Public Health Implications of Invasive Plants: A Scientometric Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Literature Search
4.2. Selection Process
- explore discussions focused on relationships between invasive vegetation and hosts, vectors or pathogens abundance of diseases affecting humans and/or animals;
- assess how plant species introduction can become a health threat when animals or human populations are exposed to invaded areas;
- address risks associated with human/animal health by comparing outcomes in exotic versus native plant populations.
4.3. Analysis of Obtained Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vilà, M.; Hulme, P.E. (Eds.) Impact of Biological Invasions on Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2017; Volume 12. [Google Scholar] [CrossRef]
- Hall, C.M. Biological invasion, biosecurity, tourism, and globalisation. In Handbook of Globalisation and Tourism; Timothy, D.J., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Dunn, A.M.; Essl, F.; Gómez-Díaz, E.; Hulme, P.E.; Jeschke, J.M.; Núñez, M.A.; Ostfeld, R.S.; Pauchard, A.; Ricciardi, A.; et al. Viewing emerging human infectious epidemics through the lens of invasion biology. BioScience 2021, 71, 722–740. [Google Scholar] [CrossRef]
- Zhang, L.; Rohr, J.; Cui, R.; Xin, Y.; Han, L.; Yang, X.; Gu, S.; Du, Y.; Liang, J.; Wang, X.; et al. Biological invasions facilitate zoonotic disease emergences. Nat. Commun. 2022, 13, 1762. [Google Scholar] [CrossRef]
- David, P.; Thebault, E.; Anneville, O.; Duyck, P.F.; Chapuis, E.; Loeuille, N. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar] [CrossRef]
- Schatz, A.M.; Park, A.W. Host and parasite traits predict cross-species parasite acquisition by introduced mammals. Proc. Royal Soc. B 2021, 288, 20210341. [Google Scholar] [CrossRef]
- Seebens, H.; Bacher, S.; Blackburn, T.M.; Capinha, C.; Dawson, W.; Dullinger, S.; Genovesi, P.; Hulme, P.E.; van Kleunen, M.; Kühn, I.; et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2021, 27, 970–982. [Google Scholar] [CrossRef]
- Morse, S.S.; Mazet, J.A.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet 2012, 380, 1956–1965. [Google Scholar] [CrossRef]
- Hatcher, M.J.; Dick, J.T.; Dunn, A.M. Disease emergence and invasions. Funct. Ecol. 2012, 26, 1275–1287. [Google Scholar] [CrossRef]
- Rabitsch, W.; Essl, F.; Schindler, S. The rise of non-native vectors and reservoirs of human diseases. In Impact of Biological Invasions on Ecosystem Services; Springer: Cham, Switzerland, 2017; pp. 263–275. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Alessandrini, A.; Arrigoni, P.V.; Assini, S.; Banfi, E.; Barni, E.; Bovio, M.; Brundu, G.; Cagiotti, M.R.; Camarda, I.; et al. Non-native flora of Italy: Species distribution and threats. Plant Biosyst. 2010, 144, 12–28. [Google Scholar] [CrossRef]
- Plaza, P.I.; Speziale, K.L.; Lambertucci, S.A. Rubbish dumps as invasive plant epicentres. Biol. Invasions 2018, 20, 2277–2283. [Google Scholar] [CrossRef]
- Gezie, A.; Assefa, W.W.; Getnet, B.; Anteneh, W.; Dejen, E.; Mereta, S.T. Potential impacts of water hyacinth invasion and management on water quality and human health in Lake Tana watershed, Northwest Ethiopia. Biol. Invasions 2018, 20, 2517–2534. [Google Scholar] [CrossRef]
- Mazza, G.; Tricarico, E.; Genovesi, P.; Gherardi, F. Biological invaders are threats to human health: An overview. Ethol. Ecol. Evol. 2014, 26, 112–129. [Google Scholar] [CrossRef]
