Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant
Abstract
:1. Introduction
2. Taxonomy, Occurrence and Botany
3. Popular Use
4. Pharmacology and Biological Activity
4.1. Healing and Anti-Inflammatory Activity
4.2. Larvicidal and Insecticidal Activity
4.3. Antiophidic, Antiproteolytic and Antihemorrhagic Activity
4.4. Antimicrobial Activity
5. Cytotoxicity and Genotoxicity
6. Cosmetic Scar Lightening and Softening
7. Nanostructures with Pracaxi Oil
8. Biofuel with Pracaxi Oil
9. Phytochemistry—Substances Identified in P. macroloba Species and Their Applications
10. Obtaining the Oil and Physicochemical Characterization
10.1. Methods of Oil Extraction and Refining
10.2. Physicochemical Characterization of Pracaxi Oil
11. Patents Related to Pracaxi Oil
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schöngart, J.; Piedade, M.T.F.; Ludwigshausen, S.; Horna, V.; Worbes, M. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J. Trop. Ecol. 2002, 18, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Le Cointe, P. Árvores E Plantas Úteis, 2nd ed.; Companhia Editora Nacional: São Paulo, Brasil, 1947; Volume 1, p. 378. [Google Scholar]
- Teixeira, G.L.; Maciel, L.G.; Mazzutti, S.; Gonçalves, C.B.; Ferreira, S.R.S.; Block, J.M. Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatal. Agric. Biotechnol. 2020, 24, 101521. [Google Scholar] [CrossRef]
- Calvo-Alvarado, J.C.; McDowell, N.G.; Waring, R.H. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species. Tree Physiol. 2008, 28, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantas, A.R.; Marangon, L.C.; Guedes, M.C.; Patriota, A.L.; Lira-Guedes, A.C. Spatial distribution of a population of Pentaclethra macroloba(Willd) Kuntze in a floodplain forest of the amazon estuary. Rev. Árvore 2017, 41, 4. [Google Scholar] [CrossRef] [Green Version]
- Dantas, A.R.; Guedes, M.C.; Teresa, M.; Piedade, F. Demographic and growth patterns of Pentaclethra macroloba (Willd.) Kuntze, ahyperdominant tree in the Amazon River estuary. Popul. Ecol. 2022, 64, 161–175. [Google Scholar] [CrossRef]
- Dantas, A.R.; Guedes, M.C.; da Vasconcelos, C.C.; Isacksson, J.G.L.; Pastana, D.N.B.; Lira-Guedes, A.C.; Piedade, M.T.F. Morphology, germination, and geographic distribution of pentaclethra macroloba (Fabaceae): A hyperdominant amazonian tree. Rev. Biol. Trop. 2021, 69, 181–196. [Google Scholar] [CrossRef]
- Da Silva, J.O.; Coppede, J.S.; Fernandes, V.C.; Sant’Ana, C.D.; Ticli, F.K.; Mazzi, M.V.; Giglio, J.R.; Pereira, P.S.; Soares, A.M.; Sampaio, S.V. Antihemorrhagic, antinucleolytic and other antiophidian properties of the aqueous extract from Pentaclethra macroloba. J. Ethnopharmacol. 2005, 100, 145–152. [Google Scholar] [CrossRef]
- da Silva, M.F.; Carreira, L.M.M.; Tavares, A.S.; Ribeiro, I.C.; Jardim, M.A.G.; Lobo, M.d.G.A.; Oliveira, J. As leguminosas da Amazônia brasileira: Lista prévia. Acta Bot. Bras. 1988, 2, 193–237. [Google Scholar] [CrossRef] [Green Version]
- Leal, I.C.R.; Júnior, I.I.; Pereira, E.M.; da Laport, M.S.; Kuster, R.M.; dos Santos, K.R.N. Pentaclethra macroloba tannins fractions active against methicillin-resistant staphylococcal and Gram-negative strains showing selective toxicity. Rev. Bras. Farmacogn. 2011, 21, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.Á.V.; Marangon, C.A.; Leite, P.M.F.; da Martins, V.C.A.; Nitschke, M.; de Plepis, A.M.G. Emulsões de quitosana/gelatina com óleos de andiroba e de pracaxi: Avaliação da atividade antimicrobiana sobre Staphylococcus aureus. In Ciências Tecnológicas, Exatas e da Terra e seu Alto Grau de Aplicabilidade; Atenaeditora: Ponta Grossa, Brazil, 2020; pp. 206–215. [Google Scholar] [CrossRef]
