Macrophyte-Based Assessment of Upland Rivers: Bioindicators and Biomonitors
Abstract
1. Introduction
2. Results
2.1. Aquatic Macrophytes as Bioindicators
2.2. Aquatic Macrophytes as Biomonitors
3. Discussion
3.1. Aquatic Macrophytes as Bioindicators
3.2. Aquatic Macrophytes as Biomonitors
3.3. Aquatic Macrophytes: Bioindicators and Biomonitors
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowden, W.B.; Glime, J.M.; Riis, T. Chapter 13—Macrophytes and Bryophytes. In Methods in Stream Ecology, 3rd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 243–271. [Google Scholar]
- Markert, B. From biomonitoring to integrated observation of the environment—The multi-markered bioindication concept. Ecol. Chem. Eng. 2008, 15, 315–333. [Google Scholar]
- Gecheva, G.; Pall, K.; Todorov, M.; Traykov, I.; Gribacheva, N.; Stankova, S.; Birk, S. Anthropogenic Stressors in Upland Rivers: Aquatic Macrophyte Responses. A Case Study from Bulgaria. Plants 2021, 10, 2708. [Google Scholar] [CrossRef]
- Council of the European Communities. Directive of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. L327 OJEC 2000, 43, 1–73. [Google Scholar]
- Birk, S.; Korte, T.; Hering, D. Intercalibration of assessment methods for macrophytes in lowland streams: Direct comparison and analysis of common metrics. Hydrobiol 2006, 566, 417–430. [Google Scholar] [CrossRef]
- Gecheva, G.; Dimitrova-Dyugerova, I.; Cheshmedjiev, S. Macrophytes. In Biological Analysis and Ecological Assessment of the Surface Water Types in Bulgaria; Belkinova, D., Gecheva, G., Eds.; Plovdiv University Press: Plovdiv, Bulgaria, 2013; pp. 127–146. [Google Scholar]
- Gecheva, G.; Yurukova, L. Water pollutant monitoring with aquatic bryophytes: A review. Environ. Chem. Lett. 2014, 12, 49–61. [Google Scholar] [CrossRef]
- Debén, S.; Aboal, J.R.; Carballeira, A.; Cesa, M.; Real, C.; Fernández, J.A. Inland water quality monitoring with native bryophytes: A methodological review. Ecol. Indic. 2015, 53, 115–124. [Google Scholar] [CrossRef]
- Demarco, C.F.; Quadro, M.S.; Selau Carlos, F.; Pieniz, S.; Morselli, L.B.G.A.; Andreazza, R. Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability 2023, 15, 1411. [Google Scholar] [CrossRef]
- Keskinkan, O.; Goksu, M.Z.L.; Yuceer, A.; Basibuyuk, M.; Forster, C.F. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process. Biochem. 2003, 39, 179–183. [Google Scholar] [CrossRef]
- Krems, P.; Rajfur, M.; Wacławek, M.; Kłos, A. The use of water plants in biomonitoring and phytoremediation of waters polluted with heavy metals. Ecol. Chem. Eng. 2013, 20, 353–370. [Google Scholar] [CrossRef]
- Council of the European Communities. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. OJEU 2008, 226, 1–17. [Google Scholar]
- Birk, S.; Willby, N.; Chauvin, C.; Coops, H.C.; Denis, L.; Galoux, D. Report on the Central Baltic River GIG Macrophyte Intercalibration Exercise. In CB GIG Macrophyte IC Report; Joint Research Center, Institute of Environment and Sustainability: Brussels, Belgium, 2007. [Google Scholar]
- Cegłowska, A.; Jusik, S.; Samecka-Cymerman, A.; Klink, A.; Szoszkiewicz, K. Habitat requirements of Elodea canadensis Michx. in Polish rivers. Oceanol. Hydrobiol. St. 2017, 46, 363–378. [Google Scholar] [CrossRef]
- Samecka-Cymerman, A.; Kempers, A.J. Biomonitoring of water pollution with Elodea canadensis. A case study of three small polish rivers with different levels of pollution. Water Air Soil. Pollut. 2003, 145, 139–153. [Google Scholar] [CrossRef]
- Gecheva, G.; Yurukova, L.; Cesa, M.; Cheshmedjiev, S. Monitoring of aquatic mosses and sediments: A case study in contaminated rivers, Bulgaria. Plant. Biosyst. 2013, 149, 527–536. [Google Scholar] [CrossRef]
