Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta
Abstract
:1. Introduction
2. Results
2.1. Growth and Productivity Response
2.2. Nutritional Content of Leaf Tissues
2.2.1. Nitrates and Total Kjeldahl Nitrogen
2.2.2. Non-Treatment-Related Macronutrients (Mg, K, P) and Micronutrients (Cu, Zn, Fe, Mn, B)
2.2.3. Treatment-Related Nutrients and Non-Nutrients (Ca, Na, and Cl)
3. Discussion
3.1. Growth and Productivity Response
3.2. Nutritional Content of Leaf Tissues
3.2.1. Nitrates and Total Kjeldahl Nitrogen
3.2.2. Non-Treatment-Related Macronutrients (Mg, K, P) and Micronutrients (Cu, Zn, Fe, Mn, B)
3.2.3. Treatment-Related Nutrients and Non-Nutrients (Ca, Na and Cl)
4. Materials and Methods
4.1. Plant Material and Cultivation Conditions
4.2. Nutrient Solution Composition and Iso-Osmotic Salt Application per EC Level
4.3. Sampling, Growth, Yield, and Leaf Biomass Determination
4.4. Essential Nutrients, Sodium, and Chloride Determination
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raffo, A.; Paoletti, F. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective. Front. Sustain. Food Syst. 2022, 5, 681459. [Google Scholar] [CrossRef]
- Corrado, G.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Zarrelli, A.; Giannini, P.; Ritieni, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae 2021, 7, 211. [Google Scholar] [CrossRef]
- Shaheen, S.; Ahmad, M.; Haroon, N. Edible wild plants: A solution to overcome food insecurity. In Edible Wild Plants: An Alternative Approach to Food Security; Springer International Publishing: Cham, Switzerland, 2017; pp. 41–57. [Google Scholar]
- Reyes-García, V.; Menendez-Baceta, G.; Aceituno-Mata, L.; Acosta-Naranjo, R.; Calvet-Mir, L.; Domínguez, P.; Garnatje, T.; Gómez-Baggethun, E.; Molina-Bustamante, M.; Molina, M.; et al. From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecol. Econ. 2015, 120, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Giovenzana, V.; Casson, A.; Beghi, R.; Pampuri, A.; Fiorindo, I.; Tugnolo, A.; Guidetti, R. Evaluation of consumer domestic habits on the environmental impact of ready-to-eat and minimally processed fresh-cut lamb’s lettuce. Sustain. Prod. Consum. 2021, 28, 925–935. [Google Scholar] [CrossRef]
- Xylia, P.; Botsaris, G.; Chrysargyris, A.; Skandamis, P.; Tzortzakis, N. Variation of microbial load and biochemical activity of ready-to-eat salads in Cyprus as affected by vegetable type, season, and producer. Food Microbiol. 2019, 83, 200–210. [Google Scholar] [CrossRef]
- Xylia, P.; Botsaris, G.; Skandamis, P.; Tzortzakis, N. Expiration Date of Ready-to-Eat Salads: Effects on Microbial Load and Biochemical Attributes. Foods 2021, 10, 941. [Google Scholar] [CrossRef]
- Schmitzer, V.; Senica, M.; Slatnar, A.; Stampar, F.; Jakopic, J. Changes in Metabolite Patterns During Refrigerated Storage of Lamb’s lettuce (Valerianella locusta L. Betcke). Front. Nutr. 2021, 8, 731869. [Google Scholar] [CrossRef]
- Enninghorst, A.; Lippert, F. Postharvest Changes in Carbohydrate Content of Lamb’s Lettuce (Valerianella locusta). Acta Hortic. 2003, 604, 553–558. [Google Scholar] [CrossRef]
- Péron, J.Y.; Rees, D.C. High-tech production of Corn Salad (Valerianella locusta (L.) Laterr.), a local, French vegetable crop. Acta Hortic. 1998, 467, 259–268. [Google Scholar] [CrossRef]
- Muminovic, J.; Melchinger, A.E.; Lübberstedt, T. Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed. 2004, 123, 460–466. [Google Scholar] [CrossRef]
- Fontana, E.; Nicola, S.; Rastilantie, M. Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. J. Food Agric. Environ. 2005, 7, 405–410. [Google Scholar]
- Długosz-Grochowska, O.; Wojciechowska, R.; Kruczek, M.; Habela, A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta (L.) cultivars. Hortic. Environ. Biotechnol. 2017, 58, 441–449. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Dugosz-Grochowska, O.; Koton, A.; Zupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Braidot, E.; Petrussa, E.; Peresson, C.; Patui, S.; Bertolini, A.; Tubaro, F.; Wählby, U.; Coan, M.; Vianello, A.; Zancani, M. Low-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria [L.] Pollich) during storage at low temperature. Postharvest Biol. Technol. 2014, 90, 15–23. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; Rincón-Cervera, M.A.; González-Fernández, M.J.; Guil-Guerrero, J.L. Phytochemical Composition and Antitumor Activities of New Salad Greens: Rucola (Diplotaxis tenuifolia) and Corn Salad (Valerianella locusta). Plant Foods Hum. Nutr. 2016, 71, 197–203. [Google Scholar] [CrossRef]
- Długosz-Grochowska, O.; Kołton, A.; Wojciechowska, R. Modifying folate and polyphenol concentrations in Lamb’s lettuce by the use of LED supplemental lighting during cultivation in greenhouses. J. Funct. Foods 2016, 26, 228–237. [Google Scholar] [CrossRef]
- Hernández, V.; Botella, M.Á.; Hellín, P.; Cava, J.; Fenoll, J.; Mestre, T.; Martínez, V.; Flores, P. Phenolic and Carotenoid Profile of Lamb’s Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods 2021, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Hortidaily Corn Salad: A Small, Niche Market. Available online: https://www.hortidaily.com/article/6044776/corn-salad-a-small-niche-market/ (accessed on 15 March 2023).
