Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.)
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Idziak, R.; Woźnica, Z. Impact of tembotrione and flufenacet plus isoxaflutole application timings, rates, and adjuvants type on weeds and yield of maize. Chil. J. Agr. Res. 2014, 74, 129–134. [Google Scholar] [CrossRef]
- Zystro, J.P.; De Leon, N.; Tracy, W.F. Analysis of traits related to weed competitiveness in sweet corn (Zea mays L.). Sustainability 2012, 4, 543–560. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Lorzadeh, S.; Ariannia, N. Critical period for weed control in corn in the south-west of Iran. Asian J. Agric. Res. 2010, 4, 80–86. [Google Scholar] [CrossRef]
- Riaz, M.; Jamil, M.; Mahmood, T.Z. Yield and yield components of maize as affected by various weed control methods under rain-fed conditions of Pakistan. Int. J. Agric. Biol. 2007, 9, 152–155. [Google Scholar]
- Horvath, D.P.; Bruggeman, S.; Moriles-Miller, J.; Anderson, J.V.; Doramaci, M.; Scheffler, B.E.; Hernadez, A.G.; Foley, M.E.; Clay, S. Weed presence altered biotic Stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct. 2018, 2, e00057. [Google Scholar] [CrossRef]
- Woźnica, Z.; Idziak, R. Influence of herbicide application timings, rates and adjuvants type on weed control and yield of maize grown for forage. Acta Sci. Pol. Ser. Agric. 2010, 9, 77–84. [Google Scholar]
- Mhlanga, B.; Chauhan, B.S.; Thierfelder, C. Weed management in maize using crop competition: A review. Crop Prot. 2016, 88, 28–36. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. 9—Integrated crop management. In Lockhart and Wiseman’s Crop Husbandry Including Grassland, 8th ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier: Amsterdam, The Netherlands, 2002; pp. 485–490. [Google Scholar]
- Kniss, A.R.; Mosqueda, E.G.; Lawrence, N.C.; Adjesiwor, A.T. The cost of implementing effective herbicide mixtures for resistance management. Adv. Weed Sci. 2022, 40, e0202200119. [Google Scholar] [CrossRef]
- Kudsk, P. Optimising herbicide performance. In Weed Management Handbook; Naylor, R.E.L., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2002; pp. 323–344. [Google Scholar]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Johnson, B.C.; Young, B.G. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci. 2002, 50, 157–161. [Google Scholar] [CrossRef]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, J.R.A.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Planta Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef][Green Version]
- Hatterman-Valenti, H.M.; Pitty, A.; Owen, M.D.K. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 2006, 54, 607–614. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pest. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G. Diurnal fluctuations and leaf angle reduce glufosinate efficacy. Weed Technol. 2003, 17, 302–306. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant effects on evaporation time and wetted area of droplets on waxy leaves. Trans. ASABE 2010, 53, 13–20. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Papaevangelou, O. Role of crop-protection technologies in sustainable agricultural productivity and management. Land 2022, 11, 1680. [Google Scholar] [CrossRef]