- Favas, P.J.C.; Pratas, J.; Rodrigues, N.; D’Souza, R.; Varun, M.; Paul, M.S. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere 2018, 194, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Vukojevic, V.; Sabovljevic, M.; Sabovljevic, A.; Mihajlovic, N.; Drazic, G.; Vucinic, Z. Determination of heavy metal deposition in the county of Obrenovac (Serbia) using mosses as bioindicators. IV. Manganese (Mn), molybdenum (Mo), and nickel (Ni). Arch. Biol. Sci. 2009, 61, 835–845. [Google Scholar] [CrossRef]
- Gecheva, G. Species Composition and Bioconcentration Capacity of Aquatic Bryophytes from Maritsa River Habitats. Ph.D. Thesis, Institute of Biodiversity and Ecosystem Research—Bulgarian Academy of Scinces, Sofia, Bulgaria, 2004. [Google Scholar]
- Radeva, K.; Seymenov, K. Surface Water Pollution with Nutrient Components, Trace Metals and Metalloids in Agricultural and Mining-affected River Catchments (A Case Study for Three Tributaries of the Maritsa River, Southern Bulgaria). Geogr. Pannonica 2021, 25, 214–225. [Google Scholar] [CrossRef]
- Outridge, P.M.; Noller, B.N. Accumulation of toxic trace elements by freshwater vascular plants. Rev. Environ. Contam. Toxicol. 1991, 121, 63. [Google Scholar]
- Thiébaut, G.; Gross, Y.; Gierlinski, P.; Boiché, A. Accumulation of metals in Elodea canadensis and Elodea nuttallii: Implications forplant–macroinvertebrate interactions. Sci. Total. Environ. 2010, 408, 5499–5505. [Google Scholar] [CrossRef]
- Lenka, M.; Panda, K.K.; Panda, B.B. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant—4. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India. Arch. Environ. Contam. Toxicol. 1992, 22, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Dı’az, S.; Villares, R.; Lo´pez, J.; Carballeira, A. Arsenic and Mercury in Native Aquatic Bryophytes: Differences Among Species. Bull. Environ. Contam. Toxicol. 2013, 90, 465–470. [Google Scholar] [CrossRef]
- Hill, M.O.; Bell, N.; Bruggeman-Nannenga, M.A.; Brugués, M.; Cano, M.J.; Enroth, J.; Flatberg, K.I.; Frahm, J.-P.; Gallego, M.T.; Garilleti, R.; et al. An annotated checklist of the mosses of Europe and Macaronesia. J. Bryol. 2006, 28, 198–267. [Google Scholar] [CrossRef]
- Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 20 January 2023).
- Kohler, A. Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Landsch. Stadt. 1978, 10, 73–85. [Google Scholar]
- Mouvet, C. Métaux Lourds et Mousses Aquatiques, Synthèse Méthodologique: Rapport de Contrat à l’Agence de l’Eau Rhin-Meuse et l’Agence de l’Eau Rhône-Méditerranée-Corse; Université de Metz, Laboratoire d’Ecologie: Grenoble, France, 1986. [Google Scholar]
- Gonçalves, E.P.R.; Boaventura, R.A.R.; Mouvet, C. Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave River basin (Portugal). Sci. Total. Environ. 1992, 114, 7–24. [Google Scholar] [CrossRef]
- Soares, H.M.V.M.; Boaventura, R.A.R.; Machado, A.A.S.C.; Esteves da Silva, J.C.G. Sediments as monitors of heavy metal contamination in the Ave River basin (Portugal): Multivariate analysis of data. Environ. Pollut. 1999, 105, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Gribacheva, N.; Gecheva, G.; Stefanova, V. Air pollution monitoring with mosses in Western Rhodopes, Bulgaria. Bulg. Chem. Commun. 2019, 51, 256–260. [Google Scholar] [CrossRef]
- Steinnes, E.; Rühling, Å.; Lippo, H.; Mäkinen, A. Reference materials for large-scale metal deposition surveys. Accred Qual. Assur. 1997, 2, 243–249. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef]
Coordinates | ||||||||
---|---|---|---|---|---|---|---|---|
River—Site | N | E | Altitude, m a.s.l. | pH | T, °C | C, µS cm−1 | DO, mg L−1 | |
1 | Chepelarska—Kemera | 42.1457 | 24.87722 | 153 | 7.9 | 22 | 486 | 7.4 |
2 | Shirokolashka—Breze | 41.70222619 | 24.50111 | 870 | 8.3 | 18.5 | 222 | 9.3 |
3 | Vacha—before Teshel Reservoir | 41.6679447 | 24.34574 | 874 | 8.2 | 11.5 | 192 | 10.2 |
4 | Shirokolashka—mouth | 41.71861531 | 24.42639 | 762 | 8.3 | 15.5 | 247 | 9.3 |
5 | Maritsa—Raduil | 42.2758 | 23.68503 | 950 | 6.7 | 14 | 33 | 9.6 |
6 | Stryama—Pesnopoy | 42.4747209 | 24.82083 | 250 | 7.6 | 20 | 193 | 8.7 |