- Plaza, F. Good Sales and Growing Supply Benefit Corn Salad Market. Available online: https://www.freshplaza.com/europe/article/9060231/good-sales-and-growing-supply-benefit-corn-salad-market/ (accessed on 15 March 2023).
- Bauer, H.; Nagele, M.; Comploj, M.; Galler, V.; Mair, M.; Unterpertinger, E. Photosynthesis in cold acclimated leaves of plants with various degrees of freezing tolerance. Physiol. Plant 1994, 91, 403–412. [Google Scholar] [CrossRef]
- Ciamporova, M.; Trginova, I. Modification of plant cell ultrastructure accompanying metabolic responses to low temperatures. Sect. Bot. 1999, 54, 349–360. [Google Scholar]
- van Wijk, K.J.; Krause, G.H. Oxygen dependence of photoinhibition at low temperature in intact protoplasts of Valerianella locusta L. Planta 1991, 186, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.D.; Tomasi, N.; Gottardi, S.; Iacuzzo, F.; Cortella, G.; Manzocco, L.; Pinton, R.; Mimmo, T.; Cesco, S. The Effect of Growth Medium Temperature on Corn Salad [Valerianella locusta (L.) Laterr] Baby Leaf Yield and Quality. HortScience 2011, 46, 1619–1625. [Google Scholar] [CrossRef]
- Cortella, G.; Saro, O.; De Angelis, A.; Ceccotti, L.; Tomasi, N.; Dalla Costa, L.; Manzocco, L.; Pinton, R.; Mimmo, T.; Cesco, S. Temperature control of nutrient solution in floating system cultivation. Appl. Therm. Eng. 2014, 73, 1055–1065. [Google Scholar] [CrossRef]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Dalla Costa, L.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Chan, T.Y.K. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol. Lett. 2011, 200, 107–108. [Google Scholar] [CrossRef]
- Martínez-Ispizua, E.; Calatayud, Á.; Marsal, J.I.; Basile, F.; Cannata, C.; Abdelkhalik, A.; Soler, S.; Valcárcel, J.V.; Martínez-Cuenca, M.R. Postharvest Changes in the Nutritional Properties of Commercial and Traditional Lettuce Varieties in Relation with Overall Visual Quality. Agronomy 2022, 12, 403. [Google Scholar] [CrossRef]
- Agusta, H.; Kartika, J.G.; Sari, K.R. Nitrate concentration and accumulation on vegetables related to altitude and sunlight intensity. IOP Conf. Ser. Earth Environ. Sci. 2021, 896, 012052. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N. The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Saleh, A.; Gad, A.; Ahmed, A.; Arman, H.; Farhat, H.I. Groundwater Hydrochemical Characteristics and Water Quality in Egypt’s Central Eastern Desert. Water 2023, 15, 971. [Google Scholar] [CrossRef]
- Benaafi, M.; Al-Shaibani, A. Hydrochemical and Isotopic Investigation of the Groundwater from Wajid Aquifer in Wadi Al-Dawasir, Southern Saudi Arabia. Water 2021, 13, 1855. [Google Scholar] [CrossRef]
- Jat Baloch, M.Y.; Zhang, W.; Chai, J.; Li, S.; Alqurashi, M.; Rehman, G.; Tariq, A.; Talpur, S.A.; Iqbal, J.; Munir, M.; et al. Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water 2021, 13, 3361. [Google Scholar] [CrossRef]
- Ouarani, M.; Bahir, M.; Mulla, D.J.; Ouazar, D.; Chehbouni, A.; Dhiba, D.; Ouhamdouch, S.; El Mountassir, O. Groundwater Quality Characterization in an Overallocated Semi-Arid Coastal Area Using an Integrated Approach: Case of the Essaouira Basin, Morocco. Water 2020, 12, 3202. [Google Scholar] [CrossRef]
- Maskooni, E.; Naseri-Rad, M.; Berndtsson, R.; Nakagawa, K. Use of Heavy Metal Content and Modified Water Quality Index to Assess Groundwater Quality in a Semiarid Area. Water 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Ntanganedzeni, B.; Elumalai, V.; Rajmohan, N. Coastal Aquifer Contamination and Geochemical Processes Evaluation in Tugela Catchment, South Africa—Geochemical and Statistical Approaches. Water 2018, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining Hydrogeochemical Characterization and a Hyperspectral Reflectance Tool for Assessing Quality and Suitability of Two Groundwater Resources for Irrigation in Egypt. Water 2020, 12, 2169. [Google Scholar] [CrossRef]
- Kumar, D.L.; Dhakate, R.; Guguloth, S.; Srinivas, B. Hydrochemical appraisal of groundwater quality for drinking and agricultural utility in a granitic terrain of Maheshwaram area of Ranga Reddy district, Telnagana State, India. HydroResearch 2021, 4, 11–23. [Google Scholar]
