Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
Abstract
:1. Introduction
2. Results
2.1. Identification of BrNRT1s in Chinese Cabbage
2.2. Phylogenetic Analysis of BrNRT1s
2.3. Gene Structure and Conserved Motif Analyses of BrNRT1s
2.4. Regulatory Mechanism in the Promoter Regions of BrNRT1 Genes
2.5. Expression Patterns of BrNRT1s in Different Tissues
2.6. The Expression of BrNRT1s in Response to LN Stress
2.7. The Involvement of BrNRT1 DEGs in Response to LN Stress
2.8. The Expression Profiles of BrNRT1s in the N Metabolism Pathway under LN Stress Conditions
3. Discussion
4. Conclusions
5. Materials and Methods
- 1.
- Plant Material and Treatment
- 2.
- RNA Isolation:
- 3.
- cDNA Library Construction, Sequencing, and Data Processing:
- 4.
- The Identification of Chinese cabbage NRT1 Genes:
- 5.
- The Physicochemical Properties of the Proteins:
- 6.
- The Construction of a Phylogenetic Tree:
- 7.
- Gene Structure and Conserved Motif Analyses:
- 8.
- Analysis of cis-acting Elements:
- 9.
- Analysis of BrNRT1 Genes’ Expression Profiles in Response to LN Stress:
- 10.
- Reverse Transcription and RT-qPCR Detection:
6. Data Processing and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.Z.; Fang, S.Q.; Ye, Z.Q.; Liu, D.; Zhao, K.L.; Jin, C.W. NRT1.1 Dual-Affinity Nitrate Transport/Signalling and its Roles in Plant Abiotic Stress Resistance. Front. Plant Sci. 2021, 12, 715694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, M.; Huang, X.; Hu, W.; Qiao, N.; Song, H.; Zhang, B.; Zhang, R.; Yang, Z.; Liu, Y.; et al. Direct Effects of Nitrogen Addition on Seed Germination of Eight Semi-arid Grassland Species. Ecol. Evol. 2020, 20, 8793–8800. [Google Scholar] [CrossRef] [PubMed]
- Sanagi, M.; Aoyama, S.; Kubo, A.; Lu, Y.; Sato, T. Low Nitrogen Conditions Accelerate Flowering by Modulating the Phosphorylation State of FLOWERING BHLH 4 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2022942118. [Google Scholar] [CrossRef] [PubMed]
- Alboresi, A.; Gestin, C.; Leydecker, M.T.; Bedu, M.; Meyer, C.; Truong, H.N. Nitrate, a Signal Relieving Seed Dormancy in Arabidopsis. Plant Cell Environ. 2005, 28, 500–512. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Hsu, P.K.; Tsay, Y.F. Uptake, Allocation and Signaling of Nitrate. Trends Plant Sci. 2012, 17, 458–467. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate transport, signaling, and use efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef]
- Tsay, Y.F.; Chiu, C.C.; Tsai, C.B.; Ho, C.H.; Hsu, P.K. Nitrate transporters and peptide transporters. FEBS Lett. 2007, 581, 2290–2300. [Google Scholar] [CrossRef]
- De Angeli, A.; Thomine, S.; Frachisse, J.M.; Ephritikhine, G.; Gambale, F.; Barbier-Brygoo, H. Anion channels and transporters in plant cell membranes. FEBS Lett. 2007, 581, 2367–2374. [Google Scholar] [CrossRef]
- Von der Fecht-Bartenbach, J.; Bogner, M.; Dynowski, M.; Ludewig, U. CLC-b-mediated NO3−/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol. 2010, 51, 960–968. [Google Scholar] [CrossRef]
- Steiner, H.Y.; Naider, F.; Becker, J.M. The PTR family: A new group of peptide transporters. Mol. Microbiol. 1995, 16, 825–834. [Google Scholar] [CrossRef]