Taxa | Aquaticity Group | Indicator Group (Adapted RI [6]) |
---|---|---|
Berula erecta (Huds.) Coville | PHe | B |
Brachythecium rivulare Schimp. | BRm | A |
Bryum turbinatum (Hedw.) Turner | BRm | A |
Calamagrostis epigejos (L.) Roth | PHg | |
Ceratophyllum demersum L. | PHy | C |
Cinclidotus aquaticus Bruch & W.P.Schimper | BRm | A |
Elodea canadensis Michx. | PHy | C |
Epilobium ciliatum Raf. | PHg | |
Epilobium hirsutum L. | PHg | |
Epilobium parviflorum Schreb. | PHg | |
Eupatorium cannabinum L. | PHe | |
Fontinalis antipyretica Hedw. | BRm | B |
Leptodictyum riparium (Hedw.) Warnst. | BRm | B |
Lycopus europaeus L. | PHe | |
Mentha longifolia (L.) L. | PHe | |
Myriophyllum spicatum L. | PHy | C |
Persicaria maculosa Gray | PHg | |
Phalaris arundinacea L. | PHe | B |
Plantago lanceolata L. | PHg | |
Platyhypnidium riparoides (Hedw.) Dixon | BRm | A |
Potamogeton crispus L. | PHy | C |
Prunella vulgaris L. | n.a. | |
Ranunculus aquatilis L. | PHy | B |
Ranunculus repens L. | PHg | |
Rorippa sylvestris (L.) Besser | PHg | |
Rumex sp. | PHg | |
Saponaria officinalis L. | PHg | |
Symphytum officinale L. | PHg | |
Typha latifolia L. | PHe | |
Urtica dioica L. | PHg | |
Veronica beccabunga L. | PHe |
River Site | Number of Indicator Taxa | Abundance of Indicator Taxa (ABD3) | RI | EQR |
---|---|---|---|---|
1 | 2 | 16 | −50 | 0.25 |
2 | 1 | 27 | 0 | 0.50 |
3 | 1 | 27 | 100 | 1.00 |
4 | 2 | 28 | 96.4 | 0.98 |
5 | 5 | 33 | 72.7 | 0.86 |
6 | 5 | 172 | −68.6 | 0.16 |
Element | Min | Species | Max | Species | Median |
---|---|---|---|---|---|
Al | 3627 | F. antipyretica | 17,616 | L. riparium | 4684 |
As | 1.4 | F. antipyretica | 7.2 | L. riparium | 3.6 |
Cd | 0.2 | P. riparioides, L. riparium | 64 | L. riparium | 0.6 |
Co | 5.7 | P. riparioides, E. canadensis | 14 | L. riparium | 6.3 |
Cr | 3.5 | P. riparioides, F. antipyretica | 32 | L. riparium | 7.1 |
Cu | 7.6 | P. riparioides | 114 | L. riparium | 17 |
Fe | 4296 | E. canadensis | 16,242 | L. riparium | 5715 |
Mn | 990 | L. riparium | 6179 | L. riparium | 2200 |
Ni | 3.5 | F. antipyretica | 28 | L. riparium | 7.1 |
Pb | 3.4 | P. riparioides | 916 | L. riparium | 10 |
Zn | 55 | F. antipyretica | 3182 | L. riparium | 102 |
River Site | Al | As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | MPI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.8 | 2.0 | 262 | 2.0 | 9.2 | 15 | 2.8 | 0.8 | 4.7 | 270 | 39 | 198 |
2 | 3.3 | 1.9 | 0.8 | 0.9 | 5.6 | 2.6 | 2.4 | 0.1 | 2.8 | 4.4 | 1.1 | 2.1 |
4 | 2.0 | 1.8 | 1.0 | 0.8 | 3.4 | 5.1 | 1.4 | 0.5 | 1.2 | 3.2 | 1.3 | 1.6 |
5 | 0.8 | 0.4 | 2.5 | 0.9 | 0.8 | 1.4 | 0.8 | 0.2 | 0.6 | 2.1 | 0.7 | 2.0 |
6 | 0.9 | 0.5 | 10 | 0.7 | 1.8 | 1.8 | 0.8 | 0.3 | 1.3 | 3.0 | 1.3 | 7.2 |
River | Catchment Area, km2 | Length, km |
---|---|---|
Vacha | 1645 | 112 |
Stryama | 1395 | 110 |
Chepelarska | 1010 | 86 |
Shirokolashka | 218 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gecheva, G.; Stankova, S.; Varbanova, E.; Kaynarova, L.; Georgieva, D.; Stefanova, V. Macrophyte-Based Assessment of Upland Rivers: Bioindicators and Biomonitors. Plants 2023, 12, 1366. https://doi.org/10.3390/plants12061366
Gecheva G, Stankova S, Varbanova E, Kaynarova L, Georgieva D, Stefanova V. Macrophyte-Based Assessment of Upland Rivers: Bioindicators and Biomonitors. Plants. 2023; 12(6):1366. https://doi.org/10.3390/plants12061366
Chicago/Turabian StyleGecheva, Gana, Silviya Stankova, Evelina Varbanova, Lidia Kaynarova, Deyana Georgieva, and Violeta Stefanova. 2023. "Macrophyte-Based Assessment of Upland Rivers: Bioindicators and Biomonitors" Plants 12, no. 6: 1366. https://doi.org/10.3390/plants12061366
APA StyleGecheva, G., Stankova, S., Varbanova, E., Kaynarova, L., Georgieva, D., & Stefanova, V. (2023). Macrophyte-Based Assessment of Upland Rivers: Bioindicators and Biomonitors. Plants, 12(6), 1366. https://doi.org/10.3390/plants12061366