- Morais, L.R.B.; Gutjahr, E. Chemistry of Vegetable Oils: Valorization of the Amazon Biodiversity, 1st ed.; Brazilian Book Chamber: Pará, Brasil, 2011; Volume 1, pp. 68–69. [Google Scholar]
- Viana, C.A.S.; Paiva, A.O.; Jardim, C.V.; Rios, M.N.S.; Pinagé, G.R.; Arimoro, O.A.S.; Suganuma, E.; Guerra, C.D.; Alvez, M.M.P.J. Plantas da Amazônia: 450 Espécies de Uso Geral; Universidade de Brasília: Brasília, Brazil, 2011; 3378p, ISBN 9788564593022. [Google Scholar]
- Crespi, B.; Guerra, G.A.D. Ocorrência, coleta, processamento primário e usos do Pracaxi (Pentaclethra macroloba (Willd.) Kuntze) na Ilha de Cotijuba, Belém- PA. Rev. Bras. Agroecol. 2013, 8, 176–189. [Google Scholar]
- Dos Santos Costa, M.N.F.; Muniz, M.A.P.; Negrão, C.A.B.; Da Costa, C.E.F.; Lamarão, M.L.N.; Morais, L.; Silva Júnior, J.O.C.; Ribeiro Costa, R.M. Characterization of Pentaclethra macroloba oil: Thermal stability, gas chromatography and Rancimat. J. Therm. Anal. Calorim. 2014, 115, 2269–2275. [Google Scholar] [CrossRef]
- Ferreira Rodrigues Sarquis, R.D.S.; Rodrigues Sarquis, Í.; Rodrigues Sarquis, I.; Fernandes, C.P.; Araújo Da Silva, G.; Borja Lima E Silva, R.; Gonçalves Jardim, M.A.; Sánchez-Ortíz, B.L.; Carvalho, J.C.T. The Use of Medicinal Plants in the Riverside Community of the Mazagão River in the Brazilian Amazon, Amapá, Brazil: Ethnobotanical and Ethnopharmacological Studies. Evidence-based Complement. Altern. Med. 2019, 2019, 6087509. [Google Scholar] [CrossRef]
- Ribeiro Guabiraba, I.; Coutinho Barbosa, R.; Chagas Gurjão Nunes, J.; Fernandes Damasceno, L.; Margarida Castro Euler, A.; Cláudia Lira-Guedes, A. Qualidade do Óleo de Pracaxi da Comunidade do Limão do Curuá, Arquipélago do Bailique. V Scientific Journey; Emprapa: Macapá, Brazil, 2019. [Google Scholar]
- Eaton, W.D.; Anderson, C.; Saunders, E.F.; Hauge, J.B.; Barry, D. The impact of Pentaclethra macroloba on soil microbial nitrogen fixing communities and nutrients within developing secondary forests in the Northern Zone of Costa Rica. Trop. Ecol. 2012, 53, 207–214. [Google Scholar]
- da Freitas, J.L.; de Malheiros, M.A.B.; Vasconcelos, P.C.S. Processsos fenológicos de Taperebá (Spondias mombin L.) e Pracaxi (Pentaclethra macroloba (WILD) Kuntz) em ecossistema florestal de várzea na Ilha do Pará, Afuá, Pará. Rev. Ciências Agrárias/Amazonian J. Agric. Environ. Sci. 2016, 0, 163–172. [Google Scholar]
- Vaz, N.I.L.; Guabiraba, I.R.; Barbosa, R.C.; Euler, A.M.C.; Lira-Guede, A.C. Descrição da Extração de Óleo de Pracaxi Praticado por Agroextratoras da Ilha do Meio, PA. IV Scientific Journey; Embrapa: Macapá, Brazil, 2018. [Google Scholar]
- Simmons, C.V.; Banov, F.; Banov, D. Use of a topical anhydrous silicone base containing fatty acids from pracaxi oil in a patient with a diabetic ulcer. SAGE Open Med. Case Rep. 2015, 3, 2050313X1558967. [Google Scholar] [CrossRef] [Green Version]