- Liu, K.H.; Tsay, Y.F. Switching between the two action modes of the dual-affifinity nitrate transporter CHL1 by phosphorylation. EMBO J. 2003, 22, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Morere-Le Paven, M.C.; Viau, L.; Hamon, A.; Vandecasteele, C.; Pellizzaro, A.; Bourdin, C.; Laffont, C.; Lapied, B.; Lepetit, M.; Frugier, F.; et al. Characterization of a dual-affifinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J. Exp. Bot. 2011, 62, 5595–5605. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, R.; Salehin, M.; Adeyemo, O.S.; Salazar, C.; Shulaev, V.; Sherrier, D.J.; Dickstein, R. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affifinity nitrate transporter. Plant Physiol. 2012, 160, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Tsay, Y.F.; Schroeder, J.I.; Feldmann, K.A.; Crawford, N.M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 1993, 72, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.D.; Fan, X.R.; Wei, J.; Feng, H.M.; Qu, H.Y.; Xie, D.; Miller, A.J.; Xu, G.H. Rice nitrate transporter OsNPF2.4 functions in low-affifinity acquisition and long-distance transport. J. Exp. Bot. 2015, 66, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, M.E.; Xu, D.; Crocoll, C.; Ramirez, D.; Motawia, M.S.; Olsen, C.E.; Nour-Eldin, H.H.; Halkier, B.A. Origin and evolution of transporter substrate specifificity within the NPF family. eLife 2017, 6, e19466. [Google Scholar] [CrossRef]
- Li, H.; Hu, B.; Chu, C.C. Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. J. Exp. Bot. 2017, 68, 2477–2488. [Google Scholar] [CrossRef]
- Zhang, R.J.; Qu, C.L.; He, Y.T.; Yang, Z.R.; Wang, X.C. Identification and gene expression analysis of the nitrate transporter NRT1 gene family in foxtail millet. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2018, 38, 37–43. [Google Scholar]
- Guo, Z.Q.; Liang, Y.X.; Feng, F.; Zhu, L.X.; Fan, J.L.; Jiang, X.D.; Lv, J.H.; Zhang, C.L. Genome-wide Identification of NRT1 Gene, Expression Profiling and DNA Variation Analysis in Sorghum. Acta Laser Biol. Sin. 2021, 30, 459–467. [Google Scholar]
- Corratge-Faillie, C.; Lacombe, B. Substrate (un)specifificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot. 2017, 68, 3107–3113. [Google Scholar] [CrossRef]
- Wang, H.D.; Wan, Y.F.; Buchner, P.; King, R.; Ma, H.X.; Hawkesford, M.J. Phylogeny and gene expression of the complete Nitrate Transporter 1/Peptide Transporter Family in Triticum aestivum. J. Exp. Bot. 2020, 71, 4531–4546. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, B.; Li, A.; Chu, C.C. NRT1.1s in plants: Functions beyond nitrate transport. J. Exp. Bot. 2019, 15, 4373–4379. [Google Scholar] [CrossRef] [PubMed]
- Li, G.J.; Zhu, L.; Wang, Y.N.; Cao, J.S. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean. Acta Agron. Sin. 2020, 46, 1025–1032. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Tsayl, Y.F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell 2011, 23, 1945–1957. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.C.; Lin, C.S.; Hsu, P.K.; Lin, S.H.; Tsay, Y.F. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 2009, 21, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Fu, Y.L.; Pike, S.M. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 2010, 22, 1633–1646. [Google Scholar] [CrossRef]