- Mack, R.; Smith, M. Invasive plants as catalysts for the spread of human parasites. NeoBiota 2011, 9, 13–29. [Google Scholar] [CrossRef]
- Young, H.S.; Parker, I.M.; Gilbert, G.S.; Guerra, A.S.; Nunn, C.L. Introduced Species, Disease Ecology, and Biodiversity–Disease Relationships. Trends Ecol. Evol. 2017, 32, 41–54. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; McKinnon, M.; Jeggo, M. One Health: From concept to practice. In Confronting Emerging Zoonoses; Springer: Tokyo, Japan, 2014; pp. 163–189. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The One Health approach—Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- Daszak, P.; Keusch, G.T.; Phelan, A.L.; Johnson, C.K.; Osterholm, M.T. Infectious Disease Threats: A Rebound to Resilience. Health Aff. 2021, 40, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsson, S.A.; D’Amico, V.; Shriver, W.G.; Brisson, D.; Buler, J.J. Scale-dependent effects of non native plant invasion on host-seeking tick abundance. Ecosphere 2016, 7, e01317. [Google Scholar] [CrossRef]
- Adalsteinsson, S.A.; Shriver, W.G.; Hojgaard, A.; Bowman, J.L.; Brisson, D.; D’Amico, V.; Buler, J.J. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk. Parasit. Vectors 2018, 11, 54. [Google Scholar] [CrossRef]
- Agha, S.B.; Alvarez, M.; Becker, M.; Fèvre, E.M.; Junglen, S.; Borgemeister, C. Invasive alien plants in Africa and the potential emergence of mosquito-borne arboviral diseases—A review and research outlook. Viruses 2020, 13, 32. [Google Scholar] [CrossRef]
- Andreo, V.; Neteler, M.; Rocchini, D.; Provensal, C.; Levis, S.; Porcasi, X.; Rizzoli, A.; Lanfri, M.; Scavuzzo, M.; Pini, N.; et al. Estimating Hantavirus risk in southern Argentina: A GIS-based approach combining human cases and host distribution. Viruses 2014, 6, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Blosser, E.M.; Burkett-Cadena, N.D. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 2017, 167, 59–63. [Google Scholar] [CrossRef]
- Buettner, P.G.; Westcott, D.A.; Maclean, J.; Brown, L.; McKeown, A.; Johnson, A.; Wilson, K.; Blair, D.; Luly, J.; Skerratt, L.; et al. Tick paralysis in spectacled flying-foxes (Pteropus conspicillatus) in North Queensland, Australia: Impact of a ground-dwelling ectoparasite finding an arboreal host. PLoS ONE 2013, 8, e73078. [Google Scholar] [CrossRef] [PubMed]
- Civitello, D.J.; Flory, S.L.; Clay, K. Exotic grass invasion reduces survival of Amblyommaamericanum and Dermacentor variabilis ticks (Acari: Ixodidae). J. Med. Entomol. 2008, 45, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Conley, A.K.; Watling, J.I.; Orrock, J.L. Invasive plant alters ability to predict disease vector distribution. Ecol. Appl. 2011, 21, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, R.N.; Dalu, T.; Mutshekwa, T.; Wasserman, R.J. Leaf inputs from invasive and native plants drive differential mosquito abundances. Sci. Total Environ. 2019, 689, 652–654. [Google Scholar] [CrossRef]
- Desautels, D.J.; Hartman, R.B.; Shaw, K.E.; Maduraiveeran, S.; Civitello, D.J. Divergent effects of invasive macrophytes on population dynamics of a snail intermediate host of Schistosoma mansoni. Acta Trop. 2022, 225, 106226. [Google Scholar] [CrossRef]
- Desautels, D.J.; Wang, Y.; Ripp, A.; Beaman, A.; Andea, S.; Hartman, R.B.; Civitello, D.J. Nutritional effects of invasive macrophyte detritus on Schistosoma mansoni infections in snail intermediate hosts. Hydrobiologia 2022, 849, 3607–3616. [Google Scholar] [CrossRef]
