The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Site Description and Physicochemical Parameters of CFA and Soil
2.2. Pot Trials
2.3. Gas-Exchange Measurements
2.4. Plant Harvest
2.5. Metal Content Analysis
2.6. Phytoextraction and Phytostabilization Potential of the Plant
2.7. Statistical Analysis
3. Results and Discussion
3.1. CFA and Control Soil Characterizations before and after Experiment
3.2. Plant Growth in the Control Soil and CFA during the Pot Trials
3.3. Gas-Exchange Analysis
3.4. Metal Analysis
3.5. Assessing the Potential of H. splendidum for Phytoremediation of CFA-Polluted Sites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidrich, C.; Feuerborn, H.J.; Weir, A. Coal Combustion Products: A Global Perspective. In Proceedings of the World of Coal Ash Conference, Lexington, KY, USA, 22–25 April 2013; pp. 22–25. Available online: https://www.gypsum.org/wp-content/uploads/2014/06/VGBPowerTech2013-12pp46-52HEIDRICHAutorenexemplar.pdf (accessed on 26 May 2024).
- Yadav, V.K.; Gacem, A.; Choudhary, N.; Rai, A.; Kumar, P.; Yadav, K.K.; Islam, S. Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications. Minerals 2022, 12, 1503. [Google Scholar] [CrossRef]
- Dwivedi, A.; Jain, M.K. Fly ash-waste management and overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35. [Google Scholar]
- Bhatt, A.; Priyadarshini, S.; Mohanakrishnan, A.A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- Kelechi, S.E.; Adamu, M.; Uche, O.A.U.; Okokpujie, I.P.; Ibrahim, Y.E.; Obianyo, I.I. A comprehensive review on coal fly ash and its application in the construction industry. Cogent Eng. 2022, 9, 2114201. [Google Scholar] [CrossRef]
- Van der Merwe, E.M.; Prinsloo, L.C.; Mathebula, C.L.; Swart, H.C.; Coetsee, E.; Doucet, F.J. Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications. Appl. Surf. Sci. 2014, 317, 73–83. [Google Scholar] [CrossRef]
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The recycling of coal fly ash: A review on sustainable developments and economic considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Ivanova, T.S.; Panov, Z.; Blazev, K.; Paneva, V.Z. Investigation of Fly Ash Heavy Metals Content and Physico-Chemical Properties from Thermal Power Plant, Republic of Macedonia. Int. J. Eng. Sci. Technol. 2011, 3, 8219–8225. Available online: https://eprints.ugd.edu.mk/3573/1/IJEST11-03-12-194.pdf (accessed on 26 May 2024).
- Rashidi, N.A.; Yusup, S. Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustain. Chem. Eng. 2016, 4, 1870–1884. [Google Scholar] [CrossRef]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Pavlović, P. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Front. Environ. Sci. 2018, 6, 124. [Google Scholar] [CrossRef]
- Jambhulkar, H.P.; Shaikh, S.M.S.; Kumar, M.S. Fly ash toxicity, emerging issues and possible implications for its exploitation in agriculture; Indian scenario. Chemosphere 2018, 213, 333–344. [Google Scholar] [CrossRef]
- Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Ryba, S.A. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment. Environ. Toxicol. Chem. Int. J. 2009, 28, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Schubert, S.; Oster, J.D.; Sposito, G.; Minhas, P.S.; Cheraghi, S.A.; Saqib, M. High-magnesium waters and soils: Emerging environmental and food security constraints. Sci. Total Environ. 2018, 642, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, P.; Ahmadpour, F.; Maumud, T.M.M.; Arifin Abdu Soleimani, M.; Hosseini Tayefe, F. Phytoremediation of heavy metals: A green technology. Afr. J. Biotechnol. 2012, 11, 14036–14043. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation of Heavy Metals: Recent Techniques. Afr. J. Biotechnol. 2009, 8, 921–928. Available online: https://www.ajol.info/index.php/ajb/article/view/59987 (accessed on 26 May 2024).