- Lin, S.H.; Kuo, H.F.; Canivenc, G.; Lin, C.S.; Lepetit, M.; Hsu, P.K.; Tillard, P.; Lin, H.L.; Wang, Y.Y.; Tsai, C.B.; et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 2008, 20, 2514–2528. [Google Scholar] [CrossRef]
- Hsu, P.K.; Tsay, Y.F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol. 2013, 163, 844–856. [Google Scholar] [CrossRef]
- Almagro, A.; Lin, S.H.; Tsay, Y.F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 2008, 20, 3289–3299. [Google Scholar] [CrossRef]
- Léran, S.; Varala, K.; Boyer, J.C.; Chiurazzi, M.; Crawford, N.; Daniel-Vedele, F.; David, L.; Dickstein, R.; Fernandez, E.; Forde, B.; et al. A unified nomenclature of Nitrate Transporter 1/Peptide Transporter family members in plants. Trends Plant Sci. 2014, 19, 5–9. [Google Scholar] [CrossRef]
- Chunyan, D.; Minglei, N.; Yan, Y.; Xiaoyan, C.; Lü, L.; Nan, L. Research on the Construction and Application of a Big Data Platform for the Whole Vegetable Industry Chain: The Case of Chinese Cabbage. J. Agric. Big Data 2021, 1, 66–72. [Google Scholar]
- Staugaitis, G.; Viškelis, P. Amounts of nitrogen, phosphorus, potassium, calcium and magnesium in the heads and plant residues of Chinese cabbage crop fertilised with different rates of nitrogen. Sodinink. Ir. Darzinink. 2005, 24, 98–106. [Google Scholar]
- Yuanqiong, L.; Junxia, L. Preliminary Report on the Total Amount Control Experiment of Nitrogen, Phosphorus, and Potassium Fertilizers in Chinese CabbageProduction. Shanghai Agric. Sci. Technol. 2019, 5, 2. [Google Scholar]
- Hu, X.C.; Yu, X.; Shi, H.; Ruan, Y.; Liu, C.L. Construction and Gene Editing Analysis of CRISPR/Cas9 Knockout Vector of BnaGTR Gene in Brassica napus. Mol. Plant Breed. 2022, 20, 6732–6741. [Google Scholar]
- Hammes, U.Z.; Meier, S.; Dietrich, D.; Ward, J.M.; Rentsch, D. Functional properties of the Arabidopsis peptide transporters AtPTR1 and AtPTR5. J. Biol. Chem. 2010, 285, 39710–39717. [Google Scholar] [CrossRef] [PubMed]
- Chiba, Y.; Shimizu, T.; Miyakawa, S.; Kanno, Y.; Koshiba, T.; Kamiya, Y.; Seo, M. Identifification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J. Plant Res. 2015, 128, 679–686. [Google Scholar] [CrossRef]
- Krouk, G.; Crawford, N.M.; Coruzzi, G.M.; Tsay, Y.F. Nitrate signaling: Adaptation to flfluctuating environments. Curr. Opin. Plant Biol. 2010, 13, 266–273. [Google Scholar] [CrossRef]
- Bouguyon, E.; Brun, F.; Meynard, D.; Kubeš, M.; Pervent, M.; Leran, S.; Lacombe, B.; Krouk, G.; Guiderdoni, E.; Zažímalová, E.; et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat. Plants 2015, 1, 15015. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, M.; Xu, W.; Liu, J.H.; Li, C. Genome-Wide Identification of NRT Gene Family and Expression Analysis of Nitrate Transporters in Response to Salt Stress in Poncirus trifoliata. Genes 2022, 13, 1115. [Google Scholar] [CrossRef]