- Pertierra Lazo, R.; Quispe Gonzabay, J. Economic analysis of hydroponic lettuce under floating root system in semi-arid climate. Granja 2020, 31, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Al Hamedi, F.H.A.A.; Karthishwaran, K.; Alyafei, M.A.M. Hydroponic wheat production using fresh water and treated wastewater under the semi-arid region. Emir. J. Food Agric. 2021, 33, 178. [Google Scholar] [CrossRef]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Carmassi, G.; Maggini, R.; Massa, D.; Tognoni, F. Simplified Models for the Water Relations of Soilless Cultures: What they do or Suggest for Sustainable Water Use in Intensive Horticulture. Acta Hortic. 2006, 718, 425–434. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, S.; Artés-Hernández, F.; Gómez, P.A.; Fernández, J.A.; Artés, F. Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments. J. Sci. Food Agric. 2010, 90, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Ranganathapura Sathyanarayana, S.; Vishal Gangadhar, W.; Badrinath, M.G.; Ravindra, R.M.; Shriramrao, A.U. Hydroponics: An Intensified Agriculture Practice to Improve Food Production. Rev. Agric. Sci. 2022, 10, 101–114. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. Agric. Environ. 2005, 3, 86–88. [Google Scholar]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable greenhouse Systems. In Sustainable Agriculture: Technology, Planning and Management; Nova Science Publishers: Hauppauge, NY, USA, 2010; ISBN 9781608762699. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Tomasi, N.; Pinton, R.; Dalla Costa, L.; Cortella, G.; Terzano, R.; Mimmo, T.; Scampicchio, M.; Cesco, S. New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci. Technol. 2015, 46, 267–276. [Google Scholar] [CrossRef]
- Nicola, S.; Hoeberechts, J.; Fontana, E. Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic. 2005, 697, 549–555. [Google Scholar] [CrossRef]
- Zanin, G.; Ponchia, G.; Sambo, P. Yield and quality of vegetables grown in a floating system for readyto-eat produce. Acta Hortic. 2009, 807, 433–438. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Alkhaled, B.; Livieratos, I.; Stamatakis, A.; Ntatsi, G.; Savvas, D. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically. J. Sci. Food Agric. 2018, 98, 1615–1624. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Pannico, A.; El-Nakhel, C.; Fascella, G.; Duri, L.G.; Cristofano, F.; Gentile, B.R.; Giordano, M.; Rouphael, Y.; et al. Nutrient solution deprivation as a tool to improve hydroponics sustainability: Yield, physiological, and qualitative response of lettuce. Agronomy 2021, 11, 1469. [Google Scholar] [CrossRef]
- Papadimitriou, D.; Kontaxakis, E.; Daliakopoulos, I.; Manios, T.; Savvas, D. Effect of N:K Ratio and Electrical Conductivity of Nutrient Solution on Growth and Yield of Hydroponically Grown Golden Thistle (Scolymus hispanicus L.). Proceedings 2020, 30, 87. [Google Scholar]
- Chatzigianni, M.; Aliferis, K.A.; Ntatsi, G.; Savvas, D. Effect of N Supply Level and N Source Ratio on Cichorium spinosum L. Metabolism. Agronomy 2020, 10, 952. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Kołton, A.; Długosz-Grochowska, O.; Knop, E. Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci. Hortic. 2016, 211, 179–186. [Google Scholar] [CrossRef]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Samuolienė, G. Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. J. Sci. Food Agric. 2019, 99, 6608–6619. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. Front. Plant Sci. 2021, 12, 678197. [Google Scholar] [CrossRef]
- Nájera, C.; Urrestarazu, M. Effect of the Intensity and Spectral Quality of LED Light on Yield and Nitrate Accumulation in Vegetables. HortScience 2019, 54, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef]
- Thapa, U.; Nandi, S.; Rai, R.; Upadhyay, A. Effect of nitrogen levels and harvest timing on growth, yield and quality of lettuce under floating hydroponic system. J. Plant Nutr. 2022, 45, 2563–2577. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.; Zhang, J.; Li, J.; Niu, T.; Tang, C.; Wang, C.; Xie, J. Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. Front. Plant Sci. 2022, 13, 1015745. [Google Scholar] [CrossRef]
- Mensah, E.; Kyei-Baffour, N.; Ofori, E.; Obeng, G. Influence of Human Activities and Land Use on Heavy Metal Concentrations in Irrigated Vegetables in Ghana and Their Health Implications. In Appropriate Technologies for Environmental Protection in the Developing World; Yanful, E.K., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 9–14. ISBN 9781402091384. [Google Scholar]