- Shrestha, J.; Timsina, K.P.; Subedi, S.; Pokhrel, D.; Chaudhary, A. Sustainable weed management in maize (Zea mays L.) production: A review in perspective of southern Asia. Turk. J. Weed Sci. 2019, 22, 133–143. [Google Scholar]
- Zabkiewicz, J.A. Adjuvants and herbicidal efficacy—Present status and future prospects. Weed Res. 2000, 40, 139–149. [Google Scholar] [CrossRef]
- Akhter, M.J.; Abbas, R.N.; Waqas, M.A.; Noor, M.A.; Arshad, M.A.; Mahboob, W.; Nadeem, F.; Azam, M.; Gull, U. Adjuvants improves the efficacy of herbicide for weed management in maize sown under altered sowing methods. J. Exp. Biol. Agri. Sci. 2017, 5, 22–30. [Google Scholar] [CrossRef]
- Pacanoski, A. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; BoD—Books on Demand: Norderstedt, Germany, 2015; Volume 344, pp. 125–147. [Google Scholar]
- Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M.; Henderson, R. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals; Revised 2012 Edition; Australian Government. Grains Research & Development Corporation: Barton, Australia, 2012; p. 52. [Google Scholar]
- Chahal, P.S.; Aulakh, J.S.; Rosenbaum, K.; Jhala, A.J. Growth stage affects dose response of selected glyphosate-resistant weeds to premix of 2, 4-D choline and glyphosate (Enlist Duo™ herbicide*). J. Agr. Sci. 2015, 7, 1–10. [Google Scholar] [CrossRef][Green Version]
- Jagła, M.; Sobiech, Ł.; Szulc, P.; Nowosad, K.; Bocianowski, J.; Grzanka, M. Sensitivity assessment of varieties, effectiveness of weed control by selected herbicides, and infection of the Fusarium in maize (Zea mays L.) cultivation. Agronomy 2020, 10, 1115. [Google Scholar] [CrossRef]
- Frische, T.; Egerer, S.; Matezki, S.; Pickl, C.; Wogram, J. 5-point programme for sustainable plant protection. Envrion. Sci. Eur. 2018, 30, 8. [Google Scholar] [CrossRef] [PubMed]
- Underwood, A.K. Adjuvant trends for the new millennium. Weed Technol. 2000, 14, 765–772. [Google Scholar] [CrossRef]
- NDWCG. North Dakota Weed Control Guide 2022; Weed Science; NSDU: New York, NY, USA, 2022; p. 136. [Google Scholar]
- Knezevic, S.Z.; Datta, A.; Scott, J.; Charvat, L.D. Adjuvants influenced saflufenacil efficacy on fallemerging weeds. Weed Technol. 2009, 23, 340–345. [Google Scholar] [CrossRef]
- Singh, M.; Tan, S.; Sharma, S.D. Adjuvants enhance weed control efficacy of foliar-applied diuron. Weed Technol. 2002, 16, 74–78. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Grzanka, M.; Skrzypczak, G.; Idziak, R.; Włodarczak, S.; Ochowiak, M. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide. Agronomy 2020, 10, 530. [Google Scholar] [CrossRef]
- Kirkwood, R.C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski [The Guide to Identifying Plant Communities in Poland]; PWN. Vademecum geobotanicum; Naukowa: Warszawa, Poland, 2001; pp. 158–187. [Google Scholar]
- Dubyna, D.; Iemelianowa, S.; Dziuba, T.; Davydova, A.; Davydov, D.; Tymoshenko, P. Ruderal vegetation of Ukraine: Stellariete mediae Tx. et al. in Tx. 1950. Biodiv. Res. Conserv. 2022, 66, 11–38. [Google Scholar]
- Nguyen, H.T.X.; Liebman, M. Weed community composition in simple and more diverse cropping systems. Front. Agron. 2022, 4, 848548. [Google Scholar] [CrossRef]
