Increased Ammonium Enhances Suboptimal-Temperature Tolerance in Cucumber Seedlings
Abstract
:1. Introduction
2. Results
2.1. The Effect of Increasing Ammonium on the Growth of Cucumber Plants
2.1.1. The Growth of Cucumber Plants under OptimalTemperature Conditions
2.1.2. The Growth of Cucumber Plants under Suboptimal-Temperature Stress
2.2. The Effect of Increased Ammonium on the Roots of Cucumber Plants under Suboptimal-Temperature Stress
2.2.1. The Root Architecture of Cucumber Plants
2.2.2. The Root/Shoot Ratio in Cucumber Seedlings
2.3. The Effect of Increased Ammonium on Adversity Metabolites under Suboptimal-Temperature Stress
2.4. The Effect of Increased Ammonium on Nitrogen-Related Gene Expression in Cucumber Plants under Suboptimal-Temperature Stress
2.4.1. The Expression of Nitrogen Uptake-Transport Genes
2.4.2. The Expression of Nitrogen-Metabolic Glutamine Cycle Genes
3. Discussion
3.1. The Responses of Seedling Growth and Root Morphology to Increased Ammonium under Suboptimal-Temperature Stress
3.2. The Responses of Adversity Metabolites to Increased Ammonium under Suboptimal-Temperature Stress
3.3. The Responses of Nitrogen-Related Genes to Increased Ammonium under Suboptimal-Temperature Stress
- Nitrogen uptake-transport genes
- Nitrogen metabolism genes
4. Materials and Methods
4.1. Materials and Plant Growth Conditions
4.2. Experimental Treatments
- (1)
- Temperature treatment: Suboptimal-temperature stress for cucumber was 18 °C (day)/11 °C (night). Optimal temperature was 28 °C (day)/21 °C (night).
- (2)
- Nitrogen source treatment: Treatment with different N sources was carried out using different liquid media for cucumber cultivation. The molar quantity of N remained the same in all liquid media (12 mmol/L), while the N forms were different. The liquid medium base was a new formulation developed based on the Hongland formulation [37] by adjusting the N forms.
4.3. Methods
4.3.1. Measurements of Plant Biomass
4.3.2. Measurement of Root Parameters
4.3.3. Measurement of Root Activity
4.3.4. Analysis of N Utilization Efficiency
4.3.5. Biochemical Analysis
4.4. Total RNA Isolation and cDNA Synthesis
4.5. Gene Expression Analysis Using qRT-PCR
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.H.; Yan, Y.; Zhang, T.Y.; Du, J.Z.; Yu, X.C.; Li, Y.S. Effects of nitrogen level on physiological characters and yield of cucumber under suboptimal temperature and light intensity. J. Nucl. Agric. Sci. 2014, 28, 1108–1115. [Google Scholar]
- Yang, X.; Wang, X.; Wei, M.; Hikosaka, S.; Goto, E. Changes in growth and photosynthetic capacity of cucumber seedings in response to nitrate stress. Braz. J. Plant Physiol. 2009, 21, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Z.; Qin, L.; Fan, C.; Xue, X.; Zhou, M.; Xin, Y. Involvement of CsNRT1.7 in nitrate recycling during senescence in cucumber. J. Plant Nutr. Soil Sci. 2014, 177, 714–721. [Google Scholar] [CrossRef]
- Hu, X.Q.; Yang, W.P.; Huang, L.; Chen, C.L.; Meng, L. Effects of nitrogen forms and proportion on yield and quality of safflower seedling. Acta Agric. Boreali-Occident. Sin. 2016, 21, 1041–1049. [Google Scholar]
- Niu, Z.M.; Zhang, G.B.; Liu, Z.F.; Jia, H.Y.; Yu, J.H. Effects of different nitrogen forms on nutrient uptake, yield formation and quality of cabbage. Acta Prataculturae Sin. 2013, 22, 68–76. [Google Scholar]