- Elias, S.P.; Lubelczyk, C.B.; Rand, P.W.; Lacombe, E.H.; Holman, M.S.; Smith, R.P., Jr. Deer browse resistant exotic-invasive understory: An indicator of elevated human risk of exposure to Ixodes scapularis (Acari: Ixodidae) in southern coastal Maine woodlands. J. Med. Entomol. 2006, 43, 1142–1152. [Google Scholar] [CrossRef]
- Field, H.E.; Smith, C.S.; de Jong, C.E.; Melville, D.; Broos, A.; Kung, N.; Thompson, J.; Dechmann, D.K.N. Landscape utilisation, animal behaviour and Hendra virus risk. EcoHealth 2016, 13, 26–38. [Google Scholar] [CrossRef]
- Gardner, A.M.; Allan, B.F.; Frisbie, L.A.; Muturi, E.J. Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae). Parasit Vectors 2015, 8, 329. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.M.; Muturi, E.J.; Overmier, L.D.; Allan, B.F. Large-scale removal of invasive honeysuckle decreases mosquito and avian host abundance. EcoHealth 2017, 14, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Guiden, P.W.; Orrock, J.L. Invasive shrubs modify rodent activity timing, revealing a consistent behavioral rule governing diel activity. Behav. Ecol. 2019, 30, 1069–1075. [Google Scholar] [CrossRef]
- Holsomback, T.S.; McIntyre, N.E.; Nisbett, R.A.; Strauss, R.E.; Chu, Y.K.; Abuzeineh, A.A.; De La Sancha, N.; Dick, C.W.; Jonsson, C.B.; Morris, B.E. Bayou virus detected in non-oryzomyine rodent hosts: An assessment of habitat composition, reservoir community structure, and marsh rice rat social dynamics. J. Vector Ecol. 2009, 34, 9–21. [Google Scholar] [CrossRef]
- Kaestli, M.; Schmid, M.; Mayo, M.; Rothballer, M.; Harrington, G.; Richardson, L.; Hill, A.; Hill, J.; Tuanyok, A.; Keim, P.; et al. Out of the ground: Aerial and exotic habitats of the melioidosis bacterium Burkholderiapseudomallei in grasses in Australia. Environ. Microbiol. 2012, 14, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Leisnham, P.T.; Scott, B.; Baldwin, A.H.; LaDeau, S.L. Effects of detritus on the mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) invasion affect population performance. Int. J. Environ. Res. Public Health 2019, 16, 4118. [Google Scholar] [CrossRef] [PubMed]
- Linske, M.A.; Williams, S.C.; Ward, J.S.; Stafford, K.C., III. Indirect effects of Japanese barberry infestations on white-footed mice exposure to Borrelia burgdorferi. Environ. Entomol. 2018, 47, 795–802. [Google Scholar] [CrossRef]
- Mackay, A.J.; Muturi, E.J.; Ward, M.P.; Allan, B.F. Cascade of ecological consequences for West Nile virus transmission when aquatic macrophytes invade stormwater habitats. Ecol. Appl. 2016, 26, 219–232. [Google Scholar] [CrossRef]
- Marchetto, K.M.; Linn, M.M.; Larkin, D.J.; Wolf, T.M. Can Co-Grazing Waterfowl Reduce Brainworm Risk for Goats Browsing in Natural Areas? EcoHealth 2022, 19, 135–144. [Google Scholar] [CrossRef]
- Milugo, T.K.; Tchouassi, D.P.; Kavishe, R.A.; Dinglasan, R.R.; Torto, B. Root exudate chemical cues of an invasive plant modulate oviposition behavior and survivorship of a malaria mosquito vector. Sci. Rep. 2021, 11, 14785. [Google Scholar] [CrossRef]
- Muller, G.C.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Sissoko, F.; Dembele, S.M.; Schlein, Y.; Arheart, K.L.; Revay, E.E.; et al. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: A habitat manipulation experiment. Malar. J. 2017, 16, 237. [Google Scholar] [CrossRef]
- Noden, B.H.; Cote, N.M.; Reiskind, M.H.; Talley, J.L. Invasive Plants as Foci of Mosquito-Borne Pathogens: Red Cedar in the Southern Great Plains of the USA. EcoHealth 2021, 18, 475–486. [Google Scholar] [CrossRef]
