Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajeesh Krishna, T.P.; Maharajan, T.; Victor Roch, G.; Ignacimuthu, S.; Antony Ceasar, S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biol. Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Lucas, R.E.; Knezek, B.D. Climatic and soil conditions promoting micronutrient deficiencies in plants. In Micronutrients in Agriculture; Mortvedt, J.J., Giordano, P.M., Lindsay, W.L., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 1972; pp. 371–379. [Google Scholar]
- Ullah, A.; Farooq, M.; Rehman, A.; Hussain, M.; Siddique, K.H. Zinc nutrition in chickpea (Cicer arietinum): A review. Crop Pasture Sci. 2020, 71, 199–218. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh, B. A review of zinc nutrition and plant breeding. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- Kumar, L.; Meena, N.L.; Singh, U. Zinc transporter: Mechanism for improving Zn availability. In Biofortification of Food Crops; Singh, U., Praharaj, C., Singh, S., Singh, N.P., Eds.; Springer: New Delhi, India, 2016; pp. 129–146. [Google Scholar] [CrossRef]
- Brown, P.H.; Cakmak, I.; Zhang, Q. Form and function of zinc plants. In Zinc in Soils and Plants. Developments in Plant and Soil Sciences; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands, 1993; Volume 55, pp. 93–106. [Google Scholar] [CrossRef]
- Sharma, P.N.; Chatterjee, C.; Sharma, C.P.; Agarwala, S.C. Zinc deficiency and anther development in maize. Plant Cell Physiol. 1987, 28, 11–18. [Google Scholar] [CrossRef]
- Yang, X.W.; Tian, X.H.; Gale, W.J.; Cao, Y.X.; Lu, X.C.; Zhao, A.Q. Effect of soil and foliar zinc application on zinc concentration and bioavailability in wheat grain grown on potentially zinc-deficient soil. Cereal Res. Commun. 2011, 39, 535–543. [Google Scholar] [CrossRef]
- Zhao, A.Q.; Tian, X.H.; Cao, Y.X.; Lu, X.C.; Liu, T. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. J. Sci. Food Agric. 2014, 94, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Bhatt, R.; Hossain, A.; Sharma, P. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agric. 2020, 5, 176–187. [Google Scholar] [CrossRef]
- Kurešová, G.; Menšík, L.; Haberle, J.; Svoboda, P.; Raimanova, I. Influence of foliar micronutrients fertilization on nutritional status of apple trees. Plant Soil Environ. 2019, 65, 320–327. [Google Scholar] [CrossRef]
- Sathishkumar, A.; Sakthivel, N.; Subramanian, E.; Rajesh, P. Productivity of field crops as influenced by foliar spray of nutrients: A review. Agric. Rev. 2020, 41, 146–152. [Google Scholar] [CrossRef]
- Sultana, S.; Naser, H.M.; Akhter, S.; Begum, R.A. Effectiveness of soil and foliar applications of zinc and boron on the yield of tomato. Bangladesh J. Agric. Res. 2016, 41, 411–418. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Hacisalihoglu, G. Zinc (Zn): The last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn. Plants 2020, 9, 1471. [Google Scholar] [CrossRef] [PubMed]
- Ackova, D.G. Heavy metals and their general toxicity on plants. Plant Sci. Today 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Fonseca, A.; Fraga, H.; Santos, J.A. Exposure of Portuguese viticulture to weather extremes under climate change. Clim. Serv. 2023, 30, 100357. [Google Scholar] [CrossRef]
- Fraga, H.; de Cortázar Atauri, I.G.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The interplay between atmospheric conditions and grape berry quality parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Direcção Geral de Agricultura Desenvolvimento Rural. Carta de Capacidade de Uso do Solo de Portugal—Bases e Normas Adoptadas na Sua Elaboração, 6th ed.; Ministério da Economia, Secretaria de Estado da Agricultura, Serviço de Reconhecimento e de Ordenamento Agrário: Lisboa, Portugal, 1972; pp. 25–26. [Google Scholar]
- Abduljaleel, Y.; Awad, A.; Al-Ansari, N.; Salem, A.; Negm, A.; Gabr, M.E. Assessment of subsurface drainage strategies using DRAINMOD model for sustainable agriculture: A Review. Sustainability 2023, 15, 1355. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Laranjo, M.; Coelho, R.; Martins, P.; Rato, A.E.; Vaz, M.; Valverde, P.; Shahidian, S.; Véstia, J.; Agulheiro-Santos, A.C. Terroir influence on quality of ‘Crimson’table grapes. Sci. Hortic. 2019, 245, 244–249. [Google Scholar] [CrossRef]
- Vázquez-Blanco, R.; González-Feijoo, R.; Campillo-Cora, C.; Fernández-Calviño, D.; Arenas-Lago, D. Risk Assessment and limiting soil factors for vine production—Cu and Zn contents in vineyard soils in Galicia (Rías Baixas D.O.). Agronomy 2023, 13, 309. [Google Scholar] [CrossRef]
- Kurtural, S.K.; Desired Soil Properties for Vineyard Site Preparation. Universtiy of Kentucky, College of Agriculture, Cooperative Extension Service. HortFact 31-01. 2011. Available online: http://www.uky.edu/hort/sites/www.uky.edu.hort/files/documents/KF_31_01.pdf (accessed on 23 May 2024).