- Green, J.M.; Cahill, R. Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Sci. 2003, 17, 338–345. [Google Scholar]
- Ramsey, R.; Stephenson, G.; Hall, J. Effect of relative humidity on the uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pestic. Biochem. Physiol. 2002, 73, 1–8. [Google Scholar] [CrossRef]
- Idziak, R.; Woznica, Z. Effect of nitrogen fertilizers and oil adjuvants on nicosulfuron efficacy. Turk. J. Field Crops 2013, 18, 174–178. [Google Scholar]
- Cunha, J.P.A.R.; Alves, G.S.; Reis, E.F. Efeito da temperatura nas características físico-químicas de soluçes aquosas com adjuvantes de uso agrícola [Temperature effect on the physical-chemical characteristics of aqueous solutions with spray adjuvants]. Planta Daninha 2010, 28, 665–672. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.K.; Untuniassi, U.R.; Chechetto, R.G.; Mota, A.A.B.; De Carvalho, L.D. Viscosity, surface tension and droplet size of spray liquids containg formulations of insecticides and fungicides with oil-based adjuvants. Asp. Apl. Biol. 2018, 137, 183–190. [Google Scholar]
- Junior, S.T.D.; Ferreira, M.C.; Lasmar, O. Physical characteristics of oily spraying liquids and droplets formed on coffee leaves and glass surfaces. Eng. Agric. Jaboticabal 2015, 35, 588–600. [Google Scholar]
- Roskamp, J.M.; Turco, R.F.; Bischop, M.; Johnson, W.G. The infuence of carrier water pH and hardness on suflufenacil efficacy and solubility. Weed Technol. 2013, 27, 527–533. [Google Scholar] [CrossRef][Green Version]
- Green, J.M.; Hale, T. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 2005, 19, 468–475. [Google Scholar] [CrossRef]
- MacBean, C. (Ed.) ePesticide Manual, 15th ed.; Nicosuluron, version 5.1; British Crop Protection Council: Alton, UK, 2010. [Google Scholar]
- Imoloame, E.O.; Omolaiye, J.O. Weed infestation, growth and yield of maize (Zea mays L.) as influenced by periods of weed interference. Adv. Crop Sci. Technol. 2017, 5, 2. [Google Scholar]
- Szewdziak, K.; Grzywacz, Z.; Polanczyk, E.; Tomaszewski, S.; Wojtkiewicz, W. Physicochemical properties of selected herbicidal products containing nicosulfuron as an active ingredient. Open Chem. 2020, 18, 438–442. [Google Scholar] [CrossRef]
- Da Silva Santos, R.T.; Vechia, J.F.D.; Dos Santos, C.A.M.; Almeida, D.P.; da Costa Ferreira, M. Relationship of contact angle of spray solution on leaf surfaces with weed control. Sci. Rep. 2021, 11, 9886. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals Used in Grain Production—Revised 2019 Edition; GRDC: Barton, Australia, 2019; p. 48. [Google Scholar]
- Auskalniene, O.; Auskalnis, A. Effect of sulfonylurea herbicides on weeds and maize. Agron. Res. 2006, 4, 129–132. [Google Scholar]
- Kumar, A.; Dhaka, A.K.; Kumar, S.; Singh, S.; Punia, S.S. Weed management indices as affected by different weed control treatments in pigeon pea [Cajanus cajan (L.) Millsp.]. J. Pharmacogn. Phytochem. 2019, 8, 3490–3494. [Google Scholar]
Species | Years of Studies | Life Cycle | ||
---|---|---|---|---|
2017 | 2018 | 2019 | ||
g m−2 | ||||
Characteristic species for Polygono-Chenopodion alliance | ||||
Fumaria officinalis | - | - | 36 | annual |
Characteristic species for Aperion spicae-venti alliance | ||||