- Cheng, J.; Tan, H.; Shan, M.; Duan, M.; Ye, L.; Yang, Y.; He, L.; Shen, H.; Yang, Z.; Wang, X. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria. Front. Plant Sci. 2022, 13, 1043832. [Google Scholar] [CrossRef]
- You, H.G.; Liu, Y.M.; Minh, T.N.; Lu, H.R.; Zhang, P.M.; Li, W.F.; Xiao, J.L.; Ding, X.D.; Li, Q. Genome-wide identifification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). J. Appl. Genet. 2020, 61, 489.9–501.9. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.B.; He, J.J.; Cai, Q.Q.; Zhao, W.G.; Fu, H.; Hua, Y.P.; Li, M.T.; Huang, J.Y. The expression characteristics of NPF genes and their response to vernalization and nitrogen defificiency in rapeseed. Int. J. Mol. Sci. 2021, 22, 4944. [Google Scholar] [CrossRef]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Mochida, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.S. Genome-wide survey and expression analysis of the plant-specifific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011, 18, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Dong, T.; Wang, J.; Zuo, K. Genome-wide identification of nitrate transporter genes from Spirodela polyrhiza and characterization of SpNRT1.1 function in plant development. Front. Plant Sci. 2022, 13, 945470. [Google Scholar] [CrossRef]
- Han, D.; Tan, J.; Yue, Z.; Tao, P.; Lei, J.; Zang, Y.; Hu, Q.; Wang, H.; Zhang, S.; Li, B.; et al. Genome-Wide Identification and Expression Analysis of ESPs and NSPs Involved in Glucosinolate Hydrolysis and Insect Attack Defense in Chinese Cabbage (Brassica rapa subsp. pekinensis). Plants 2023, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.H.; Hua, Y.P.; Zhou, T. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus. Acta Agron. Sin. 2019, 45, 365. [Google Scholar] [CrossRef]
- Bilas, R.; Szafran, K.; Hnatuszko-Konka, K.; Kononowicz, A.K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult. 2016, 127, 269–287. [Google Scholar] [CrossRef]
- Dodd, I.C.; Tan, L.P.; He, J. Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J. Exp. Bot. 2003, 54, 1281–1288. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.W.; Fan, L.X.; Xue, C.B.; Zhou, X.Y.; Xin, M.; Du, Y.L. Involvement of CsNRT1.7 in nitrate recycling during senescence in cucumber. J. Plant Nutr. Soil Sci. 2014, 177, 714–721. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, K.; Ruan, L.; Bai, P.; Wu, L.; Wang, L.; Cheng, H. Systematic Investigation and Expression Profifiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant (Camellia sinensis). Int. J. Mol. Sci. 2022, 23, 6663. [Google Scholar] [CrossRef]
- Banedjschafifie, S.; Bastani, S.; Widmoser, P.; Mengel, K. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat. Eur. J. Agron. 2008, 28, 1–7. [Google Scholar] [CrossRef]
- Léran, S.; Garg, B.; Boursiac, Y.; Corratgé-Faillie, C.; Brachet, C.; Tillard, P.; Gojon, A.; Lacombe, B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci. Rep. 2015, 5, 7962. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.Y.; Hu, R.; Li, J.; Li, Y.; Ding, J.R.; Xia, K.F.; Zhong, X.H.; Fang, Z.M.; Zhang, M.Y. Peptide Transporter OsNPF8.1 Contributes to Sustainable Growth under Salt and Drought Stresses, and Grain Yield under Nitrogen Deficiency in Rice. Rice Sci. 2023, 30, 113–126. [Google Scholar]