- Banov, D.; Banov, F.; Bassani, A.S. Case Series: The Effectiveness of Fatty Acids from Pracaxi Oil in a Topical Silicone Base for Scar and Wound Therapy. Dermatol. Ther. 2014, 4, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 2018, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, T.D.B.; Leal, I.C.R.; Amaral, A.C.F.; Dos Santos, K.R.N.; Da Silva, M.G.; Kuster, R.M. Antimicrobial ellagitannin of Punica granatum fruits. J. Braz. Chem. Soc. 2002, 13, 606–610. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Segovia, J.F.O.; Sousa, V.Y.K.; Mata, E.C.G.; Gonçalves, M.C.A.; Bezerra, R.M.; Paulo, O.M.; Kanzaki, L.I.B. Antimicrobial activity of amazonian medicinal plants. Springerplus 2013, 2, 371. [Google Scholar] [CrossRef] [Green Version]
- Maistro, E.L.; Marques, E.S.; Tsuboy, M.S.F. Cytotoxic and genotoxic assessment of Euterpe oleracea fruit oil and Pentaclethra macroloba oil in human peripheral lymphocytes. Toxicol. Lett. 2013, 221, S126. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Cunha-Oliveira, T.; Sobral, M.C.; Abreu, P.L.; Alpoim, M.C.; Urbano, A.M. Impact of carcinogenic chromium on the cellular response to proteotoxic stress. Int. J. Mol. Sci. 2019, 20, 4901. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, C.V.; da Rodrigues, A.M.C.; de Oliveira, P.D.; da Silva, D.A.; da Silva, L.H.M. Technological properties of amazonian oils and fats and their applications in the food industry. Food Chem. 2017, 221, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; de Meirelles, A.J.A.; Maximo, G.J. Physical properties of Amazonian fats and oils and their blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Jaesun, C.; Goodman, C.L.; Rice, W.C.; McIntosh, A.H.; Chippendale, G.M.; Schubert, K.R. Pentaclethra macroloba seed effect on larval growth, cell viability, and midgut enzyme activity of Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 1994, 87, 1754–1760. [Google Scholar] [CrossRef]
- Santiago, G.M.P.; Viana, F.A.; Pessoa, O.D.L.; Santos, R.P.; Pouliquen, Y.B.M.; Arriaga, A.M.C.; Andrade-Neto, M.; Braz-Filho, R. Avaliação da atividade larvicida de saponinas triterpênicas isoladas de Pentaclethra macroloba (Willd.) Kuntze (Fabaceae) e Cordiapiauhiensis Fresen (Boraginaceae) sobre Aedes aegypti. Braz. J. Pharmacogn. 2005, 15, 187–190. [Google Scholar] [CrossRef]
- Dos Santos, A.C.V.; Fernandes, C.C.; Lopes, L.M.; de Sousa, A.H. Inseticidal oils from Amazon plants in control of fall armyworm. Rev. Caatinga. 2016, 29, 642–647. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.O.; Fernandes, R.S.; Ticli, F.K.; Oliveira, C.Z.; Mazzi, M.V.; Franco, J.J.; Giuliatti, S.; Pereira, P.S.; Soares, A.M.; Sampaio, S.V. Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba. Toxicon 2007, 50, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.M.A.; Santos, J.D.L.; Xavier, B.M.; Almeida, J.R.; Resende, L.M.; Martins, W.; Marcussi, S.; Marangoni, S.; Stábeli, R.G.; Calderon, L.A.; et al. Snake venom PLA2s inhibitors isolated from brazilian plants: Synthetic and natural molecules. Biomed Res. Int. 2013, 2013, 153045. [Google Scholar] [CrossRef] [Green Version]
- Pereira Lima, R.; Souza da Luz, P.T.; Braga, M.; dos Santos Batista, P.R.; Ferreira da Costa, C.E.; Zamian, J.R.; Santos do Nascimento, L.A.; da Rocha Filho, G.N. Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Ind. Crops Prod. 2017, 97, 536–544. [Google Scholar] [CrossRef]
- Lago, R.C.A.; Siqueira, F.A.R. De Boletim Técnico do Centro de Tecnologia Agrícola e Alimentar; Embrapa: Macapá, Brazil, 1980; pp. 1–58. [Google Scholar]