- AlKhatib, M.; Qutob, A.; Kattan, E.; Malassa, H.; Qutob, M. Heavy Metals Concentrations in Leafy Vegetables in Palestine, Case Study: Jenin and Bethlehem Districts. J. Environ. Prot. 2022, 13, 97–111. [Google Scholar] [CrossRef]
- Mengistu, D.A. Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): Systematic review. BMC Public Health 2021, 21, 2114. [Google Scholar] [CrossRef] [PubMed]
- Rahmdel, S.; Rezaei, M.; Ekhlasi, J.; Zarei, S.H.; Akhlaghi, M.; Abdollahzadeh, S.M.; Sefidkar, R.; Mazloomi, S.M. Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: Their potential health risk to the general population in Shiraz, Iran. Environ. Monit. Assess. 2018, 190, 650. [Google Scholar] [CrossRef] [PubMed]
- FAP/WHO Evaluation of Certain Food Additives and Contaminants. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/4197 (accessed on 12 March 2023).
- FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FINFO-DOC%252FCF14_INF01x.pdf (accessed on 14 March 2023).
- Giovenzana, V.; Beghi, R.; Buratti, S.; Civelli, R.; Guidetti, R. Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS-NIR spectroscopy. Talanta 2014, 120, 368–375. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, A.B.; Gupta, R. Pathophysiology of Nitrate Toxicity in Humans in View of the Changing Trends of the Global Nitrogen Cycle with Special Reference to India; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128119044. [Google Scholar]
- Carillo, P.; Rouphael, Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. Front. Plant Sci. 2022, 13, 899522. [Google Scholar] [CrossRef] [PubMed]
- Ghoname, A.A.; Abou-Hussei, S.D.; El-Tohamy, W.A. Eustress (Positive stress) Salinity as an enhancement tool for bioactive ingredients and quality characteristics of vegetables: A review. Sciences 2019, 9, 456–463. [Google Scholar]
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Vázquez-Hernández, M.C.; Parola-Contreras, I.; Montoya-Gómez, L.M.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R.G. Eustressors: Chemical and physical stress factors used to enhance vegetables production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Debouba, M.; Gouia, H.; Suzuki, A.; Ghorbel, M.H. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J. Plant Physiol. 2006, 163, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Sakaguchi, S.; Furukawa, H.; Ikeda, H. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Sci. Hortic. 2006, 109, 248–253. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Soteriou, G.A.; Kyratzis, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Differential Response to NaCl Osmotic Stress in Sequentially Harvested Hydroponic Red and Green Basil and the Role of Calcium. Front. Plant Sci. 2022, 13, 799213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Frei, M. Stressed food—The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011, 141, 271–286. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Chatzigianni, M.; Ntatsi, G.; Theodorou, M.; Stamatakis, A.; Livieratos, I.; Rouphael, Y.; Savvas, D. Functional Quality, Mineral Composition and Biomass Production in Hydroponic Spiny Chicory (Cichorium spinosum L.) Are Modulated Interactively by Ecotype, Salinity and Nitrogen Supply. Front. Plant Sci. 2019, 10, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntatsi, G.; Aliferis, K.A.; Rouphael, Y.; Napolitano, F.; Makris, K.; Kalala, G.; Katopodis, G.; Savvas, D. Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environ. Exp. Bot. 2017, 141, 113–123. [Google Scholar] [CrossRef]
- Corrado, G.; Vitaglione, P.; Soteriou, G.A.; Kyriacou, M.C.; Rouphael, Y. Configuration by osmotic eustress agents of the morphometric characteristics and the polyphenolic content of differently pigmented baby lettuce varieties in two successive harvests. Horticulturae 2021, 7, 264. [Google Scholar] [CrossRef]
- Carillo, P.; Soteriou, G.A.; Kyriacou, M.C.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y. Regulated salinity eustress in a floating hydroponic module of sequentially harvested lettuce modulates phytochemical constitution, plant resilience, and post-harvest nutraceutical quality. Agronomy 2021, 11, 1040. [Google Scholar] [CrossRef]