- Chen, R.Y.; Yang, Y.B.; Qin, L.; Zhang, H.W.; Liu, B.; Wang, H.L.; Chen, G.L.; Yu, S.T.; Guan, Y.A. Evaluation of Nitrogen Efficient Cultivars of Foxtail Millet and Analysis of the Related Characters at Seedling Stage. Sci. Agric. Sin. 2016, 49, 3286–3296. [Google Scholar]
- Li, R.Q.; Yu, C.; Li, Y.R.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 2009, 25, 1966–1967. [Google Scholar] [CrossRef]
- Makhoul, J.; Schwartz, R. What is a hidden Markov model? IEEE Spectr. 1997, 34, 44–45. [Google Scholar]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Hereditas 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; Mccue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Audic, S.; Claverie, J.M. The significance of digital gene expression profiles. Genome Res. 1997, 7, 986. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Almatroudi, A.; Allemailem, K.S.; Joseph, R.J.; Khan, A.A.; Rahmani, A.H. Protective effects of ginger extract against glycation and oxidative stress-induced health complications: Anin vitrostudy. Processes 2020, 8, 468. [Google Scholar] [CrossRef]
Gene ID | Chr. | Start | End | log2 (LN/CK) | ||||
---|---|---|---|---|---|---|---|---|
Shoot | Root | |||||||
L14 | L40 | L14 | L40 | |||||
NRT1.1 | BraA06g009470.3C | A06 | 5,167,089 | 5,168,324 | 1.73 | ns | 1.42 | 1.94 |
NRT1.1 | BraA08g031180.3C | A08 | 20,956,829 | 20,960,518 | ns | 1.55 | ns | 1.13 |
NRT1.1 | BraA09g060970.3C | A09 | 42,614,336 | 42,618,089 | ns | ns | ns | 1.31 |
NRT1.5 | BraA05g023200.3C | A05 | 17,088,575 | 17,091,980 | −2.86 | ns | ns | ns |
NRT1.7 | BraA02g019460.3C | A02 | 11,150,404 | 11,157,116 | ns | −2.42 | ns | ns |
NRT1.8 | BraA01g012370.3C | A01 | 6,414,144 | 6,416,171 | 2.29 | −1.28 | 1.19 | −1.5 |
NRT1.8 | BraA03g049670.3C | A03 | 25,372,935 | 25,374,941 | 2.61 | ns | ns | ns |
NRT1.9 | BraA09g056980.3C | A09 | 40,666,918 | 40,669,296 | ns | 1.8 | ns | ns |
NRT1.11 | BraA06g002150.3C | A06 | 1,283,012 | 1,287,130 | ns | ns | ns | −1.81 |
NPF2.10 | BraA01g024830.3C | A01 | 14,570,611 | 14,572,963 | ns | 1.27 | ns | −3.49 |
NPF2.10 | BraA06g019030.3C | A06 | 10,801,268 | 10,803,925 | ns | ns | ns | −1.1 |
NPF2.11 | BraA09g007360.3C | A09 | 4,260,320 | 4,262,091 | ns | 1.91 | 1.75 | 2.04 |
NPF3.1 | BraA02g018550.3C | A02 | 10,436,201 | 10,443,396 | ns | ns | −1.56 | 1.7 |
NPF3.1 | BraA07g030700.3C | A07 | 22,416,610 | 22,420,494 | ns | ns | 1.69 | ns |
NPF4.1 | BraA03g041540.3C | A03 | 20,827,737 | 20,829,854 | ns | −2.4 | ns | ns |
NPF4.1 | BraA03g041550.3C | A03 | 20,839,549 | 20,842,211 | ns | 1.8 | ns | 2.81 |
NPF4.3 | BraA09g017570.3C | A09 | 10,925,112 | 10,930,083 | ns | −1.02 | ns | 1.46 |
NPF4.4 | BraA09g031580.3C | A09 | 24,492,209 | 24,495,098 | ns | −3.07 | ns | ns |
NPF4.5 | BraA07g013380.3C | A07 | 12,534,292 | 12,537,206 | −1.01 | ns | −3.75 | −1.43 |
NPF6.4 | BraA01g025490.3C | A01 | 15,182,959 | 15,184,900 | ns | 4.67 | −1.92 | ns |
NPF6.4 | BraA01g032090.3C | A01 | 21,885,380 | 21,889,127 | ns | 1.31 | ns | −1.49 |