- Nyasembe, V.O.; Cheseto, X.; Kaplan, F.; Foster, W.A.; Teal, P.E.; Tumlinson, J.H.; Borgemeister, C.; Torto, B. The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS ONE 2015, 10, e0137836. [Google Scholar] [CrossRef]
- Pearson, D.E.; Callaway, R.M. Biological control agents elevate hantavirus by subsidizing deer mouse populations. Ecol. Lett. 2006, 9, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Persons, W.E.; Eason, P.K. White-footed mouse (Peromyscusleucopus) habitat selectionand Amur honeysuckle (Loniceramaackii) canopy use in anurbanforest. UrbanEcosyst. 2019, 22, 471–482. [Google Scholar] [CrossRef]
- Plummer, M.L. Impact of invasive water hyacinth (Eichhorniacrassipes) on snail hosts of schistosomiasis in Lake Victoria, East Africa. EcoHealth 2005, 2, 81–86. [Google Scholar] [CrossRef]
- Portman, S.L.; Frank, J.H.; McSorley, R.; Leppla, N.C. Nectar-seeking and host-seeking by Larra bicolor (Hymenoptera: Crabronidae), a parasitoid of Scapteriscus mole crickets (Orthoptera: Gryllotalpidae). Environ. Entomol. 2010, 39, 939–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiskind, M.H.; Zarrabi, A.A. The importance of an invasive tree fruit as a resource for mosquito larvae. J. Vector Ecol. 2011, 36, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Shewhart, L.; McEwan, R.W.; Benbow, M.E. Evidence for facilitation of Culex pipiens (Diptera: Culicidae) life history traits by the nonnative invasive shrub Amur honeysuckle (Lonicera maackii). Environ. Entom. 2014, 43, 1584–1593. [Google Scholar] [CrossRef]
- Simeonova, R.; Shkondrov, A.; Kozuharova, E.; Ionkova, I.; Krasteva, I. A Study on the Safety and Effects of Amorpha fruticosa Fruit Extract on Spontaneously Hypertensive Rats with Induced Type 2 Diabetes. Curr. Issues Mol. Biol. 2022, 44, 176. [Google Scholar] [CrossRef]
- Stone, C.M.; Witt, A.B.; Walsh, G.C.; Foster, W.A.; Murphy, S.T. Would the control of invasive alien plants reduce malariatransmission? A review. Parasit. Vectors 2018, 11, 76. [Google Scholar] [CrossRef]
- Teixeira, L.; Cunha, C.M.; Bornschein, M.R. First record of the Japanese land snail Ovachlamys fulgens (Gude, 1900) (Gastropoda, Helicarionidae) in Brazil. Check List 2017, 13, 703. [Google Scholar] [CrossRef]
- Wei, C.Y.; Wang, J.K.; Shih, H.C.; Wang, H.C.; Kuo, C.C. Invasive plants facilitated by socioeconomic change harbor vectors of scrub typhus and spotted fever. PLoSNegl. Trop. Dis. 2020, 14, e0007519. [Google Scholar] [CrossRef]
- Jarić, I.; Heger, T.; Monzon, F.C.; Jeschke, J.M.; Kowarik, I.; McConkey, K.R.; Pysek, P.; Sagouis, A.; Essl, F. Crypticity in biological invasions. Trends Ecol. Evol. 2019, 34, 291–302. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M.; Nawaz, A.; Yadav, L.; Chauhan, B.S.; Adkins, S. Impact of invasive plant species on the livelihoods of farming households: Evidence from Parthenium hysterophorus invasion in rural Punjab, Pakistan. Biol. Invasions 2019, 21, 3285–3304. [Google Scholar] [CrossRef]
- Brunel, S.; Panetta, D.; Fried, G.; Kriticos, D.; Prasad, R.; Lansink, A.O.; Shabbir, A.; Yaacoby, T. Preventing a new invasive alien plant from entering and spreading in the Euro-Mediterranean region: The case study of Parthenium hysterophorus. EPPO Bull. 2014, 44, 479–489. [Google Scholar] [CrossRef]