- Viana, F.A.; Pouliquen, Y.B.M.; Andrade-Neto, M.; Santiago, G.M.P.; Pessoa, O.D.L.; Rodrigues-Filho, E.; Braz-Filho, R. Complete 1H and 13C NMR assignments for two new monodesmoside saponins from Pentaclethra macroloba (Willd.) Kuntze. Magn. Reson. Chem. 2004, 42, 695–699. [Google Scholar] [CrossRef]
- Viana, F.A.; Braz-Filho, R.; Pouliquen, Y.B.M.; Neto, M.A.; Santiago, G.M.P.; Rodrigues-Filho, E. Triterpenoid saponins from stem bark of Pentaclethra macroloba. J. Braz. Chem. Soc. 2004, 15, 595–602. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, W.S.; da Silva, J.A.M.; Rocha, C.A.M. Prospecção Científica e Tecnológica da Utilização do Óleo de Pracaxi Scientific and Technological Prospection of the use of Pracaxi Oil. Cad. Prospecção 2019, 12, 1560–1571. [Google Scholar] [CrossRef]
- Pires, C.L.; Zanetti, T.A.; Mantovani, M.S.; de Gaivão, I.O.N.M.; Perazzo, F.F.; Rosa, P.C.P.; Maistro, E.L. Pracaxi oil affects xenobiotic metabolisms, cellular proliferation, and oxidative stress without cytotogenotoxic effects in HepG2/C3A cells. Toxicol. Vitr. 2022, 83, 105392. [Google Scholar] [CrossRef]
- Fortes Neto, P.; Lúcia Perondi Fortes, N.; Fortes Neto, P. O Uso de óleos de andiroba e pracaxi e extrato de própolis no controle do Aspergillus spp. isolados de amêndoas da castanha-do-brasil. Rev. Bras. Agroecol. 2020, 15, 204–212. [Google Scholar] [CrossRef]
- Mattiazzi, J.; Pegoraro, N.S.; Schaffazick, S.R.; Cruz, L. Validation of a RP-HPLC-UV method for the assay of ubiquinone in pracaxi oil-core nanocapsules. Lat. Am. J. Pharm. 2014, 33, 347–351. [Google Scholar]
- De Lourdes, J.; Fernanda Berlingieri, M. Analysis of marketing methods for Andiroba oils (Carapa guianensis Aubl.), Pracaxi [Pentaclethra macroloba (Willd.) Kuntze] and Copaíba (Copaifera spp.) in Roraima. Cadernos de Agroecologia. In Proceedings of the Anais do XI Congresso Brasileiro de Agroecologia, São Cristóvão, Sergipe, 4–7 November 2019; Volume 15. [Google Scholar]
- Suffredini, I.B.; Frana, S.A.; Santos, Á.M.M.; Díaz, I.E.C.; Bernardi, M.M. Pracaxi impairs general activity and locomotion in male mice. Pharmacology 2017, 3, 91–104. [Google Scholar]
- Galván, A.; Carmen, L.; Del, P.; Tabasco, E.D.E. Variación de semillas y germinación de Swietenia macrophylla King de tres procedencias del estado de tabasco, México. For. Veracruzana 2012, 14, 35–42. [Google Scholar]
- Oliveira, A.; França, H.; Kuster, R.; Teixeira, L.; Rocha, L. Chemical composition and antibacterial activity of Brazilian propolis essential oil. J. Venom. Anim. toxins. 2010, 16, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Baurin, N.; Arnoult, E.; Scior, T.; Do, Q.T.; Bernard, P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J. Ethnopharmacol. 2002, 82, 155–158. [Google Scholar] [CrossRef]
- Cruz, E.D.; Barros, H.S.D. Germinação de sementes de espécies amazônicas: Pracaxi [Pentaclethra macroloba (Willd.) Kuntze]. Embrapa Comun. Técnico. 2015, 269, 5. [Google Scholar]
- De Melo, C.F.M.; Guimarães, M.C.F.; Souza, H.B. O “Matá-Matá”,“Pracaxi”e “Umiri”Como Fontes de Celulose Para Papel; B. Téc. IPEAN.; Embrapa: Macapá, Brazil, 1973; Volume 57, pp. 1–22. [Google Scholar]
- Johnston, M.; Colquhoun, A. Preliminary ethnobotanical survey of Kurupukari: An Amerindian settlement of central Guyana. Econ. Bot. 1996, 50, 182–194. [Google Scholar] [CrossRef]