- Lanyon, D.M.; Cass, A.; Hansen, D. The Effect of Soil Properties on Vine Performance. CSIRO Land and Water Technical Report No. 34/04. 2004. Available online: http://www.clw.csiro.au/publications/technical2004/tr34-04.pdf (accessed on 23 May 2024).
- Doğan, B.; Gülser, C. Assessment of soil quality for vineyard fields: A case study in Menderes District of Izmir, Turkey. Eurasian J. Soil Sci. 2019, 8, 176–183. [Google Scholar] [CrossRef]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Water, soil, and plants interactions in a threatened environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Silva, B.M.; Santos, W.J.R.D.; Oliveira, G.C.D.; Lima, J.M.D.; Curi, N.; Marques, J.J. Soil moisture space-time analysis to support improved crop management. Ciênc. Agrotecnol. 2015, 39, 39–47. [Google Scholar] [CrossRef]
- Pou, A.; Balda, P.; Cifre, J.; Ochogavia, J.M.; Ayestaran, B.; Guadalupe, Z.; Llompart, M.; Bota, J.; Martínez, L. Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera cv. Callet) in a Mediterranean climate. OENO One 2023, 57, 217–233. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Ul-Allah, S.; Siddique, K.H. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric. Water Manag. 2019, 219, 95–108. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. A Review of crop water stress assessment using remote sensing. Remote Sens. 2021, 13, 4155. [Google Scholar] [CrossRef]
- Ozier-Lafontaine, H.; Lesueur-Jannoyer, M. (Eds.) Sustainable Agriculture—Reviews 14: Agroecology and Global Change; Springer International Publishing: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar] [CrossRef]
- Boudissa, S.M.; Lambert, J.; Müller, C.; Kennedy, G.; Gareau, L.; Zayed, J. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci. Total Environ. 2006, 361, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Shivay, Y.S. Sulphur in soil, plant and human nutrition. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 429–434. [Google Scholar] [CrossRef]
- Triantafyllidis, V.; Kosma, A.K.C.; Patakas, A. An assessment of the soil quality index in a Mediterranean agro ecosystem. Emir. J. Food 2018, 30, 1042–1050. [Google Scholar] [CrossRef]
- Fredes, S.N.; Ruiz, L.Á.; Recio, J.A. Modeling Brix and pH in wine grapes from satellite images in Colchagua Valley, Chile. Agriculture 2021, 11, 697. [Google Scholar] [CrossRef]
- Jaafar, W.M.; Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Muhmad Kamarulzaman, A.M.; Raihan, A.; Md Sah, S.; Ahmad, A.; Saad, S.N.M.; Mohd Azmi, A.T.; Jusoh Syukri, N.K.A.; et al. The influence of deforestation on land surface temperature—A case ttudy of perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Darra, N.; Psomiadis, E.; Kasimati, A.; Anastasiou, A.; Anastasiou, E.; Fountas, S. Remote and proximal sensing-derived spectral indices and biophysical variables for spatial variation determination in vineyards. Agronomy 2021, 11, 741. [Google Scholar] [CrossRef]