NPF6.4 | BraA05g025490.3C | A05 | 19,200,397 | 19,202,444 | ns | ns | 1.28 | ns |
NPF8.1 | BraA09g045140.3C | A09 | 34,557,783 | 34,560,452 | ns | −1.21 | ns | −1.86 |
NPF8.3 | BraA09g059270.3C | A09 | 41,823,598 | 41,826,639 | ns | ns | ns | −1.85 |
Nutrient Solution Formula | Treatment | ||
---|---|---|---|
CK (6.0 mM) | Low N (0.2 mM) | ||
ME | KNO3 | 3 mM | 0.1 mM |
KCl | 0.0 mM | 3 mM | |
KH2PO4 | 1.5 mM | 1.5 mM | |
K2HPO4 | 1.5 mM | 1.5 mM | |
(NH4)SO4 | 0.75 mM | 25 mM | |
MgCl2 | 1 mM | 1 mM | |
K2SO4 | 2 mM | 2 mM | |
Ca(NO3)2 | 0.75 mM | 0.75 mM | |
CaCl2 | 3.25 mM | 3.25 mM | |
Fe | Na2Fe-EDTA | 40 µM | 40 µM |
TE | H3BO3 | 60 µM | 60 µM |
MnSO4 | 14 µM | 14 µM | |
ZnSO4 | 1 µM | 1 µM | |
CuSO4 | 0.6 µM | 0.6 µM | |
NiCl2 | 0.4 µM | 0.4 µM | |
H2MoO4 | 0.3 µM | 0.3 µM | |
CoCl2 | 20 nM | 20 nM |
Genes | Forward Primer | Reverse Primer |
---|---|---|
Bra-Action | ATACCAGGCTTGAGCATACCG | GCCAAAGAGGCCATCAGACAA |
BraA01g012370.3C | GAAGGTGGAGAGTGGATCAAC | AAGAGTGAAGCCATCTGAGTG |
BraA01g024830.3C | TGGCATCGCTCGTGTTATAG | CTGGTCCGAGTATTTGAGTGTAG |
BraA01g025490.3C | GTCATAGTCGGAATTGGAGAGG | TGTAGAAGCATATCCCAATCACC |
BraA02g004850.3C | TCTGTCTTCGTCCCTATCACC | GCGTAATGTCTCCTGTAGTTCTC |
BraA02g018550.3C | AGATATGTGAGAAACTGGCGG | AGTTAGTGAGAGTGTTGGCTG |
BraA03g019780.3C | TTGGTTGTGGAAGTCTAGCTG | TGAATGTCCCAAAGAGTCCTG |
BraA03g021460.3C | AGTCACCTGAGGAAATGCAG | TTATCCCCAATCCAACTCTTCC |
BraA04g005820.3C | CTGAAATCTATGGAGTCGCCG | TGGCAACATCCGTGAGAATAG |
BraA05g001710.3C | ACGTTTAGCTCCTTTTCGGG | TGCC ATAACCTAAACCCCAC |
BraA05g025490.3C | TCTGGGAGTGTTGCTGTT | GATGGTGAAGTCTCCTGAAGTC |
BraA06g002150.3C | TGTACTTATCGCGTTCACTGG | CTTGCTCACATTGCGTCTAAC |
BraA06g026380.3C | TCGGTGTTGGAGGTATAAAAGG | CGACCGTGACCGCTATTAAG |
BraA07g013380.3C | TTCTCACAATCCAAGCCCG | ACAGTCCCACAAATAGAAGCG |
BraA07g030700.3C | AACACTCTCACTAACTTCGCC | TCGTAAGCAATGTCATCCCG |
BraA09g017570.3C | TCATCTTCCTCGTCCCTCTC | CAGTCCAAATCCTATCCGAGTC |
BraA09g021560.3C | TGGCACTGAGAGGTATAGACTC | AAGAACGAATCAGCCATACCC |
BraA09g021570.3C | AACTTTAGCATCCCGCtAG | CTCCCATTCGTTGAAGCAAAG |
BraA09g044870.3C | GTCATGGCTACTTCGCTTTTG | ATCATTGGGACGAGGAAGATG |
BraA09g045140.3C | ACCAGTTCATTGTCCCCTTC | CGAGACCTATTCCCATACGTTG |
BraA10g026590.3C | TCCCAAGTCCATGTCAAGC | GTGTCCCTCGTTTATATCCTCTG |
BraA06g019030.3C | CTGTCATCGCTTGTTTTCTGG | CGCTAAACCCAACATCAGAAAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ritonga, F.N.; Zhang, S.; Wang, F.; Li, J.; Gao, J. Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Plants 2023, 12, 3882. https://doi.org/10.3390/plants12223882
Zhang Y, Ritonga FN, Zhang S, Wang F, Li J, Gao J. Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Plants. 2023; 12(22):3882. https://doi.org/10.3390/plants12223882
Chicago/Turabian StyleZhang, Yihui, Faujiah Nurhasanah Ritonga, Shu Zhang, Fengde Wang, Jingjuan Li, and Jianwei Gao. 2023. "Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)" Plants 12, no. 22: 3882. https://doi.org/10.3390/plants12223882
APA StyleZhang, Y., Ritonga, F. N., Zhang, S., Wang, F., Li, J., & Gao, J. (2023). Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Plants, 12(22), 3882. https://doi.org/10.3390/plants12223882