- da Ribeiro, R.N.S.; de Santana, A.C.; Tourinho, M.M. Análise exploratória da socioeconomia de sistemas agroflorestais em várzea flúvio-marinha, Cametá-Pará, Brasil. Rev. Econ. Sociol. Rural. 2004, 42, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Leão, K.M.M.; Reis, L.V.C.; Speranza, P.; Rodrigues, A.P.; Ribeiro, A.P.B.; Macedo, J.A.; Macedo, G.A. Physicochemical characterization and antimicrobial activity in novel systems containing buriti oil and structured lipids nanoemulsions. Biotechnol. Rep. 2019, 24, e00365. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Pereira, D.T.V.; Ferreira, M.C.; Martínez, J.; Meirelles, A.J.A.; Maximo, G.J. Deacidification of Amazonian Pracaxi (Pentaclethra macroloba) and Patawa (Oenocarpus bataua) oils: Experimental and modeling of liquid–liquid extraction using alcoholic solvents. Brazilian J. Chem. Eng. 2020, 37, 783–794. [Google Scholar] [CrossRef]
- Ximango, P.B.; da Rocha, E.B.D.; de Sousa, A.M.F.; Scofield, C.F.; Paredes, M.L.L.; Lima, E.R.D.A. Preparation and characterization of patauá and pracaxi Brazilian vegetable oil emulsions. J. Dispers. Sci Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Condé, T.M.; Tonini, H. Fitossociologia de uma floresta ombrófila densa na Amazônia setentrional, Roraima, Brasil. Acta Amaz. 2013, 43, 247–260. [Google Scholar] [CrossRef] [Green Version]
- de Jesus Veiga Carim, M.; Wittmann, F.K.; Piedade, M.T.F.; da Silva Guimarães, J.R.; de Cássia Leôncio Tostes, L. Composition, diversity, and structure of tidal “Várzea” and “Igapó” floodplain forests in eastern Amazonia, Brazil. Rev. Bras. Bot. 2017, 40, 115–124. [Google Scholar] [CrossRef]
- Almeida, A.F.; Jardim, M.A.G. A utilização das espécies arbóreas da floresta de várzea da Ilha de Sororoca, Anandindeua, Pará, Brasil por moradores locais. Rev. Bras. Ciências Ambient. 2012, 23, 48–54. [Google Scholar]
- De Barros, T.C.; Pedersoli, G.D.; Paulino, J.V.; Teixeira, S.P. In the interface of caesalpinioids and mimosoids: Comparative floral development elucidates shared characters in Dimorphandra mollis and Pentaclethra macroloba (Leguminosae). Am. J. Bot. 2017, 104, 218–232. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.N.; Dos Santos, R.O.; e Silva, B.M.d.S. Morphological aspects and anatomy of the fruit, seeds and seedlings of Pentaclethra macroloba (Willd.) kuntze (fabaceae). J. Seed Sci. 2019, 41, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Shebitz, D.J.; Eaton, W. Forest Structure, Nutrients, and Pentaclethra macroloba Growth after Deforestation of Costa Rican Lowland Forests. ISRN Ecol. 2013, 2013, 414357. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Laanisto, L.; Rahimlou, S.; Toussaint, A.; Hallikma, T.; Pärtel, M. Global database of plants with root-symbiotic nitrogen fixation: NodDB. J. Veg. Sci. 2018, 29, 560–568. [Google Scholar] [CrossRef]
- Coe, F.G.; Anderson, G.J. Ethnobotany of the Sumu (Ulwa) of southeastern Nicaragua and comparisons with Miskitu plant lore. Econ. Bot. 1999, 53, 363–386. [Google Scholar] [CrossRef]
- Wilbert, W.; Haiek, G. Phytochemical screening of a Warao pharmacopoeia employed to treat gastrointestinal disorders. J. Ethnopharmacol. 1991, 34, 7–11. [Google Scholar] [CrossRef]
- Brasil. Formulário de Fitoterápicos Agência Nacional de Vigilância Sanitária. Agência Nac; Vigilância Sanitária: Brasília, Brasil, 2021; p. 223. [Google Scholar]