Veronica hederifolia | - | 11 | 29 | annual |
Characteristic species for Polygono-Chenopodietalia order | ||||
Chenopodium album | 4370 | 1261 | 1013 | annual |
Capsella bursa-pastoris | 35 | 64 | - | annual |
Echinochloa crus-galli | 165 | 270 | 132 | annual |
Geranium pusillum | 515 | 22 | 539 | annual |
Characteristic species for Centauretalia cyani order | ||||
Centaurea cyanus | 32 | - | 59 | annual |
Anthemis arvensis | 17 | 22 | - | annual |
Characteristic species for Plantaginetalia majoris order | ||||
Plantago major | 10 | perennial | ||
Characteristic species for Stellarietea mediae class | ||||
Viola arvensis | 76 | 15 | 8 | annual |
Anchusa arvensis | - | 74 | 41 | annual |
Stellaria media | - | 31 | 62 | annual |
Polygonum aviculare | - | 30 | 51 | annual |
Tripleurospermum maritima ssp. inodora | 23 | 32 | - | biennial |
Thlaspi arvense | 71 | 29 | - | annual |
Characteristic species for Artemisietea vulgaris class | ||||
Cirsium arvense | 36 | - | 47 | perennial |
Gallium aparine | 18 | 16 | - | annual |
Characteristic species for Lamio-Veronicetum association | ||||
Lamium amplexicaule | - | 15 | 31 | annual |
Characteristic species for Galinsoga-Setarietum association | ||||
Galinsoga parviflora | 4 | - | 29 | annual |
Accompanying species | ||||
Fallopia convolvulus | 301 | 539 | 194 | annual |
Amaranthus retroflexus | - | 20 | 42 | annual |
Treatment | CHE | ECH | GER | FAL | VIO | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | |
Untreated check g m−2 | 4370 | 1261 | 1013 | 165 | 270 | 132 | 515 | 22 | 539 | 301 | 539 | 194 | 76 | 15 | 8 | 5663 | 2461 | 2313 |
Weed Control Efficacy % | ||||||||||||||||||
N40 | 60 c4 | 62 b | 79 b | 99 a | 94 a | 95 ab | 72 ab | 100 a | 77 a | 79 a | 75 a | 76 b | 75 ab | 100 a | 67 cd | 60 b | 67 cd | 81 b |
N28 | 45 d | 45 c | 44 c | 97 a | 90 ab | 90 b | 56 c | 100 a | 70 a | 70 a | 52 b | 62 c | 56 c | 100 a | 56 d | 48 b | 56 d | 52 c |
N28 | ||||||||||||||||||
+ MSO 1 | 65 bc | 88 a | 95 a | 100 a | 98 a | 99 a | 71 ab | 100 a | 79 a | 76 a | 72 a | 91 a | 68 ab | 100 a | 88 ab | 68 ab | 88 ab | 94 a |
+ MSO 2 | - | 83 a | 95 a | - | 90 ab | 95 ab | - | 100 a | 79 a | - | 74 a | 89 a | - | 100 a | 82 ab | - | 82 ab | 94 a |
+ MSO 3 | 90 a | 91 a | 95 a | 100 a | 98 a | 95 ab | 80 a | 100 a | 74 a | 76 a | 73 a | 90 a | 84 a | 100 a | 90 a | 84 a | 90 a | 94 a |
+ MSO 4 | 77 b | 82 a | 9 a | 100 a | 92 ab | 96 ab | 67 abc | 100 a | 78 a | 80 a | 70 a | 85 a | 71 ab | 100 a | 84 ab | 71 ab | 84 ab | 93 a |
+ NIS | 69 bc | 71 ab | 78 b | 100 a | 83 b | 97 a | 61 bc | 100 a | 61 b | 74 a | 69 a | 76 b | 63 ab | 100 a | 74 bc | 63 ab | 74 bc | 81 b |
Adjuvant | Herbicide g ha−1 | Phytotoxicity % | Grain Yield T ha−1 | TKW 3 g | ||||
---|---|---|---|---|---|---|---|---|
2017–2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
Untreated check | 0 | 8.6 c | 2.8 c | 2.2 c | 277 ab | 244 b | 259 b | |
N40 | 40 | 0 | 16.5 a | 7.1 ab | 9.0 ab | 295 a | 271 a | 296 a |
N28 | 28 | 0 | 13.0 b | 6.7 b | 6.3 b | 267 b | 275 a | 291 a |
N28 | ||||||||
+ MSO 1 1 | 28 | 0 | 17.1 a | 9.4 a | 9.0 ab | 297 a | 292 a | 300 a |
+ MSO 2 2 | 28 | 0 | - | 8.3 ab | 9.0 ab | - | 288 a | 313 a |
+ MSO 3 | 28 | 0 | 18.7 a | 7.9 ab | 10.2 a | 305 a | 285 a | 316 a |