- Banda, M.F.; Makgalaka, N.S.; Combrinck, S.; Regnier, T. Five-weeks pot trial evaluation of phytoremediation potential of Helichrysum splendidum Less. For copper- and lead-contaminated soils. Int. J. Environ. Sci. Technol. 2021, 2022, 1837–1848. [Google Scholar] [CrossRef]
- Zgorelec, Z.; Bilandzija, N.; Knez, K.; Galic, M.; Zuzul, S. Cadmium and Mercury Phytostabilization from Soil Using Miscanthus giganteus. Nature 2020, 10, 6685. Available online: https://www.nature.com/articles/s41598-020-63488-5 (accessed on 26 May 2024). [CrossRef]
- Li, X.; Huang, L. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015, 45, 813–839. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A Review on Phytoremediation of Heavy Metals and Utilization of Its By-Products. Asian J. Energy Environ. 2005, 6, 214–231. Available online: http://www.asian-energy-journal.info/ (accessed on 26 May 2024).
- Nwoko, C.O. Trends in Phytoremediation of Toxic Elemental and Organic Pollutants. Afr. J. Biotechnol. 2010, 9, 6010–6016. Available online: https://www.ajol.info/index.php/ajb/article/view/92167 (accessed on 26 May 2024).
- Eltaher, G.T.; Ahmed, D.A.; El-Beheiry, M.; El-Din, A.S. Biomass estimation and heavy metal accumulation by Pluchea dioscoridis (L.) DC. in the Middle Nile Delta, (Egypt): Perspectives for phytoremediation. S. Afr. J. Bot. 2019, 127, 153–166. [Google Scholar] [CrossRef]
- Bakshe, P.; Jugade, R. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. J. Hazard. Mater. Adv. 2023, 10, 100293. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosph. Environ. Chem. 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Y.; Huang, Y.; Liao, X.; Xu, W.; Zhang, T. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicol. Environ. Saf. 2024, 269, 115905. [Google Scholar] [CrossRef]
- Maiti, S.K.; Ghosh, D.; Raj, D. Phytoremediation of fly ash: Bioaccumulation and translocation of metals in natural colonizing vegetation on fly ash lagoons. In Handbook of Fly Ash; Elsevier: Amsterdam, The Netherlands, 2022; pp. 501–523. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Tu, C.; Ma, L.Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 2002, 300, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Hosman, M.E.; El-Feky, S.S.; Elshahawy, M.I.; Shaker, E.M. Mechanism of phytoremediation potential of flax (Linum usitatissimum L.) to Pb, Cd and Zn. Asian J. Plant Sci. Res. 2017, 7, 30–40. [Google Scholar]
- Brunetti, G.; Ruta, C.; Traversa, A.; D’Ambruoso, G.; Tarraf, W.; De Mastro, F.; DeMastro, G.; Cocozza, C. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 2018, 29, 91–104. [Google Scholar] [CrossRef]
- Fernández, S.; Poschenrieder, C.; Marcenò, C.; Gallego, J.R.; Jiménez-Gámez, D.; Bueno, A.; Afif, E. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. J. Geochem. Explor. 2017, 174, 10–20. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; US Environmental Protection Agency, Office of Research and Development, Ecological Risk Assessment Support Center: Washington, DC, USA, 2002; pp. 1–23.
- Makoi, J.H.; Chimphango, S.B.; Dakora, F.D. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica 2010, 48, 143–155. [Google Scholar] [CrossRef]