- Wang, B.; Lai, T.; Sun, X.X.; Shen, Q.R. Enhanced effects by some ammonium on the root growth of lettuce in hydroponics. Plant Nutr. Fertil. Sci. 2006, 12, 745–749. [Google Scholar]
- Liu, G.Y.; Li, J.M.; Du, Q.J.; Wang, P.B.; Pan, T.H.; Liu, H. Effects of sub-low temperature and nitrate to ammonium ratio on osmotic substances and activities of antioxidant enzymes in tomato seedling. J. Northwest AF Univ. (Nat. Sci. Ed.) 2015, 43, 98–105. [Google Scholar]
- Zhang, S.Y.; Chu, G.X.; Liang, Y.C. Effects of enhancing ammonium nutrition on the nitrogenous metabolisms of cotton seedlings grown hydroponically under low-temperature stress. J. Plant Nutr. Fertil. 2017, 23, 983–990. [Google Scholar]
- Narumol, P.; Xu, Z.; Hans, B. Nitrogen nutrition of cyperus laevigatus and phormium tenax: Effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics. Aquat. Bot. 2013, 106, 42–51. [Google Scholar]
- Luo, Y.Y.; Liu, S.K. Research progress of ammonium transporter in plants. Genom. Appl. Biol. 2009, 28, 373–379. [Google Scholar]
- Lauter, F.R.; Nnemann, O.; Bucher, M. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. USA 1996, 93, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Silim, S.N.; Okamoto, M.; Glass, A.D.M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of oryza sativa subspecies indica. Plant Cell Environ. 2003, 26, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Migocka, M.; Warzybok, A.; Kłobus, G. The genomic organization and transcriptional pattern of genes encoding nitrate transporters 1 (NRT1) in cucumber. Plant Soil 2013, 364, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Dannowski, M.; Block, A. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil 2005, 272, 61–76. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, L.; Meng, X.X.; Neelam, A. Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus Lanatus) seedlings. J. Plant Nutr. 2014, 37, 1859–1872. [Google Scholar]
- Song, H.X.; Li, S.X. Effects of root uptake function and soil water on NO3−-N and NH4+-N distribution. Sci. Agric. Sin. 2005, 38, 9–101. [Google Scholar]
- Yang, Y.; Zheng, Q.L.; Pei, C.G. Effects of NO3−-N/NH4+-N ratios on chardonnay grape seedling growth and nitrogen nutrition. Plant Nutr. Fertil. Sci. 2010, 16, 370–375. [Google Scholar]
- Ma, C.; Ban, T.T.; Yu, H.J.; Li, Q.; Li, X.H.; Jiang, W.J.; Xie, W.J. Urea addition promotes the metabolism and utilization of nitrogen in cucumber. Agronomy 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Q.; Yang, L.T.; Li, Y.R. Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions. Acta Agron. Sin. 2011, 37, 496–505. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.L.; Yang, L.F.; Wang, C. Effects of nitrogen forms and ratios on plant growth, seed antioxidant enzyme activities and reactive oxygen metabolism of vegetable soybean. Plant Nutr. Fertil. Sci. 2010, 16, 768–772. [Google Scholar]
- Kotsiras, A. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Sci. Hortic. 2002, 95, 175–183. [Google Scholar] [CrossRef]
- Gao, Q.H.; Jia, S.S.; Miao, Y.M.; Lu, X.M.; Li, H.M. Effects of exogenous melatonin on nitrogen metabolism and osmotic adjustment substances of melon seedlings under sub-low temperature. Chin. J. Appl. Ecol. 2016, 27, 519–524. [Google Scholar]
- Di, T.J.; Zhu, Y.Y.; Xu, Z.Y.; Zhang, B.; Jiang, Y.; Shen, Q.R. The relationship between plasma membrane H+-ATPase and accumulation of nitrate in pakchoi. Sci. Agric. Sin. 2008, 41, 162–168. [Google Scholar]