+ MSO 4 | 28 | 0 | 17.9 a | 8.1 ab | 9.3 ab | 300 a | 275 a | 316 a |
+ NIS | 28 | 0 | 17.3 a | 7.4 ab | 8.0 ab | 297 a | 285 a | 287 a |
Treatment | Parameter | Efficacy | Yield |
---|---|---|---|
r | |||
N40 | St | 0.2750 | −0.5049 |
Ca | 0.4389 | −0.6106 * | |
pH | 0.7043 * | −0.5724 | |
N28 | St | −0.5640 | 0.3566 |
Ca | −0.6748 * | 0.3897 | |
pH | 0.7109 * | −0.5735 | |
N28 + MSO 1 | St | 0.6999 * | −0.6912 * |
Ca | 0.7013 * | −0.3409 | |
pH | 0.7241 * | −0.5705 | |
N28 + MSO 2 | St | 0.8319 * | −0.3958 |
Ca | 0.7287 * | −0.5319 | |
pH | 0.7281 * | −0.5819 * | |
N28 + MSO 3 | St | 0.1259 | 0.1501 |
Ca | 0.6733 * | −0.5592 | |
pH | −0.1282 | 0.1605 | |
N28 + MSO 4 | St | 0.7323 * | −0.2508 |
Ca | 0.4536 | −0.6380 * | |
pH | 0.7262 * | −0.5654 | |
N28 + NIS | St | 0.7174 * | −0.5336 |
Ca | 0.6796 * | −0.5963 * | |
pH | 0.7007 * | −0.5709 |
Abbreviation | Composition | Rate per ha |
---|---|---|
MSO 1 | Methyl esters of rapeseed oil fatty acids, surfactants, and pH buffering spray liquid | 1.5 l |
MSO 2 | Fatty acid methyl esters of rapeseed oil, surfactants, pH buffering sprays, and antidrifting substance | 1.5 l |
MSO 3 | Surfactants, chelating substance, humectant, and pH buffer | 1.5 l |
MSO 4 | Fatty acid esters of rapeseed oil, surfactants, and pH buffer | 1.5 l |
NIS | Ethoxylate isodecyl alcohol | 0.01% |
Date of treatment | 1 June 2017 | 24 May 2018 | 29 May 2019 | ||||
Temperature (°C) | 15.2 | 17.2 | 12.8 | ||||
Relative humidity (%) | 70 | 60 | 65 | ||||
Precipitation (mm) | 0.0 | 0.0 | 0.0 | ||||
Wind speed (m/s) | 0.0 | 0.0 | 2.8 | ||||
Precipitation sum 1–7 days before treatment (mm) | 14.0 | 11.0 | 19.8 | ||||
Precipitation sum 1–7 days after treatment (mm) | 44.3 | 0.0 | 0.1 | ||||
Temperature during the first week after treatment in 2017 | |||||||
Date | 01/06 | 02/06 | 03/06 | 04/06 | 05/06 | 06/06 | 07/06 |
Average | 19.8 | 22.7 | 22.5 | 19.3 | 21.4 | 23.2 | 18.3 |
Minimum | 9.7 | 8.1 | 8.2 | 14.4 | 10.3 | 14.0 | 12.1 |
Temperature during the first week after treatment in 2018 | |||||||
Date | 24/05 | 25/05 | 26/05 | 27/05 | 28/05 | 29/05 | 30/05 |
Average | 23.9 | 25.5 | 26.7 | 27.4 | 29.3 | 28.7 | 28.6 |
Minimum | 10.6 | 11.4 | 11.6 | 14.3 | 14.7 | 15.1 | 14.7 |
Temperature during the first week after treatment in 2019 | |||||||
Date | 29/05 | 30/05 | 31/05 | 01/06 | 02/06 | 03/06 | 04/06 |
Average | 11.9 | 12.6 | 16.9 | 20.1 | 20.8 | 22.3 | 22.7 |
Minimum | 5.4 | 2.0 | 7.5 | 11.7 | 12.3 | 11.4 | 12.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Sobczak, A.; Waligora, H.; Szulc, P. Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants 2023, 12, 1118. https://doi.org/10.3390/plants12051118
Idziak R, Sobczak A, Waligora H, Szulc P. Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants. 2023; 12(5):1118. https://doi.org/10.3390/plants12051118
Chicago/Turabian StyleIdziak, Robert, Angelika Sobczak, Hubert Waligora, and Piotr Szulc. 2023. "Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.)" Plants 12, no. 5: 1118. https://doi.org/10.3390/plants12051118
APA StyleIdziak, R., Sobczak, A., Waligora, H., & Szulc, P. (2023). Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants, 12(5), 1118. https://doi.org/10.3390/plants12051118