- Lucini, L.; Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Bernardi, J.; Colla, G. Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. Front. Plant Sci. 2016, 7, 948. [Google Scholar] [CrossRef] [Green Version]
- Läuchli, A.; Grattan, S.R. Plant Responses to Saline and Sodic Conditions. In Agricultural Salinity Assessment and Management; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 169–205. ISBN 9780784476482. [Google Scholar]
- Taleisnik, E.; Rodríguez, A.A.; Bustos, D.; Erdei, L.; Ortega, L.; Senn, M.E. Leaf expansion in grasses under salt stress. J. Plant Physiol. 2009, 166, 1123–1140. [Google Scholar] [CrossRef]
- Munns, R.; Greenway, H.; Delane, R.; Gibbs, J. Ion Concentration and Carbohydrate Status of the Elongating Leaf Tissue Hordeum vulgare Growing at High External NaCl: II. Cause of the growth reduction. J. Exp. Bot. 1982, 33, 574–583. [Google Scholar] [CrossRef]
- Rawson, H.; Long, M.; Munns, R. Growth and Development in NaCl-Treated Plants. I. Leaf Na+ and Cl- Concentrations Do Not Determine Gas Exchange of Leaf Blades in Barley. Funct. Plant Biol. 1988, 15, 519. [Google Scholar] [CrossRef]
- Papp, J.C.; Ball, M.C.; Terry, N. A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet). Plant Cell Environ. 1983, 6, 675–677. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Iacuzzo, F.; Gottardi, S.; Tomasi, N.; Savoia, E.; Tommasi, R.; Cortella, G.; Terzano, R.; Pinton, R.; Dalla Costa, L.; Cesco, S. Corn salad (Valerianella locusta (L.) Laterr.) growth in a water-saving floating system as affected by iron and sulfate availability. J. Sci. Food Agric. 2011, 91, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, S.; Iacuzzo, F.; Tomasi, N.; Cortella, G.; Manzocco, L.; Pinton, R.; Römheld, V.; Mimmo, T.; Scampicchio, M.; Dalla Costa, L.; et al. Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiol. Biochem. 2012, 56, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Radman, S.; Ćurko, J.; Toth, N.; Fabek, S.; Čoga, L.; Žutić, I.; Benko, B. Lamb’s lettuce mineral content in floating system. Acta Hortic. 2016, 1142, 343–348. [Google Scholar] [CrossRef]
- Zhang, X.; Franzisky, B.L.; Eigner, L.; Geilfus, C.; Zörb, C. Antagonism of chloride and nitrate inhibits nitrate reductase activity in chloride-stressed maize. Plant Growth Regul. 2021, 93, 279–289. [Google Scholar] [CrossRef]
- Urlić, B.; Dumičić, G.; Romić, M.; Ban, S.G. The effect of N and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill.). J. Plant Nutr. 2017, 40, 2611–2618. [Google Scholar] [CrossRef]
- Maggini, R.; Benvenuti, S.; Leoni, F.; Incrocci, L.; Pardossi, A. Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth. Agronomy 2021, 11, 2352. [Google Scholar] [CrossRef]
- Corrado, G.; De Micco, V.; Lucini, L.; Miras-Moreno, B.; Senizza, B.; Zengin, G.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Isosmotic Macrocation Variation Modulates Mineral Efficiency, Morpho-Physiological Traits, and Functional Properties in Hydroponically Grown Lettuce Varieties (Lactuca sativa L.). Front. Plant Sci. 2021, 12, 678799. [Google Scholar] [CrossRef] [PubMed]
- Corrado, G.; Vitaglione, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y. Phytochemical responses to salt stress in red and green baby leaf lettuce (Lactuca sativa L.) varieties grown in a floating hydroponic module. Separations 2021, 8, 175. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef]
- Bryan, N.S.; Alexander, D.D.; Coughlin, J.R.; Milkowski, A.L.; Boffetta, P. Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food Chem. Toxicol. 2012, 50, 3646–3665. [Google Scholar] [CrossRef]
- Zhang, F.X.; Miao, Y.; Ruan, J.G.; Meng, S.P.; Dong, J.D.; Yin, H.; Huang, Y.; Chen, F.R.; Wang, Z.C.; Lai, Y.F. Association between nitrite and nitrate intake and risk of gastric cancer: A systematic review and meta-analysis. Med. Sci. Monit. 2019, 25, 1788–1799. [Google Scholar] [CrossRef]
- Martin, R.K. Dietary Nitrates, Nitrites, and Food Safety: Risks Versus Benefits. Acta Sci. Nutr. Health 2021, 5, 65–76. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Dalgaard, F.; Blekkenhorst, L.C.; Murray, K.; Lewis, J.R.; Croft, K.D.; Kyrø, C.; Torp-Pedersen, C.; Gislason, G.; Tjønneland, A.; et al. Vegetable nitrate intake, blood pressure and incident cardiovascular disease: Danish Diet, Cancer, and Health Study. Eur. J. Epidemiol. 2021, 36, 813–825. [Google Scholar] [CrossRef]
- Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and nitrite in health and disease. Aging Dis. 2018, 9, 938–945. [Google Scholar] [CrossRef] [Green Version]
- The European Commission. Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs (Text with EEA relevance). Off. J. Eur. Union 2011, L 320, 15–17. [Google Scholar]
- Santamaria, P.; Gonnella, M.; Elia, A.; Parente, A.; Serio, F. Ways of Reducing Rocket Salad Nitrate Content. Acta Hortic. 2001, 548, 529–536. [Google Scholar] [CrossRef]
- Fontana, E.; Nicola, S.; Hoeberechts, J.; Saglietti, D. Soilless culture systems produce ready-to-eat corn salad (Valerianella olitoria L.) of high quality. Acta Hortic. 2003, 604, 505–509. [Google Scholar] [CrossRef]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S.; Vasilakakis, M. Assessing the Salinity Effects on Mineral Composition and Nutritional Quality of Green and Red “Baby” Lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 1998, 204, 212–219. [Google Scholar] [CrossRef]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Kurvits, A.; Kirkby, E.A. The uptake of nutrients by sunflower plants (Helianthus annum) growing in a continuous flowing culture system, supplied with nitrate or ammonium as nitrogen source. Z. Pflanz. Bodenkd. 1980, 143, 140–149. [Google Scholar] [CrossRef]
- Heenan, D.P.; Campbell, L.C. Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg). Plant Soil 1981, 61, 447–456. [Google Scholar] [CrossRef]
- Benito, B.; Haro, R.; Amtmann, A.; Cuin, T.A.; Dreyer, I. The twins K+ and Na+ in plants. J. Plant Physiol. 2014, 171, 723–731. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Alemán, F.; Martínez, V.; Rubio, F. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 2014, 171, 688–695. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol. 2014, 171, 696–707. [Google Scholar] [CrossRef]
- Loudari, A.; Benadis, C.; Naciri, R.; Soulaimani, A.; Zeroual, Y.; Gharous, M.E.; Kalaji, H.M.; Oukarroum, A. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interact. 2020, 15, 398–405. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cosgrove, D.J. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J. Exp. Bot. 2000, 51, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, S.T. Interaction between Plant Nutrients: III. Antagonism between Potassium, Magnesium and Calcium. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1993, 43, 1–5. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Bastías, E.; Alcaraz-López, C.; Bonilla, I.; Martínez-Ballesta, M.C.; Bolaños, L.; Carvajal, M. Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J. Plant Physiol. 2010, 167, 54–60. [Google Scholar] [CrossRef]
- Masood, S.; Saleh, L.; Witzel, K.; Plieth, C.; Mühling, K.H. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress. Plant Physiol. Biochem. 2012, 56, 56–61. [Google Scholar] [CrossRef]
- Santander, C.; Vidal, G.; Ruiz, A.; Vidal, C.; Cornejo, P. Salinity Eustress Increases the Biosynthesis and Accumulation of Phenolic Compounds That Improve the Functional and Antioxidant Quality of Red Lettuce. Agronomy 2022, 12, 598. [Google Scholar] [CrossRef]
- Carillo, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Kyriacou, M.C.; Sifola, M.I.; Rouphael, Y. Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. Agronomy 2020, 10, 1358. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Flowers, T.J.; Wang, S.-M. Mechanisms of sodium uptake by roots of higher plants. Plant Soil 2010, 326, 45–60. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Gustiar, F.; Munandar, M.; Ningsih, S.W.; Ammar, M. Biofortification of calcium on mustard (Brassica juncea L.) and lettuce (Lactuca sativa) cultivated in floating hydroponic system. Bul. Agroteknol. 2020, 1, 27–36. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J. Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc. Nutr. Soc. 2010, 69, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Vega, A.; O’Brien, J.A.; Gutiérrez, R.A. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr. Opin. Plant Biol. 2019, 52, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Manishankar, P.; Wang, N.; Köster, P.; Alatar, A.A.; Kudla, J. Calcium signaling during salt stress and in the regulation of ion homeostasis. J. Exp. Bot. 2018, 69, 4215–4226. [Google Scholar] [CrossRef] [Green Version]