- Liu, R.X.; Zhou, Z.G.; Guo, W.Q. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agric. Water Manag. 2008, 95, 1261–1270. [Google Scholar] [CrossRef]
- Zhao, P.F.; Zhu, Y.H.; Wang, W. Evaluation and improvement of spectrophotometric assays of TTC reduction: Maize (Zea mays) embryo as an example. Acta Physiol. Plant. 2010, 32, 815–819. [Google Scholar] [CrossRef]
- Yin, X.F.; Jiang, Y.L.; Yang, Y.B.; Wang, J.P. Effects of cold stress on activity of antioxidant enzymes and malondialdehyde (MDA) content in cotton seedling. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2012, 32, 502–506. [Google Scholar]
- Yuan, Y.B.; Li, J.X.; Ding, F.Z.; Su, X.K. Effect of drought stress on contents of proline and soluble protein in flue-cured tobacco leaves. J. Anhui Agri. Sci. 2008, 36, 8891–8892. [Google Scholar]
- Wang, X.H.; Zhuang, N.S. Advances in research on proline and cold resistance of plant. Chin. Agric. Sci. Bull. 2008, 24, 398–402. [Google Scholar]
- Tang, Y.; Sun, X.; Hu, C. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars (Brassica campestris L. ssp. Chinensis L.). Plant Physiol. Biochem. 2013, 70, 14–20. [Google Scholar] [CrossRef]
- Forde, B.G. Nitrate transporters in plants: Structure, function and regulation. Biochim. Biophys. Acta 2000, 1465, 219–235. [Google Scholar] [CrossRef]
- Wdowikowska, A.; Klobus, G. The plasma membrane proton pump gene family in cucumber. Acta Physiol. Plant 2016, 38, 135. [Google Scholar] [CrossRef]
- Ishiyama, K.; Inoue, E.; Tabuchi, M.; Yamaya, T.; Takahashi, H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol. 2004, 45, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.; Frederic, G.; Mohammed, O. The plasma membrane proton pump ATPase: The significance of gene subfamilies. Planta 2003, 216, 355–365. [Google Scholar]
- Zhu, Y.Y.; Lian, J.; Zeng, H.Q.; Gan, L.; Di, T.J.; Shen, Q.R.; Xu, G.H. Involvement of plasma membrane H+-ATPase in adaption of rice to ammonium nutrient. Rice Sci. 2011, 18, 335–342. [Google Scholar] [CrossRef]
- Mlodziriska, E.; Klobus, G.; Christensen, M.D.; Fuglsang, A.T. The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol. Plant 2015, 154, 270–282. [Google Scholar] [CrossRef]
- Forde, B.G.; Cutler, S.R.; Najia, Z.; Krysan, P.J. Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. Plant J. Cell Mol. Biol. 2013, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.R. Soilless Culture; China Agriculture Press: Beijing, China, 2003; pp. 223–225. [Google Scholar]
- Zhang, Z.L.; Qu, W.J. Experimental Guidance in Plant Physiology, 3rd ed.; Higher Education Press: Beijing, China, 2003; pp. 228–232. [Google Scholar]
- Li, B.Z.; Xin, W.J.; Sun, S.B. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil 2006, 287, 145–159. [Google Scholar] [CrossRef]
- Zhang, X.C.; Liu, Y.M.; Bai, L.Q.; He, C.X.; Yu, X.C.; Li, Y.S. Effects of different NO3−-N/NH4+-N ratios on cucumber seedlings growth, nitrogen absorption and metabolism under suboptimal temperature and light intensity. Chin. J. Appl. Ecol. 2016, 27, 2527–2534. [Google Scholar]
Treatment | Root (g·plant−1 DW) | Shoot (g·plant−1 DW) | Root/Shoot Ratio |
---|---|---|---|
A0 | 26.4 c | 111.2 c | 0.2374 a |
A25 | 28.0 b | 122.8 b | 0.2280 b |
A50 | 30.4 a | 138.0 a | 0.2203 c |
A75 | 26.8 c | 126.6 b | 0.2117 d |
A100 | 23.5 d | 115.4 c | 0.2036 d |
Treatment Code | Composition of Nitrogen Forms |
---|---|
A0 (CK) | 100% NO3− |
