.T. Multitrophic Enemy Escape of Invasive Phragmites Australis and Its Introduced Herbivores in North America. Biol. Invasions 2015, 17, 3419–3432. [Google Scholar] [CrossRef]
- Endara, M.-J.; Forrister, D.; Nicholls, J.; Stone, G.N.; Kursar, T.; Coley, P. Impacts of Plant Defenses on Host Choice by Lepidoptera in Neotropical Rainforests. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World; Springer: Berlin/Heidelberg, Germany, 2022; pp. 93–114. [Google Scholar]
- Glassmire, A.E.; Carson, W.P.; Smilanich, A.M.; Richards, L.A.; Jeffrey, C.S.; Dodson, C.D.; Philbin, C.S.; Humberto, G.L.; Dyer, L.A. Multiple and Contrasting Pressures Determine Intraspecific Phytochemical Variation in a Tropical Shrub. Oecologia 2023, 201, 991–1003. [Google Scholar] [CrossRef]
- Rabelo, R.S.; Dyer, L.A.; Yamaguchi, L.F.; Diniz, I.; Simbaña, W.; Kussano, A.J.M.; Kato, M.J.; Massad, T.J. Plasticity in Plant Defense and the Role of Phytochemical Dissimilarity in Limiting Specialist Herbivory. Front. Ecol. Evol. 2023, 11, 1175590. [Google Scholar] [CrossRef]
- Furstenberg-Hagg, J.; Zagrobelny, M.; Bak, S. Plant Defense against Insect Herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef]
- Bixenmann, R.J.; Coley, P.D.; Weinhold, A.; Kursar, T.A. High Herbivore Pressure Favors Constitutive over Induced Defense. Ecol. Evol. 2016, 6, 6037. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Hastings, A.P. Trade-offs Constrain the Evolution of an Inducible Defense within but Not between Plant Species. Ecology 2019, 100, e02857. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Balfagón, D.; Gómez-Cadenas, A.; Mittler, R. Plant Responses to Climate Change: Metabolic Changes under Combined Abiotic Stresses. J. Exp. Bot. 2022, 73, 3339–3354. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Traw, M.; Chen, J.; Kreitman, M.; Bergelson, J. Fitness Costs of R-Gene-Mediated Resistance in Arabidopsis Thaliana. Nature 2003, 423, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Matyssek, R.; Agerer, R.; Ernst, D.; Munch, J.-C.; Osswald, W.; Pretzsch, H.; Priesack, E.; Schnyder, H.; Treutter, D. The Plant’s Capacity in Regulating Resource Demand. Plant Biol. 2005, 7, 560–580. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Müller, M. Hormonal Cross-Talk in Plant Development and Stress Responses. Front. Plant Sci. 2013, 4, 529. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef]
- Raguso, R.A. Wake up and Smell the Roses: The Ecology and Evolution of Floral Scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The Dilemma of Plants: To Grow or Defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.; Gong, Z. Reactive Oxygen Species Signaling and Stomatal Movement in Plant Responses to Drought Stress and Pathogen Attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar] [CrossRef]
- Coley, P.D.; Bryant, J.P.; Chapin III, F.S. Resource Availability and Plant Antiherbivore Defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef]
- Stamp, N. Out of the Quagmire of Plant Defense Hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef] [PubMed]
- Glassmire, A.E.; Zehr, L.N.; Wetzel, W.C. Disentangling Dimensions of Phytochemical Diversity: Alpha and Beta Have Contrasting Effects on an Insect Herbivore. Ecology 2020, 101, e03158. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Penuelas, J.; Rivas-Ubach, A. Ecological Metabolomics: Overview of Current Developments and Future Challenges. Chemoecology 2011, 21, 191–225. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Block, A.; Christensen, S.A.; Allen, L.H.; Schmelz, E.A. The Effects of Climate Change Associated Abiotic Stresses on Maize Phytochemical Defenses. Phytochem. Rev. 2018, 17, 37–49. [Google Scholar] [CrossRef]
- Hahn, P.G.; Maron, J.L. A Framework for Predicting Intraspecific Variation in Plant Defense. Trends Ecol. Evol. 2016, 31, 646–656. [Google Scholar] [CrossRef]
- Walker, T.W.; Alexander, J.M.; Allard, P.; Baines, O.; Baldy, V.; Bardgett, R.D.; Capdevila, P.; Coley, P.D.; David, B.; Defossez, E. Functional Traits 2.0: The Power of the Metabolome for Ecology. J. Ecol. 2022, 110, 4–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glassmire, A.E.; Salgado, A.L.; Diaz, R.; Johnston, J.; Meyerson, L.A.; Snook, J.S.; Cronin, J.T. The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis. Plants 2024, 13, 3133. https://doi.org/10.3390/plants13223133
Glassmire AE, Salgado AL, Diaz R, Johnston J, Meyerson LA, Snook JS, Cronin JT. The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis. Plants. 2024; 13(22):3133. https://doi.org/10.3390/plants13223133
Chicago/Turabian StyleGlassmire, Andrea E., Ana L. Salgado, Rodrigo Diaz, Joseph Johnston, Laura A. Meyerson, Joshua S. Snook, and James T. Cronin. 2024. "The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis" Plants 13, no. 22: 3133. https://doi.org/10.3390/plants13223133
APA StyleGlassmire, A. E., Salgado, A. L., Diaz, R., Johnston, J., Meyerson, L. A., Snook, J. S., & Cronin, J. T. (2024). The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis. Plants, 13(22), 3133. https://doi.org/10.3390/plants13223133