- Patrick, J.; Maciel, F.; Dantas, A.R.; Ribeiro Guabiraba, I.; Margarida, A.; Euler, C. Plano de Manejo Florestal Comunitário da APA da Fazendinha Para Produção de Sementes de Pracaxi e de Andiroba. IV Scientific Journey; Embrapa: Macapá, Brazil, 2017. [Google Scholar]
- Seixas, V.C.; Serra, O.A. Stability of sunscreens containing CePO4: Proposal for a new inorganic UV filter. Molecules 2014, 19, 9907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, A.; Ghosh, M.; Bhattacharyya, D.K. In vitro antioxidant assay of medium chain fatty acid rich rice bran oil in comparison to native rice bran oil. J. Food Sci. Technol. 2015, 52, 5188–5195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speranza, P.; Ribeiro, A.P.B.; Macedo, G.A. Lipase catalyzed interesterification of Amazonian patauá oil and palm stearin for preparation of specific-structured oils. J. Food Sci. Technol. 2015, 52, 8268–8275. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural Oils for Skin-Barrier Repair: Ancient Compounds Now Backed by Modern Science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef]
- Ghouila, Z.; Sehailia, M.; Chemat, S. Vegetable Oils and Fats: Extraction, Composition and Applications. In Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology; Li, Y., Chemat, F., Eds.; Springer: Singapore, 2019; pp. 339–375. [Google Scholar]
- Guimarães, A.L.A.; Cunha, E.A.; Matias, F.O.; Garcia, P.G.; Danopoulos, P.; Swikidisa, R.; Pinheiro, V.A.; Nogueira, R.J. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care. Int. J. Pharm. Compd. 2016, 20, 58–62. [Google Scholar]
- Jarak, I.; Tavares, L.C.; Jones, J.G.; Rui, A. I Luso-brazilian congress of the experimental pathology XI International Symposium on Experimental Techniques Federal University of Pernambuco. Exp. Pathol. Health Sci. 2011, 5, 27–134. [Google Scholar]
- Macrini, D.J.; Suffredini, I.B.; Varella, A.D.; Younes, R.N.; Ohara, M.T. Extracts from Amazonian plants have inhibitory activity against tyrosinase: An in vitro evaluation. Brazilian J. Pharm. Sci. 2009, 45, 715–721. [Google Scholar] [CrossRef] [Green Version]
- de Castro, S.I.; Gonzaga, M.; Grimaldi, R. Structured lipid production through enzymatic interesterification between pracaxi and babassu oils. In Proceedings of the XXIV Congresso de Iniciação Científica da Unicamp, Campinas, Brazil, 19–21 October 2016. Galoa,v.1. [Google Scholar]
- Schauss, A.G. Advances in the study of the health benefits and mechanisms of action of the pulp and seed of the Amazonian palm fruit, Euterpe oleracea Mart., known as “Açai.” . Fruits, Veg. Herbs Bioact. Foods Health Promot. 2016, 48, 179–220. [Google Scholar] [CrossRef]
- Scaramella, L.R.; Amorim, L.M.; Martin, M.L.B.; Garcia, A.d.F.S.R. Uso do óleo vegetal de Pracaxi como silicone natural na haste capilar. Braz. J. Nat. Sci. 2020, 3, 514. [Google Scholar] [CrossRef]
- Beerling, J. Green Formulations and Ingredients. In Sustainability: How the Cosmetics Industry is Greening up; Wiley: Hoboken, NJ, USA, 2013; pp. 197–215. [Google Scholar] [CrossRef]
- Matsuishi, M. Science and technology of meat and meat products in Japan—Pursuit of their palatability under the influence of Washoku, traditional Japanese cuisine. Meat Sci. 2022, 192, 108919. [Google Scholar] [CrossRef]
- De Almeida, F.B.; Guedes, M.; Claudia, A.; Guedes, L.; Carvalho, J.C.T.; Magana, J.R. Preparação de Nanoemulsões Contendo Óleo de Pracaxi (Pentaclethra macroloba)-Uma Importante Matéria-Prima da Amazônia. XXIV Simpósio de Plantas Medicinais do Brasil; Embrapa: Macapá, Brazil, 2016. [Google Scholar]