- García, J.A.; Rosas, J.E.; y Santos, C.G.; Streitenberger, N.; Feijoo, M.; Dutra, F. Senecio spp. transboundary introduction and expansion affecting cattle in Uruguay: Clinico-pathological, epidemiological and genetic survey, and experimental intoxication with Senecio oxyphyllus. Toxicon 2020, 173, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Ancona, V.; Appel, D.N.; de Figueiredo, P. Xylella fastidiosa: A model for analyzing agricultural biosecurity. Biosecur. Bioterror. 2010, 8, 171–182. [Google Scholar] [CrossRef]
- Fridley, J.D. Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 2012, 485, 359–362. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, M.; Jetz, W. Measure and reduce the harm caused by biological invasions. One Earth 2019, 1, 171–174. [Google Scholar] [CrossRef]
- Hulme, P.E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 2021, 4, 666–679. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Larson, B.M.; Novoa, A.; Richardson, D.M.; Kull, C.A. The human and social dimensions of invasion science and management. J. Environ. Manag. 2019, 229, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lemke, A.; Kowarik, I.; von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 2019, 56, 413–422. [Google Scholar] [CrossRef]
- Ansong, M.; Pickering, C. Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars. PLoS ONE 2013, 8, e80275. [Google Scholar] [CrossRef]
- Roy, H.E.; Hesketh, H.; Purse, B.V.; Eilenberg, J.; Santini, A.; Scalera, R.; Stentiford, G.D.; Adriaens, T.; Bacela-Spychalska, K.; Bass, D.; et al. Alien pathogens on the horizon: Opportunities for predicting their threat to wildlife. Conserv. Lett. 2017, 10, 477–484. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; Shu, R.; Linton, E.W.; Newton, L.A.; Cook, M.A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. 2007, 95, 1153–1166. [Google Scholar] [CrossRef]
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J.; et al. Ecology and economics for pandemic prevention. Science 2020, 369, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A. Invasion Biology; Oxford University Press on Demand: New York, NY, USA, 2009. [Google Scholar]
- Ricciardi, A.; Blackburn, T.M.; Carlton, J.T.; Dick, J.T.; Hulme, P.E.; Iacarella, J.C.; Jeschke, J.M.; Liebhold, A.M.; Lockwood, J.L.; MacIsaac, H.J.; et al. Invasion science: A horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 2017, 32, 464–474. [Google Scholar] [CrossRef]
- Sinclair, J.R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev. Sci. Tech. 2019, 38, 145–154. [Google Scholar] [CrossRef]
- Davies, K.W.; Sheley, R.L. A conceptual framework for preventing the spatial dispersal of invasive plants. Weed Sci. 2007, 55, 178–184. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Zeng, X.; He, Y. Sustainable land use and management research: A scientometric review. Landsc. Ecol. 2020, 35, 2381–2411. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
Reference | Citation | Journal | Impact |
---|---|---|---|
[21] | Adalsteinsson et al. (2016) | Ecosphere | Both |
[22] | Adalsteinsson et al. (2018) | Parasites & vectors | Both |
[23] | Agha et al. (2021) | Viruses | Both |
[24] | Andreo et al. (2014) | Viruses | Human |
[25] | Blosser et al. (2017) | Acta Tropica | Both |
[26] | Buettner et al. (2013) | PLOS One | Animal |
[27] | Civitello et al. (2008) | Journal of Medical Entomology | Human |
[28] | Conley et al. (2011) | Ecological Applications | Human |
[29] | Cuthbert et al. (2019) | Science of the Total Environment | Both |
[30] | Desautels et al. (2022) | Acta Tropica | Human |
[31] | Desautels et al. (2022) | Hydrobiologia | Human |