- Siyar, R.; Doulati Ardejani, F.; Norouzi, P.; Maghsoudy, S.; Yavarzadeh, M.; Taherdangkoo, R.; Butscher, C. Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water 2022, 14, 3597. [Google Scholar] [CrossRef]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef]
- Roques, S.; Kendall, S.; Smith, K.; Price, P.N.; Berry, P. A Review of the Non-NPKS Nutrient Requirements of UK Cereals and Oilseed Rape; HGCA: Houston, TX, USA, 2013. [Google Scholar]
- Cheng, S.; Gao, X.; Cao, L.; Wang, Q.; Qiao, Y. Quantification of Total Organic Carbon in Ashes from Smoldering Combustion of Sewage Sludge via a Thermal Treatment-TGA Method. Am. Chem. Soc. 2020, 5, 33445–33454. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 429990. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Lin, X.; Gonzalez Neira, A.C.; Tabay Zambon, F.; Hu, H.; Wang, X.; Huang, J.H.; Fan, G. Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Front. Plant Sci. 2022, 13, 856937. [Google Scholar] [CrossRef]
- Asgher, M.; Khan, M.I.R.; Anjum, N.A.; Khan, N.A. Minimising toxicity of cadmium in plants—Role of plant growth regulators. Protoplasma 2015, 252, 399–413. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Jiang, W.; Xiukang, W.; Hussain, S.; Ahmad, M.; Maqsood, M.F.; Mustafa, A. Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front. Plant Sci. 2022, 13, 773815. [Google Scholar] [CrossRef]
- Altıkulaç, A.; Turhan, S.; Kurnaz, A.; Gören, E.; Duran, C.; Hançerlioğulları, A.; Uğur, F.A. Assessment of the enrichment of heavy metals in coal and its combustion residues. ACS Omega 2022, 7, 21239–21245. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Nosratabad, A.F.; Reyhanitabar, A.; Mandal, L.; Farda, B.; Mohapatra, P.K.D. Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. Bacteria 2023, 2, 129–141. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, J.S.; Singh, R.P.; Singh, N.; Yunus, M. Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour. Conserv. Recycl. 2011, 55, 819–835. [Google Scholar] [CrossRef]
- Chowdhury, A.; Maiti, S.K. Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1519–1541. [Google Scholar] [CrossRef]
- Iya, N.I.D.; Assim, Z.B.; Ipor, I.B.; Omolayo, A.O.; Umaru, I.J.; Jume, B.H. Accumulation and translocation of heavy metals by Acalypha wilkesiana parts in the phytoextraction of contaminated soil. Indones. J. Chem. 2018, 18, 503–513. [Google Scholar] [CrossRef]
Before Treatment | pH | EC (µScm−1) | TOC (%) |
---|---|---|---|
Control soil | 5.72 ± 0.028 b | 85 ± 0.57 b | 3.35 ± 0.028 b |
CFA | 7.91 ± 0.020 a | 152 ± 0.58 a | 3.88 ± 0.020 a |
F-statistics | 38.45 *** | 30.631 *** | 230.52 *** |
After planting | |||
Control soil | 6.51 ± 0.06 b | 171.1 ± 18.2 b | 2.58 ± 0.05 b |
CFA | 7.47 ± 0.07 a | 380.3 ± 42.11 a | 3.47 ± 0.08 a |
F-statistics | 114.88 *** | 20.789 * | 78.93 *** |
Treatment | Plant Height (cm)-Week 1 | Plant Height (cm)-Week 2 | Plant Height (cm)-Week 6 | Plant Height (cm)-Week 8 | Plant Height (cm)-Week 11 | Plant Height (cm)-Week 14 | Increase (%) |
---|---|---|---|---|---|---|---|
Control soil | 21.2 ± 1.2 a | 22.1 ± 0.9 a | 23.0 ± 1.1 a | 23.9 ± 1.2 a | 24.5 ± 1.4 a | 25.2 ± 1.6 b | 18.9 |
CFA | 22.2 ± 0.9 a | 22.6 ± 0.8 a | 23.1 ± 1.0 a | 23.4 ± 1.0 a | 23.7 ± 1.0 a | 24.4 ± 1.2 a | 10.0 |