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- Ahmed, N.; Ahmad, F.; Abid, M.; Ullah, M.A. Impact of zinc fertilization on gas exchange characteristics and water use efficiency of cotton crop under arid environment. Pak. J. Bot. 2009, 41, 2189–2197. [Google Scholar]
- Saboor, A.; Ali, M.A.; Ahmed, N.; Skalicky, M.; Danish, S.; Fahad, S.; Hassan, F.; Hassan, M.M.; Brestic, M.; Sabagh, A.E.; et al. Biofertilizer-based zinc application enhances maize growth, gas exchange attributes, and yield in zinc-deficient soil. Agriculture 2021, 11, 310. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- De Oliveira, A.C.; Pegoraro, C.; Viana, V.E. The Future of Rice Demand: Quality Beyond Productivity, 1st ed.; Springer International Publishing: Cham, Switzerland, 2020; p. 541. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Zlatev, Z.S.; Leitão, A.E.; Pais, I.P.; Fortunato, A.S.; Lidon, F.C. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol. 2013, 16, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Khalilzadeh, R.; Khan, S.; Zaib-un-Nisa; Bashir, R.; Pirzad, A.; Malik, A. Mitigation of Drought Stress and Yield Improvement in Wheat by Zinc Foliar Spray Relates to Enhanced Water Use Efficiency and Zinc Contents. Int. J. Plant Prod. 2021, 15, 377–389. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa). J. Plant Interact 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Greenough, J.D.; Longerich, H.P.; Jackson, S.E. Element fingerprinting of Okanagan Valley wines using ICP-MS: Relationships between wine composition vineyard and wine colour. Aust. J. Grape Wine Res. 1997, 3, 75–83. [Google Scholar] [CrossRef]
- Garrido, A.; Vos, R.C.H.D.; Conde, A.; Cunha, A. Light microclimate-driven changes at transcriptional level in photosynthetic grape berry tissues- photosynthetic grape berry tissues. Plants 2021, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Poudel, P.; Connolly, E.L.; Kwasniewski, M.; Lambert, J.D.; Di Gioia, F. Zinc biofortification via fertigation using alternative zinc sources and concentration levels in pea, radish, and sunflower microgreens. Sci. Hortic. 2024, 331, 113098. [Google Scholar] [CrossRef]
- Almanza-Merchán, P.J.; Fischer, G.; Cely, G.E. R The importance of pruning to the quality of wine grape fruits (Vitis vinifera L.) cultivated under high-altitude tropical conditions. Agron. Colomb. 2014, 32, 341–348. [Google Scholar] [CrossRef]
- Ryugo, K. Ciencia y arte: Cosechas de enredaderas y arbustos frutales. In Fruticultura, 1st ed.; AGT, Ed.; AGT Editor: Mexico City, Mexico, 1993. [Google Scholar]
- Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S.R. Berry density and size as factors related to the physicochemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; McLaughlin, M.J.; White, P. Zinc for better crop production and human health. Plant Soil 2017, 411, 1–4. [Google Scholar] [CrossRef]
- Li, H.; Lian, C.; Zhang, Z.; Shi, X.; Zhang, Y. Agro-biofortification of iron and zinc in edible portion of crops for the global south. Adv. Plants Agric. Res. 2017, 6, 52–54. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Verma, V.; Singh, H.; Singh, P.; Kaur, K. Biofortification of linseed (Linum usitatissimum L.) through mineral and chelated forms of Zn on yield, Zn accumulation, quality parameters, efficiency indices and economic under low Zn soils of North-Western India. J. Plant Nutr. 2023, 46, 356–369. [Google Scholar] [CrossRef]