A25 | 75% NO3−+25% NH4+ |
A50 | 50% NO3−+50% NH4+ |
A75 | 25% NO3−+75% NH4+ |
A100 | 100% NH4+ |
Gene Abbreviation | Accession No. | Function |
---|---|---|
CsNRT1.1 | NM_001288600.1 | nitrate transporter |
CsNRT1.2 | JX908737.1 | nitrate transporter |
CsNRT1.3 | JX206800.1 | nitrate transporter |
CsNRT1.4 | JX206801.1 | nitrate transporter |
CsNRT1.5 | NM_001308933.1 | nitrate transporter |
CsNRT1.8 | NM_001287472.1 | nitrate transporter |
CsHA2 | NM_001305767.1 | proton pump |
CsHA3 | NM_001305750.1 | proton pump |
CsAMT1.1 | XM_004147130.2 | ammonium transporter |
CsGS-1 | NM_001280715.1 | glutamine synthesis |
CsGS-2 | XM_011661119.1 | glutamine synthesis |
CsGS-3 | XM_011656924.1 | glutamine synthesis |
CsGS-4 | XM_004134113.2 | glutamine synthesis |
CsGOGAT-1-1 | XM_004136730.2 | glutamate synthesis |
CsGOGAT-1-2 | XM_011653889.1 | glutamate synthesis |
CsGOGAT-2-1 | XM_011653296.1 | glutamate synthesis |
CsGOGAT-2-2 | XM_011653298.1 | glutamate synthesis |
Gene | Forward Primer | Reverse Primer | Length |
---|---|---|---|
Actin | 5′-TCCACGAGACTACCTACAACTC-3′ | 5′-GCTCATACGGTCAGCGAT-3′ | 122 bp |
NRT1.1 | 5′-TGATAGCCCTGTGCTCATTGTT-3′ | 5′-ACATCTCGTTCTCCCAGTTGC-3′ | 240 bp |
NRT1.2 | 5′-TGATAGCCCTGTGCTCATTGTT-3′ | 5′-TGAAATCAGCCGACCCTAAA-3′ | 161 bp |
NRT1.3 | 5′-ACTTTTCATCAGAGAAGCACCG-3′ | 5′-CACACAGCGAGTAGCCAATAGA-3′ | 168 bp |
NRT1.4 | 5′-CGTTGTCACTTGGGTTCTTTG-3′ | 5′-GTTTGGGTTTCTGTGGCTTG-3′ | 240 bp |
NRT1.5 | 5′-TGTTTACATTCTCAGTGTCGCAG-3′ | 5′-TCAGTCGCCTTTAGCATACTTTAG-3′ | 230 bp |
NRT1.8 | 5′-GATGATGACGGAAAGGAAAGC-3′ | 5′-CAAAGCCAGATTGGGAGCA-3′ | 190 bp |
AMT1.1 | 5′-GTGTCCCATTGGTTCTGGTC-3′ | 5′-GCCAATTCGTGGACCTTCTA-3′ | 168 bp |
HA2 | 5′-CGAGCGTGGACTTCGATCTT-3′ | 5′-TGCTTTCGTCCTTGTGCTGA-3′ | 284 bp |
HA3 | 5′-GGTTGCTACTGATGGGTGCT-3′ | 5′-CTTGGTCGTAAAGGCGGTCT-3′ | 239 bp |
GS-1 | 5′-TTCTTTCTTTTGATCCAAAACCA-3′ | 5′-ATGTCGCCCTGTGAGACGACGCT-3′ | 197 bp |
GS-2 | 5′-CAAGTCGGTCCTACCGTTGGTATTG-3′ | 5′-TCGAAGTAGACCTGTAATTGGTG-3′ | 188 bp |
GS-3 | 5′-CTTTTGACCCCAAACCAATTCAG-3′ | 5′-GTGTCGACCAGTTAGACGACGCT-3′ | 191 bp |
GS-4 | 5′-GTGCCCATCCCTACAAACAAACG-3′ | 5′-ACACCACAGTAATAAGGCCCCTG-3′ | 185 bp |
GOGAT-1-1 | 5′-GAACGAGAACTTTACATTTGTAG-3′ | 5′-CTATATCTTCGATGATAAATAGC-3′ | 206 bp |
GOGAT-1-2 | 5′-GAAATTGATTGAAAGAGAAGCAA-3′ | 5′-CTATATCTTCGATGATAAATAGC-3′ | 183 bp |
GOGAT-2-1 | 5′-AGTTGGGATCGTGCTCAGCCT-3′ | 5′-CTAATTAAAAGCTCAAGAACACC-3′ | 216 bp |
GOGAT-2-2 | 5′-ATGCGTGTTTTGGGCCACAATG-3′ | 5′-CTAATTAAAAGCTCAAGAACACC-3′ | 194 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Ban, T.; Yu, H.; Li, Q.; Li, X.; Jiang, W.; Xie, J. Increased Ammonium Enhances Suboptimal-Temperature Tolerance in Cucumber Seedlings. Plants 2023, 12, 2243. https://doi.org/10.3390/plants12122243
Ma C, Ban T, Yu H, Li Q, Li X, Jiang W, Xie J. Increased Ammonium Enhances Suboptimal-Temperature Tolerance in Cucumber Seedlings. Plants. 2023; 12(12):2243. https://doi.org/10.3390/plants12122243
Chicago/Turabian StyleMa, Chao, Tiantian Ban, Hongjun Yu, Qiang Li, Xiaohui Li, Weijie Jiang, and Jianming Xie. 2023. "Increased Ammonium Enhances Suboptimal-Temperature Tolerance in Cucumber Seedlings" Plants 12, no. 12: 2243. https://doi.org/10.3390/plants12122243
APA StyleMa, C., Ban, T., Yu, H., Li, Q., Li, X., Jiang, W., & Xie, J. (2023). Increased Ammonium Enhances Suboptimal-Temperature Tolerance in Cucumber Seedlings. Plants, 12(12), 2243. https://doi.org/10.3390/plants12122243