- Gadad, A.P.; Dandagi, P.M.; Bolmol, U.B.; Pallavi, N.P. Nanoparticles and their Therapeutic Applications in Pharmacy. Int. J. Pharm. Sci. Nanotechnol. 2014, 7, 2509–2519. [Google Scholar] [CrossRef]
- Demetzos, C. Pharmaceutical Nanotechnology: Fundamentals and Practical Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–203. [Google Scholar] [CrossRef]
- Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D. Opportunities and challenges for biodiesel fuel. Appl. Energy. 2011, 88, 1020–1031. [Google Scholar] [CrossRef]
- Mekhilef, S.; Siga, S.; Saidur, R. A review on palm oil biodiesel as a source of renewable fuel. Renew. Sustain. Energy Rev. 2011, 15, 1937–1949. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Torres, E.A.; Kalid, R.A. Renewable energy generation for the rural electrification of isolated communities in the Amazon Region. Renew. Sustain. Energy Rev. 2015, 49, 278–290. [Google Scholar] [CrossRef]
- Ribeiro Guabiraba, I.; Iago Lisboa Vaz, N.; Coutinho Barbosa, R.; Patrícia Oliveira Maciel, S.; Fernandes Damasceno, L.; Cláudia Lira-Guedes, A. Acidez do Óleo de Pracaxi Extraído Artesanalmente. IV Jornada Científica; Embrapa: Macapá, Brazil, 2018. [Google Scholar]
- Šurić, J.; Žlabur, J.Š.; Peter, A.; Brandić, I.; Voća, S.; Dujmović, M.; Leto, J. Energy vs. Nutritional Potential of Virginia Mallow (Sida hermaphrodita L.) and Cup Plant (Silphium perfoliatum L.). Plants 2022, 11, 2906. [Google Scholar] [CrossRef] [PubMed]
- Serra, J.L.; da Rodrigues, A.M.C.; de Freitas, R.A.; Meirelles, A.J.d.A.; Darnet, S.H.; da Silva, L.H.M. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.H.; Freitas de Lima, F.; Caires, A.R.L.; de Oliveira, I.P. Polyphenols Present in Campomanesia Genus: Pharmacological and Nutraceutical Approach, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128137680. [Google Scholar]
- Funasaki, M.; dos Barroso, H.S.; Fernandes, V.L.A.; Menezes, I.S. Amazon Rainforest Cosmetics: Chemical Approach for Quality Control. Quim. Nova. 2016, 39, 194–209. [Google Scholar] [CrossRef]
- Pardauil, J.J.R.; de Molfetta, F.A.; Braga, M.; de Souza, L.K.C.; Filho, G.N.R.; Zamian, J.R.; da Costa, C.E.F. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J. Therm. Anal. Calorim. 2017, 127, 1221–1229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobre Lamarão, M.L.; Ferreira, L.M.d.M.C.; Gyles Lynch, D.; Morais, L.R.B.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant. Plants 2023, 12, 1330. https://doi.org/10.3390/plants12061330
Nobre Lamarão ML, Ferreira LMdMC, Gyles Lynch D, Morais LRB, Silva-Júnior JOC, Ribeiro-Costa RM. Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant. Plants. 2023; 12(6):1330. https://doi.org/10.3390/plants12061330
Chicago/Turabian StyleNobre Lamarão, Maria Louze, Lindalva Maria de Meneses Costa Ferreira, Desireé Gyles Lynch, Luiz Roberto Barbosa Morais, José Otávio Carréra Silva-Júnior, and Roseane Maria Ribeiro-Costa. 2023. "Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant" Plants 12, no. 6: 1330. https://doi.org/10.3390/plants12061330
APA StyleNobre Lamarão, M. L., Ferreira, L. M. d. M. C., Gyles Lynch, D., Morais, L. R. B., Silva-Júnior, J. O. C., & Ribeiro-Costa, R. M. (2023). Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of this Amazonian Plant. Plants, 12(6), 1330. https://doi.org/10.3390/plants12061330