- Trad, M.; Boge, M.; Hamda, H.B.; Renard, C.M.G.C.; Harbi, M. The Glucose-Fructose ratio of wild Tunisian grapes. Cogent Food Agric. 2017, 3, 1374156. [Google Scholar] [CrossRef]
- Daccak, D.; Lidon, F.C.; Pessoa, C.C.; Luís, I.C.; Coelho, A.R.F.; Marques, A.C.; Ramalho, J.C.; Silva, M.J.; Rodrigues, A.P.; Guerra, M.; et al. Enrichment of grapes with zinc-efficiency of foliar fertilization with ZnSO4 and ZnO and implications on winemaking. Plants 2022, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, M.F.; Scotti-Campos, P.; Pais, I.; Feteiro, A.; Canuto, D.; Simões, M.; Pelica, J.; Pataco, I.; Ribeiro, V.; Reboredo, F.H.; et al. Nutritional profile of the Portuguese cabbage (Brassica oleracea L var. costata) and its relationship with the elemental soil analysis. Emir. J. Food Agric. 2016, 28, 381–388. [Google Scholar] [CrossRef]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Rodier, J.; Legube, B.; Merlet, N. L’Analyse de l’Eau, 9th ed.; Dunod: Paris, France, 2009; p. 1579. ISBN 9782100072460. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analyses. EOS Trans. Am. Geophys. Union 1944, 25, 914–923. [Google Scholar]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwel, F.; Goulão, L.; et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Glob. Change Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Silva, M.J.; Martins, S.; Semedo, M.C.; et al. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Tree Physiol. 2020, 41, 708–727. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, S.B.; Cao, K.F. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol. 2011, 52, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 2008, 1, 27–35. [Google Scholar]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New flux parameters for the determination of QA redox state and excitation fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H.; Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; pp. 463–495. [Google Scholar] [CrossRef]
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. [Google Scholar]
- Pessoa, C.C.; Lidon, F.C.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.d.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 2021, 277, 109834. [Google Scholar] [CrossRef]
Treatment Plots | NDVI | |||||
---|---|---|---|---|---|---|
2nd Year | 3rd Year | |||||
Minimum | Maximum | Average | Minimum | Maximum | Average | |
Ctr | 0.14 | 0.85 | 0.66 ± 0.20 | 0.10 | 0.87 | 0.60 ± 0.21 |
ZnO (900 g.ha−1) | 0.14 | 0.84 | 0.60 ± 0.21 | - | - | - |
ZnO (1350 g.ha−1) | 0.15 | 0.85 | 0.61 ± 0.20 | 0.08 | 0.87 | 0.61 ± 0.22 |
ZnSO4 (900 g.ha−1) | 0.19 | 0.85 | 0.65 ± 0.18 | - | - | - |
ZnSO4 (1350 g.ha−1) | 0.13 | 0.85 | 0.55 ± 0.21 | 0.05 | 0.89 | 0.65 ± 0.21 |
1st Year | 2nd Year | 3rd Year | |||||
---|---|---|---|---|---|---|---|