[32] | Elias et al. (2006) | Journal of Medical Entomology | Both |
[33] | Field et al. (2016) | EcoHealth | Both |
[34] | Gardner et al. (2015) | Parasites & vectors | Both |
[35] | Gardner et al. (2017) | EcoHealth | Both |
[36] | Guiden and Orrock (2019) | Behavioral Ecology | Human |
[37] | Holsomback et al. (2009) | Journal of Vector Ecology | Human |
[38] | Kaestli et al. (2011) | Environmental microbiology | Both |
[39] | Leisnham et al. (2019) | International journal of environmental | Both |
research and public health | Both | ||
[40] | Linske et al. (2018) | Environmental Entomology | Both |
[41] | Mackay et al. (2016) | Ecological Applications | Both |
[42] | Marchetto et al. (2022) | EcoHealth | Animal |
[43] | Milugo et al. (2021) | Scientific Reports | Human |
[44] | Muller et al. (2017) | Malaria Journal | Human |
[45] | Noden et al. (2021) | EcoHealth | Both |
[46] | Nyasembe et al. (2015) | PLOS One | Human |
[47] | Pearson and Callaway (2006) | Ecology Letters | Human |
[48] | Persons and Eason (2019) | Urban Ecosystems | Both |
[49] | Plummer (2005) | EcoHealth | Human |
[50] | Portman et al. (2011) | Environmental Entomology | Animal |
[51] | Reiskind and Zarrabi (2011) | Journal of Vector Ecology | Both |
[52] | Shewhart et al. (2014) | Environmental Entomology | Both |
[53] | Simeonova et al. (2022) | Current Issues in Molecular Biology | Both |
[54] | Stone et al. (2018) | Parasites & vectors | Human |
[55] | Teixeira et al. (2017) | Check List | Human |
[56] | Wei et al. (2020) | PLOS Neglected Tropical Diseases | Both |
Search | Keywords Combinations |
---|---|
Animal Health | (“plant invasion*” OR “introduced plant*” OR “plant introduc*” OR “invasive plant*” OR “non-native plant*” OR “exotic plant*” OR “alien plant*” OR “non-indigenous plant*”) AND (“health” OR “disease*” OR “infect*” OR “parasit*” OR “vector*” OR “patho*” OR “host*”) AND (“animal*”) |
Human Health | (“plant invasion*” OR “introduced plant*” OR “plant introduc*” OR “invasive plant*” OR “non-native plant*” OR “exotic plant*” OR “alien plant*” OR “non-indigenous plant*”) AND (“health” OR “disease*” OR “infect*” OR “parasit*” OR “vector*” OR “patho*” OR “host*”) AND (“human*”) |
Parameters | Categories |
---|---|
Publication Details | Authors |
Title | |
Journal | |
Year | Publication date |
Geographic Location | Europe |
Asia | |
Africa | |
Oceania | |
North America | |
Central America | |
South America | |
Research Type | Review |
Field Study | |
Laboratory Experiment | |
Other | |
Impact | Animal Health |
Human Health | |
Risk atribute | Disease |
Pathogen | |
Vector | |
Host | |
Invasive Plant | Specie |
Family |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denóbile, C.; Chiba de Castro, W.A.; Silva Matos, D.M.d. Public Health Implications of Invasive Plants: A Scientometric Study. Plants 2023, 12, 661. https://doi.org/10.3390/plants12030661
Denóbile C, Chiba de Castro WA, Silva Matos DMd. Public Health Implications of Invasive Plants: A Scientometric Study. Plants. 2023; 12(3):661. https://doi.org/10.3390/plants12030661
Chicago/Turabian StyleDenóbile, Camila, Wagner Antonio Chiba de Castro, and Dalva Maria da Silva Matos. 2023. "Public Health Implications of Invasive Plants: A Scientometric Study" Plants 12, no. 3: 661. https://doi.org/10.3390/plants12030661
APA StyleDenóbile, C., Chiba de Castro, W. A., & Silva Matos, D. M. d. (2023). Public Health Implications of Invasive Plants: A Scientometric Study. Plants, 12(3), 661. https://doi.org/10.3390/plants12030661