- Kurth, E.; Cramer, G.R.; Läuchli, A.; Epstein, E. Effects of NaCl and CaCl 2 on Cell Enlargement and Cell Production in Cotton Roots. Plant Physiol. 1986, 82, 1102–1106. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Tang, R.-J.; Xu, H.-X.; Lan, W.-Z.; Zhao, F.; Luan, S. Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinière, A.; Zelazny, E. Membrane nanodomains and transport functions in plant. Plant Physiol. 2021, 187, 1839–1855. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.-K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123849052. [Google Scholar]
- Cramer, G.R.; Spurr, A.R. Responses of lettuce to salinity. I. Effects of NaCl and Na2SO4 on growth. J. Plant Nutr. 1986, 9, 115–130. [Google Scholar] [CrossRef]
- Reginato, M.; Luna, V.; Papenbrock, J. Current knowledge about Na2SO4 effects on plants: What is different in comparison to NaCl? J. Plant Res. 2021, 134, 1159–1179. [Google Scholar] [CrossRef] [PubMed]
- De Micco, V.; Arena, C.; Amitrano, C.; Rouphael, Y.; De Pascale, S.; Cirillo, C. Changes in Morpho-Anatomical and Eco-Physiological Responses of Viburnum tinus L. var lucidum as Modulated by Sodium Chloride and Calcium Chloride Salinization. Horticulturae 2022, 8, 119. [Google Scholar] [CrossRef]
- Trajkova, F.; Papadantonakis, N.; Savvas, D. Comparative Effects of NaCl and CaCl2 Salinity on Cucumber Grown in a Closed Hydroponic System. HortScience 2006, 41, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Cirillo, C.; De Micco, V.; Arena, C.; Carillo, P.; Pannico, A.; De Pascale, S.; Rouphael, Y. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 2019, 10, 742. [Google Scholar] [CrossRef]
- Lemos Neto, H.d.S.; de Almeida Guimarães, M.; Mesquita, R.O.; Sousa Freitas, W.E.; de Oliveira, A.B.; da Silva Dias, N.; Gomes-Filho, E. Silicon Supplementation Induces Physiological and Biochemical Changes That Assist Lettuce Salinity Tolerance. Silicon 2021, 13, 4075–4089. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Petropoulos, S.A. Impact of Salinity on the Growth and Chemical Composition of Two Underutilized Wild Edible Greens: Taraxacum officinale and Reichardia picroides. Horticulturae 2021, 7, 160. [Google Scholar] [CrossRef]
- Amitrano, C.; Rouphael, Y.; Pannico, A.; De Pascale, S.; De Micco, V. Reducing the Evaporative Demand Improves Photosynthesis and Water Use Efficiency of Indoor Cultivated Lettuce. Agronomy 2021, 11, 1396. [Google Scholar] [CrossRef]
- Savvas, D.; Drakatos, S.; Panagiotakis, I.; Ntatsi, G. NUTRISENSE: A new online portal to calculate nutrient solutions and optimize fertilization of greenhouse crops grown hydroponically. In Proceedings of the VIII South-Eastern Europe Symposium on Vegetables and Potatoes, Ohrid, Macedonia, 24–26 September 2021; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2021; pp. 149–156. [Google Scholar]
- Abebe, T.; Guenzi, A.C.; Martin, B.; Cushman, J.C. Tolerance of Mannitol-Accumulating Transgenic Wheat to Water Stress and Salinity. Plant Physiol. 2003, 131, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- De Groot, C.C.; Marcelis, L.F.M.; van den Boogaard, R.; Lambers, H. Regulation of growth by phosphorus supply in whole tomato plants. In Plant Nutrition; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 114–115. ISBN 9780306476242. [Google Scholar]
- Gerdel, R.W. The colorimetric determination of total phosphorous in plant solutions. Ohio J. Sci. 1928, 28, 229–235. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- The Perkin-Elmer Corporation. Analytical Methods for Atomic Absorption Spectroscopy, 4th ed.; The Perkin-Elmer Corporation: Waltham, MA, USA, 1996. [Google Scholar]
- Ramsay, J.; Brown, R.H.; Falloon, S.W.H. Simultaneous Determination of Sodium and Potassium in Small Volumes of Fluid by Flame Photometry. J. Exp. Biol. 1953, 30, 1–17. [Google Scholar] [CrossRef]
- Sarkar, D.; Sheikh, A.A.; Batabyal, K.; Mandal, B. Boron Estimation in Soil, Plant, and Water Samples using Spectrophotometric Methods. Commun. Soil Sci. Plant Anal. 2014, 45, 1538–1550. [Google Scholar] [CrossRef]
- Zenki, M.; Nose, K.; Tôei, K. Spectrophotometric determination of boron with an azomethine H derivative. Anal. Bioanal. Chem. 1989, 334, 238–241. [Google Scholar] [CrossRef]