Sample | 27 July | 13 September | 29 July | 21 August | 30 June | 19 August | |
Pn (µmol CO2 m−2 s−1) | |||||||
Ctr | 17.5 ± 0.0 aA | 13.6 ± 0.4 bB | 16.2 ± 0.3 aA | 9.8 ± 0.4 bB | 13.0 ± 0.4 aA | 9.1 ± 0.7 abB | |
450 | 16.4 ± 0.1 abA | 13.7 ± 0.1 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 15.1 ± 0.2 aB | 15.3 ± 0.7 abA | 16.2 ± 0.8 aA | 12.0 ± 1.2 abB | - | - |
1350 | - | - | 16.5 ± 0.6 aA | 14.0 ± 0.8 aA | 12.0 ± 0.5 bA | 7.2 ± 0.8 bB | |
450 | 17.7 ± 0.5 abA | 12.7 ± 0.5 bB | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 18.2 ± 0.2 aA | 15.5 ± 0.3 aB | 17.5 ± 0.4 aA | 13.8 ± 0.5 abB | - | - |
1350 | - | - | 13.8 ± 0.8 aA | 13.3 ± 0.5 aA | 16.4 ± 0.2 aA | 11.0 ± 0.7 aB | |
gs (mmol H2O m−2 s−1) | |||||||
Ctr | 146.0 ± 1.7 aA | 201.3 ± 5.8 bA | 291.8 ± 61.8 aA | 251.8 ± 50.3 aA | 191.3 ± 9.1 aA | 226.2 ± 17.8 aA | |
450 | 131.0 ± 2.9 aB | 197.8 ± 4.4 bA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 126.8 ± 5.2 aB | 263.7 ± 39.9 aA | 248.7 ± 50.2 aA | 255.1 ± 57.7 aA | - | - |
1350 | - | - | 252.1 ± 43.7 aA | 267.3 ± 39.9 aA | 206.4 ± 14.9 aA | 163.7 ± 27.1 aA | |
450 | 151.0 ± 3.9 aA | 167.3 ± 21.4 bA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 150.7 ± 4.6 aA | 201.2 ± 9.9 bA | 248.7 ± 44.2 aA | 213.8 ± 24.3 aA | - | - |
1350 | - | - | 187.0 ± 27.7 aA | 263.1 ± 17.6 aA | 251.6 ± 10.7 aA | 219.5 ± 20.6 aA | |
E (mmol H2O m−2 s−1) | |||||||
Ctr | 4.5 ± 0.0 aA | 5.4 ± 0.1 aB | 3.4 ± 0.3 aA | 2.7 ± 0.2 bA | 3.48 ± 0.14 aB | 5.39 ± 0.30 aA | |
450 | 3.9 ± 0.0 abA | 4.6 ± 0.1 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 3.7 ± 0.1 bA | 4.3 ± 0.4 bA | 3.3 ± 0.3 aA | 3.2 ± 0.3 bA | - | - |
1350 | - | - | 3.5 ± 0.3 aA | 3.9 ± 0.2 abA | 3.91 ± 0.10 aA | 4.27 ± 0.49 aA | |
450 | 4.2 ± 0.1 abA | 4.6 ± 0.3 bA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 4.3 ± 0.1 abA | 5.1 ± 0.1 aB | 3.5 ± 0.3 aA | 3.6 ± 0.2 abA | - | - |
1350 | - | - | 3.1 ± 0.2 aA | 4.3 ± 0.2 aA | 4.79 ± 0.11 aA | 5.21 ± 0.32 aA | |
iWUE (mmol CO2 mol−1 H2O) | |||||||
Ctr | 3.9 ± 0.0 bA | 2.5 ± 0.0 cB | 5.0 ± 0.4 aA | 3.7 ± 0.2 aB | 3.91 ± 0.17 aA | 1.67 ± 0.09 bB | |
450 | 4.2 ± 0.1 aA | 3.0 ± 0.0 bB | - | - | - | - | |
ZnO (g.ha−1) | 900 | 4.2 ± 0.1 aA | 3.6 ± 0.2 aB | 5.3 ± 0.5 aA | 3.8 ± 0.1 aB | - | - |
1350 | - | - | 4.8 ± 0.2 aA | 3.7 ± 0.1 aB | 2.64 ± 0.11 bA | 1.67 ± 0.04 bB | |
450 | 4.2 ± 0.1 aA | 2.8 ± 0.1 bcB | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 4.2 ± 0.1 aA | 3.1 ± 0.0 bB | 5.1 ± 0.3 aA | 3.8 ± 0.1 aB | - | - |
1350 | - | - | 4.6 ± 0.3 aA | 3.1 ± 0.1 aB | 3.55 ± 0.02 aA | 2.11 ± 0.05 aB |
1st Year | 2nd Year | 3rd Year | |||||
---|---|---|---|---|---|---|---|
Sample | 27 July | 13 September | 29 July | 21 August | 30 June | 19 August | |
Fv/Fm | |||||||
Ctr | 0.770 ± 0.003 aA | 0.806 ± 0.004 aA | 0.773 ± 0.012 aA | 0.755 ± 0.014 aA | 0.767 ± 0.013 abA | 0.786 ± 0.012 aA | |
450 | 0.791 ± 0.004 aA | 0.798 ± 0.005 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.767 ± 0.007 aA | 0.780 ± 0.013 aA | 0.738 ± 0.008 aA | 0.750 ± 0.017 aA | - | - |
1350 | - | - | 0.728 ± 0.006 aA | 0.720 ± 0.016 aA | 0.776 ± 0.014 aA | 0.808 ± 0.004 aA | |