F-statistics | 0.540 ns | 0.723 ns | 0.001 ns | 0.119 ns | 0.171 ns | 0.158 ns |
Treatment | A | Gs | Ci | E | WUE |
---|---|---|---|---|---|
µmol (CO2) m−2 s−1 | mol (H2O) m−2 s−1 | µmol (CO2) mol−1 air−1 | mol (H2O) m−2 s−1 | µmol (CO2) m−1.H2O | |
Control soil | 23.9 ± 1.1 a | 0.08 ± 0.02 a | 258.0 ± 6.6 a | 1.96 ± 0.24 a | 455.0 ± 56.0 a |
CFA-C1 | 21.0 ± 0.8 b | 0.07 ± 0.01 a | 259.0 ± 6.3 a | 2.25 ± 0.30 a | 350.0 ± 24.0 b |
CFA-C2 | 21.5 ± 0.9 b | 0.07 ± 0.01 a | 243.0 ± 14.9 a | 2.11 ± 0.29 a | 380.0 ± 32.0 a |
CFA-C3 | 20.9 ± 0.8 c | 0.07 ± 0.01 a | 246.0 ± 6.8 a | 2.27 ± 0.30 a | 337.0 ± 46.0 b |
F-statistics | 2.57 * | 0.32 ns | 0.97 ns | 0.397 ns | 1.45 ns |
Metal | Control Soil Baseline (mg kg−1) | CFA Baseline (mg kg−1) |
---|---|---|
As | 63.0 ± 5.5 | 91.1 ± 7.7 |
Cd | 4.4 ± 0.8 | 6.5 ± 2.2 |
Co | 36.4 ± 4.4 | 18.6 ± 3.9 |
Cr | 309.0 ± 28.3 | 185.0 ± 17.0 |
Cu | 59.2 ± 4.2 | 23.5 ± 2.2 |
Mn | 1060.0 ± 60.0 | 456.0 ± 36.0 |
Ni | 96.5 ± 7.8 | 87.2 ± 7.4 |
Pb | 21.7 ± 1.3 | 12.4 ± 1.0 |
Zn | 224.0 ± 19.2 | 177.0 ± 15.3 |
Metal | Control Medium | Control Shoots | Control Roots | CFA Medium | CFA Shoots | CFA Roots | %Removal (CFA) |
---|---|---|---|---|---|---|---|
As | 28.6 ± 1.5 | 52.3 ± 3.1 | 49.2 ± 2.2 | 47.2 ± 4.1 | 62.7 ± 2.7 | 57.9 ± 6.2 | 48.2 |
Cd | 2.4 ± 0.0 | 1.5 ± 0.1 | 1.9 ± 0.1 | 4.5 ± 0.3 | 2.2 ± 0.8 | 2.7 ± 0.1 | 30.8 |
Co | 28.8 ± 1.5 | 7.6 ± 0.1 | 16.3 ± 1.9 | 10.6 ± 0.6 | 3.2 ± 0.4 | 5.9 ± 0.1 | 18.0 |
Cr | 178 ± 15.2 | 132 ± 1.1 | 111 ± 5.1 | 131 ± 14.9 | 69.8 ± 3.7 | 100 ± 7.7 | 29.1 |
Cu | 50.6 ± 4.3 | 39.0 ± 2.1 | 40.2 ± 3.1 | 30.8 ± 4.0 | 30.8 ± 1.2 | 36.5 ± 2.1 | 56.7 |
Mn | 910 ± 35.1 | 375 ± 27.3 | 697 ± 35.0 | 384 ± 23.1 | 178 ± 14.0 | 259 ± 14.0 | 15.8 |
Ni | 81.1 ± 7.7 | 36.0 ± 3.1 | 44.1 ± 5.1 | 52.6 ± 6.9 | 45.9 ± 5.8 | 42.4 ± 3.0 | 39.7 |
Pb | 16.1 ± 2.1 | 5.0 ± 0.2 | 7.1 ± 0.3 | 9.7 ± 1.2 | 4.2 ± 0.0 | 5.6 ± 0.3 | 21.8 |
Zn | 130 ± 6.5 | 150 ± 13.4 | 131 ± 11.1 | 76.4 ± 6.3 | 86.4 ± 7.3 | 78.6 ± 8.2 | 55.6 |
Metals | BCF-Control Soil | TF-Control Soil | BCF-CFA | TF-CFA |
---|---|---|---|---|
As | 1.70 | 1.06 | 1.22 | 1.08 |
Cd | 0.79 | 0.79 | 0.50 | 0.81 |
Co | 0.56 | 0.46 | 0.55 | 0.54 |
Cr | 0.62 | 1.19 | 0.76 | 0.76 |
Cu | 0.79 | 0.97 | 1.19 | 0.84 |
Mn | 0.76 | 0.53 | 0.67 | 0.68 |
Ni | 0.54 | 0.81 | 0.80 | 1.08 |
Pb | 0.44 | 0.70 | 0.57 | 0.75 |
Zn | 1.02 | 1.14 | 1.03 | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyengabe, A.; Kamogelo, L.S.; Ngmenzuma, T.Y.-a.; Banda, M.F. The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash. Plants 2024, 13, 2551. https://doi.org/10.3390/plants13182551
Munyengabe A, Kamogelo LS, Ngmenzuma TY-a, Banda MF. The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash. Plants. 2024; 13(18):2551. https://doi.org/10.3390/plants13182551
Chicago/Turabian StyleMunyengabe, Alexis, Ledwaba Samuel Kamogelo, Titus Yeliku-ang Ngmenzuma, and Maria Fezile Banda. 2024. "The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash" Plants 13, no. 18: 2551. https://doi.org/10.3390/plants13182551
APA StyleMunyengabe, A., Kamogelo, L. S., Ngmenzuma, T. Y.-a., & Banda, M. F. (2024). The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash. Plants, 13(18), 2551. https://doi.org/10.3390/plants13182551