- Persson, J.-A.; Wennerholm, M.; O’Halloran, S. Handbook for Kjeldahl Digestion, 4th ed.; Österberg, A., Ed.; FOSS: Hilleroed, Denmark, 2008; ISBN 9163034719. [Google Scholar]
- Cataldo, D.A.; Haroon, M.H.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Iwasaki, I.; Utsumi, S.; Ozawa, T. New Colorimetric Determination of Chloride using Mercuric Thiocyanate and Ferric Ion. Bull. Chem. Soc. Jpn. 1952, 25, 226. [Google Scholar] [CrossRef]
Treatment | Leaf NO3 (mg g−1 LDW) | Leaf Total-N (mg g−1 LDW) |
---|---|---|
Control | 13.85 ± 0.338 a | 55.70 ± 1.5 |
LNa | 10.66 ± 0.782 bc | 54.91 ± 1.3 |
HNa | 9.72 ± 0.202 bc | 57.52 ± 0.8 |
LCa | 11.15 ± 0.726 b | 54.40 ± 1.1 |
HCa | 8.981 ± 0.521 c | 53.44 ± 0.6 |
Statistical Significance | * | NS |
Treatment | Mg (mg g−1 LDW) | K (mg g−1 LDW) | P (mg g−1 LDW) |
---|---|---|---|
Control | 3.46 ± 0.22 | 59.50 ± 1.5 | 10.30 ± 0.46 |
LNa | 3.26 ± 0.26 | 57.33 ± 4.05 | 8.68 ± 0.91 |
HNa | 3.25 ± 0.30 | 51.33 ± 2.67 | 8.93 ± 0.56 |
LCa | 3.18 ± 0.29 | 58.00 ± 2.00 | 9.30 ± 0.12 |
HCa | 3.13 ± 0.13 | 51.33 ± 1.33 | 8.60 ± 0.53 |
Statistical Significance | NS | NS | NS |
Treatment | Cu (μg g−1 LDW) | Zn (μg g−1 DW) | Fe (μg g−1 DW) | Mn (μg g−1 DW) | B (μg g−1 DW) |
---|---|---|---|---|---|
Control | 12.40 ± 097 | 119.37 ± 6.24 | 73.81 ± 10.23 | 202.61 ± 49.44 | 1.22 ± 0.218 ab |
LNa | 13.93 ± 1.73 | 116.98 ± 9.24 | 58.20 ± 9.95 | 181.49 ± 33.17 | 1.43 ± 0.104 ab |
HNa | 13.16 ± 1.28 | 113.09 ± 12.28 | 44.80 ± 1.29 | 130.39 ± 10.12 | 1.03 ± 0.149 b |
LCa | 12.04 ± 0.88 | 126.87 ± 1.35 | 68.47 ± 13.60 | 193.67 ± 41.32 | 1.84 ± 0.198 a |
HCa | 10.88 ± 1.33 | 125.76 ± 10.27 | 65.09 ± 1.31 | 159.31 ± 1.99 | 1.62 ± 0.215 ab |
Statistical Significance | NS | NS | NS | NS | * |
Treatment | Ca (mg g−1 LDW) | Na (mg g−1 LDW) | Cl (mg g−1 LDW) |
---|---|---|---|
Control | 3.51 ± 0.78 b | 0.66 ± 0.10 c | 1.86 ± 0.17 d |
LNa | 4.15 ± 1.20 b | 2.50 ± 0.32 b | 6.28 ± 0.5 c |
HNa | 3.58 ± 0.46 b | 4.96 ± 0.57 a | 8.32 ± 0.57 ab |
LCa | 13.69 ± 0.76 a | 0.74 ± 0.11 c | 7.48 ± 0.32 b |
HCa | 15.57 ± 3.69 a | 0.52 ± 0.05 c | 9.13 ± 0.42 a |
Statistical Significance | * | * | * |
Treatments | NaCl (mM) | CaCl2 (mM) | Total Ionic Conc. (mM) | EC dS/m | Ψs (MPa at 20 °C) |
---|---|---|---|---|---|
Control | 0 | 0 | 34.51 | 2.47 | −0.08 |
LNa | 20 | 0 | 74.51 | 4.74 | −0.18 |
HNa | 40 | 0 | 114.51 | 7.04 | −0.28 |
LCa | 0 | 13.3 | 74.49 | 5.22 | −0.18 |
HCa | 0 | 26.5 | 115.51 | 7.94 | −0.28 |
Element Concentration (mM) | Control | LNa | HNa | LCa | HCa |
---|---|---|---|---|---|
K | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Ca | 5.50 | 5.50 | 5.50 | 18.83 | 32.17 |
Mg | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
NH4 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
SO4 | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 |
NO3 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 |
H2PO4 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Fe | 0.0250 | 0.0250 | 0.0250 | 0.0250 | 0.0250 |
Mn | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Zn | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 |
Cu | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0008 |
B | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Mo | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 |
Cl | 0.40 | 0.40 | 0.40 | 27.05 | 54.73 |
Na | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
HCO3 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
NaCl | 40.00 | 80.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voutsinos-Frantzis, O.; Karavidas, I.; Petropoulos, D.; Zioviris, G.; Fortis, D.; Ntanasi, T.; Ropokis, A.; Karkanis, A.; Sabatino, L.; Savvas, D.; et al. Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. Plants 2023, 12, 1454. https://doi.org/10.3390/plants12071454
Voutsinos-Frantzis O, Karavidas I, Petropoulos D, Zioviris G, Fortis D, Ntanasi T, Ropokis A, Karkanis A, Sabatino L, Savvas D, et al. Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. Plants. 2023; 12(7):1454. https://doi.org/10.3390/plants12071454
Chicago/Turabian StyleVoutsinos-Frantzis, Orfeas, Ioannis Karavidas, Dimitrios Petropoulos, Georgios Zioviris, Dimitrios Fortis, Theodora Ntanasi, Andreas Ropokis, Anestis Karkanis, Leo Sabatino, Dimitrios Savvas, and et al. 2023. "Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta" Plants 12, no. 7: 1454. https://doi.org/10.3390/plants12071454