450 | 0.796 ± 0.007 aA | 0.803 ± 0.010 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.787 ± 0.011 aA | 0.792 ± 0.007 aA | 0.765 ± 0.015 aA | 0.746 ± 0.007 aA | - | - |
1350 | - | - | 0.753 ± 0.018 aA | 0.707 ± 0.019 aA | 0.727 ± 0.016 bB | 0.779 ± 0.005 aA | |
Fv′/Fm′ | |||||||
Ctr | 0.451 ± 0.031 aA | 0.486 ± 0.032 aA | 0.467 ± 0.025 aA | 0.440 ± 0.012 aA | 0.403 ± 0.030 aA | 0.512 ± 0.032 aA | |
450 | 0.446 ± 0.027 aA | 0.453 ± 0.036 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.557 ± 0.035 aA | 0.488 ± 0.013 aA | 0.500 ± 0.009 aA | 0.451 ± 0.017 aA | - | - |
1350 | - | - | 0.486 ± 0.037 aA | 0.441 ± 0.032 aA | 0.469 ± 0.032 aA | 0.552 ± 0.016 aA | |
450 | 0.535 ± 0.027 aA | 0.516 ± 0.025 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.450 ± 0.030 aA | 0.472 ± 0.019 aA | 0.488 ± 0.045 aA | 0.479 ± 0.035 aA | - | - |
1350 | - | - | 0.446 ± 0.017 aA | 0.510 ± 0.018 aA | 0.421 ± 0.035 aA | 0.493 ± 0.016 aA | |
Y(II) | |||||||
Ctr | 0.358 ± 0.033 abA | 0.325 ± 0.010 aA | 0.338 ± 0.027 aA | 0.239 ± 0.020 bA | 0.265 ± 0.019 aA | 0.314 ± 0.022 aB | |
450 | 0.295 ± 0.020 bA | 0.248 ± 0.027 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.412 ± 0.028 aA | 0.302 ± 0.032 aA | 0.306 ± 0.005 aA | 0.232 ± 0.021 bA | - | - |
1350 | - | - | 0.300 ± 0.034 aA | 0.273 ± 0.029 abA | 0.289 ± 0.031 aA | 0.334 ± 0.030 aA | |
450 | 0.400 ± 0.018 aA | 0.274 ± 0.030 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.268 ± 0.021 bA | 0.253 ± 0.024 aA | 0.327 ± 0.032 aA | 0.294 ± 0.023 abA | - | - |
1350 | - | - | 0.310 ± 0.016 aA | 0.371 ± 0.032 aA | 0.267 ± 0.042 aA | 0.332 ± 0.020 aA | |
Y(NPQ) | |||||||
Ctr | 0.442 ± 0.039 abA | 0.483 ± 0.026 aA | 0.450 ± 0.016 aA | 0.558 ± 0.014 aA | 0.538 ± 0.025 aA | 0.373 ± 0.037 aB | |
450 | 0.546 ± 0.019 aA | 0.520 ± 0.034 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.403 ± 0.033 bA | 0.478 ± 0.028 aA | 0.474 ± 0.025 aA | 0.572 ± 0.022 abA | - | - |
1350 | - | - | 0.499 ± 0.041 aA | 0.528 ± 0.042 abA | 0.508 ± 0.036 aA | 0.348 ± 0.015 aB | |
450 | 0.401 ± 0.026 bA | 0.503 ± 0.028 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.512 ± 0.023 abA | 0.522 ± 0.023 aA | 0.505 ± 0.042 aA | 0.500 ± 0.034 abA | - | - |
1350 | - | - | 0.524 ± 0.017 aA | 0.429 ± 0.035 bA | 0.519 ± 0.049 aA | 0.380 ± 0.023 aB | |
Y(NO) | |||||||
Ctr | 0.199 ± 0.009 aA | 0.193 ± 0.018 aA | 0.212 ± 0.016 aA | 0.203 ± 0.007 aA | 0.196 ± 0.010 aB | 0.313 ± 0.032 aA | |
450 | 0.158 ± 0.009 aA | 0.232 ± 0.014 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.184 ± 0.016 aA | 0.221 ± 0.008 aA | 0.219 ± 0.024 aA | 0.196 ± 0.009 aA | - | - |
1350 | - | - | 0.202 ± 0.012 aA | 0.199 ± 0.016 aA | 0.204 ± 0.015 aB | 0.318 ± 0.028 aA | |
450 | 0.199 ± 0.013 aA | 0.223 ± 0.012 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.214 ± 0.014 aA | 0.225 ± 0.006 aA | 0.168 ± 0.014 aA | 0.207 ± 0.011 aA | - | - |
1350 | - | - | 0.167 ± 0.011 aA | 0.200 ± 0.008 aA | 0.214 ± 0.017 aA | 0.288 ± 0.015 aA | |
qN | |||||||
Ctr | 0.809 ± 0.031 aA | 0.823 ± 0.030 aA | 0.807 ± 0.019 aA | 0.845 ± 0.004 aA | 0.856 ± 0.018 aA | 0.696 ± 0.049 aB | |
450 | 0.873 ± 0.012 aA | 0.819 ± 0.027 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.768 ± 0.035 aA | 0.801 ± 0.012 aA | 0.785 ± 0.028 aA | 0.845 ± 0.012 aA | - | - |
1350 | - | - | 0.800 ± 0.031 aA | 0.823 ± 0.031 aA | 0.822 ± 0.026 aA | 0.674 ± 0.025 aB | |
450 | 0.772 ± 0.028 aA | 0.801 ± 0.021 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.827 ± 0.020 aA | 0.819 ± 0.013 aA | 0.831 ± 0.035 aA | 0.806 ± 0.032 aA | - | - |
1350 | - | - | 0.856 ± 0.014 aA | 0.766 ± 0.024 aA | 0.823 ± 0.033 aA | 0.724 ± 0.023 aA | |
qL | |||||||
Ctr | 0.684 ± 0.049 aA | 0.516 ± 0.056 aA | 0.604 ± 0.107 aA | 0.400 ± 0.036 abA | 0.650 ± 0.032 aA | 0.445 ± 0.053 aA | |
450 | 0.538 ± 0.073 aA | 0.403 ± 0.042 aA | - | - | - | - | |
ZnO (g.ha−1) | 900 | 0.564 ± 0.055 aA | 0.460 ± 0.058 aA | 0.443 ± 0.018 aA | 0.370 ± 0.040 bA | - | - |
1350 | - | - | 0.450 ± 0.039 aA | 0.478 ± 0.044 abA | 0.477 ± 0.075 aA | 0.420 ± 0.060 aA | |
450 | 0.586 ± 0.047 aA | 0.358 ± 0.052 aA | - | - | - | - | |
ZnSO4 (g.ha−1) | 900 | 0.478 ± 0.060 aA | 0.379 ± 0.032 aA | 0.513 ± 0.049 aA | 0.453 ± 0.033 abA | - | - |
1350 | - | - | 0.564 ± 0.044 aA | 0.574 ± 0.058 aA | 0.506 ± 0.084 aA | 0.514 ± 0.037 aA |
Treatment | Cv. Syrah Zn Content (mg.kg−1) | ||
---|---|---|---|
1st Year | 2nd Year | 3rd Year | |
Ctr | 7.94 a | 4.51 b | 10.15 b |
ZnO (150 g.ha−1) | 11.07 a | - | - |
ZnO (450 g.ha−1) | 12.31 a | - | - |
ZnO (900 g.ha−1) | 11.30 a | 7.35 ab | - |
ZnO (1350 g.ha−1) | - | 10.37 a | 11.89 a |
ZnSO4 (150 g.ha−1) | 9.36 a | - | - |
ZnSO4 (450 g.ha−1) | 12.26 a | - | - |
ZnSO4 (900 g.ha−1) | 10.59 a | 6.08 ab | - |
ZnSO4 (1350 g.ha−1) | - | 8.25 ab | 10.72 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Marques, A.C.; Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Brito, G.; Kullberg, J.C.; Ramalho, J.C.; Rodrigues, A.P.; Scotti-Campos, P.; et al. Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants 2024, 13, 1962. https://doi.org/10.3390/plants13141962
Daccak D, Marques AC, Pessoa CC, Coelho ARF, Luís IC, Brito G, Kullberg JC, Ramalho JC, Rodrigues AP, Scotti-Campos P, et al. Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants. 2024; 13(14):1962. https://doi.org/10.3390/plants13141962
Chicago/Turabian StyleDaccak, Diana, Ana Coelho Marques, Cláudia Campos Pessoa, Ana Rita F. Coelho, Inês Carmo Luís, Graça Brito, José Carlos Kullberg, José C. Ramalho, Ana Paula Rodrigues, Paula Scotti-Campos, and et al. 2024. "Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking" Plants 13, no. 14: 1962. https://doi.org/10.3390/plants13141962
APA StyleDaccak, D., Marques, A. C., Pessoa, C. C., Coelho, A. R. F., Luís, I. C., Brito, G., Kullberg, J. C., Ramalho, J. C., Rodrigues, A. P., Scotti-Campos, P., Pais, I. P., Semedo, J. N., Silva, M. M., Legoinha, P., Galhano, C., Simões, M., Reboredo, F. H., & Lidon, F. C. (2024). Foliar Spraying with ZnSO4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. Plants, 13(14), 1962. https://doi.org/10.3390/plants13141962