Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici
Abstract
1. Introduction
2. Results
2.1. Quantitative Immunolocalization Analysis of RbcL and PPDK in the Developing Leaves of Bienertia sinuspersici
2.2. Quantitative Immunolocalization Analysis of PsbO and Cytochrome f in Mature Leaves
2.3. Subcellular Localization and Quantification of Chloroplast-Encoded Photosynthetic Transcripts
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hatch, M.D. C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta. 1987, 895, 81–106. [Google Scholar] [CrossRef]
- Voznesenskaya, E.V.; Franceschi, V.R.; Kiirats, O.; Freitag, H.; Edwards, E. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 2001, 414, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Voznesenskaya, E.V.; Franceschi, V.R.; Kiirats, O.; Artyusheva, E.G.; Freitag, H.; Edwards, G.E. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J. 2002, 31, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Freitag, H.; Stichler, W. Bienertia cycloptera Bunge ex Boiss.; Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biol. 2002, 4, 121–132. [Google Scholar] [CrossRef]
- Akhani, H.; Barroca, J.; Koteeva, N.; Voznesenskaya, E.; Franceschi, V.; Edwards, G.E.; Ghaffari, S.M.; Ziegler, H. Bienertia sinuspersici (Chenopodiaceae): A new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Systematic Bot. 2005, 30, 290–301. [Google Scholar] [CrossRef]
- Akhani, H.; Chatrenoor, T.; Dehghani, M.; Khoshravesh, R.; Mahdavi, P.; Matinzadeh, Z. A new species of Bienertia (Chenopodiaceae) from Iranian salt deserts: A third species of the genus and discovery of a fourth terrestrial C4 plant without Kranz anatomy. Plant Biosystems. 2012, 146, 550–559. [Google Scholar]
- Voznesenskaya, E.V.; Koteyeva, N.K.; Chuong, S.D.D.; Akhani, H.; Edwards, G.E.; Franceschi, V.R. Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycroptera (Chenopodiaceae). Am. J. Bot. 2005, 92, 1784–1795. [Google Scholar] [CrossRef]
- Chuong, S.D.D.; Franceschi, V.R.; Edwards, G.E. The cytoskelton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 2006, 18, 2207–2223. [Google Scholar] [CrossRef]
- Edwards, G.E.; Franceschi, V.R.; Voznesenskaya, E.V. Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu. Rev. Plant Biol. 2004, 55, 173–196. [Google Scholar] [CrossRef]
- Martineau, B.; Taylor, W.C. Photosynthetic gene expression and cellular differentiation in developing maize leaves. Plant Physiol. 1985, 78, 399–404. [Google Scholar] [CrossRef]
- Langdale, J.A.; Rothermel, B.A.; Nelson, T. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 1988, 2, 106–115. [Google Scholar] [CrossRef]
- Sheen, J.Y.; Bogorad, L. Differential expression of C4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J. Biol. Chem. 1987, 262, 11726–11730. [Google Scholar] [CrossRef]
- Wang, J.L.; Kessig, D.F.; Berry, J.O. Regulation of C4 gene expression in developing amaranth leaves. Plant Cell 1992, 4, 173–184. [Google Scholar] [CrossRef][Green Version]
- Wang, J.L.; Turgeon, R.; Carr, J.P.; Berry, J.O. Carbon sink-to-source transition is coordinated with establishment of cell-specific gene expression in a C4 plant. Plant Cell 1993, 5, 289–296. [Google Scholar] [CrossRef]
- Ramsperger, V.C.; Summers, R.G.; Berry, J.O. Photosynthetic gene expression in meristems and during initial leaf development in a C4 dicotyledonous plant. Plant Physiol. 1996, 111, 999–1010. [Google Scholar] [CrossRef][Green Version]
- Sheen, J.Y.; Bogorad, L. Regulation of levels of nuclear transcripts for C4 photosynthesis in bundle sheath and mesophyll cells of maize leaves. Plant Mol. Biol. 1987, 8, 227–238. [Google Scholar] [CrossRef]
- Langdale, J.A.; Taylor, W.C.; Nelson, T. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet. 1991, 225, 49–55. [Google Scholar] [CrossRef]
- Matsuoka, M.; Numazawa, T. Cis-acting elements in the pyruvate, orthophosphate dikinase gene from maize. Mol. Gen. Genet. 1991, 228, 143–152. [Google Scholar] [CrossRef]
- Long, J.J.; Berry, J.O. Tissue-specific and light-mediated expression of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Plant Physiol. 1996, 112, 473–482. [Google Scholar] [CrossRef][Green Version]
- Nomura, M.; Sentoku, N.; Nishimura, A.; Lin, J.H.; Honda, C.; Taniguchi, M.; Ishida, Y.; Ohta, S.; Komari, T.; Miyao-Tokutomi, M.; et al. The evolution of C4 plants: Acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J. 2000, 22, 211–221. [Google Scholar] [CrossRef]
- Taniguchi, M.; Izawa, K.; Ku, M.S.S.; Lin, J.H.; Saito, H.; Ishida, Y.; Ohta, S.; Komari, T.; Matsuoka, M.; Sugiyama, T. Binding of cell type-specific nuclear proteins to the 5’-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells. Plant Mol. Biol. 2000, 44, 543–557. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McCormac, D.J.; Litz, H.; Wang, J.; Gollnick, P.D.; Berry, J.O. Light-associated and processing-dependent protein binding to 5’ regions of rbcL mRNA in the Chloroplasts of a C4 plant. J. Biol. Chem. 2001, 276, 3476–3483. [Google Scholar] [CrossRef] [PubMed]
- Hibberd, J.M.; Covshoff, S. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 2010, 61, 181–207. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J. C4 gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 187–217. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.E.; Franceschi, V.R.; Ku, M.S.S.; Voznesenskaya, E.V.; Pyankov, V.I.; Andreo, C.S. Compartmentation of photosynthesis in cells and tissues of C4 plants. J. Exp. Bot. 2001, 52, 577–590. [Google Scholar] [CrossRef]
- Voznesenskaya, E.V.; Edwards, G.E.; Kirats, O.; Artyusheva, E.G.; Francheschi, V.R. Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). Am. J. Bot. 2003, 90, 1669–1680. [Google Scholar] [CrossRef]
- Lara, M.V.; Offermann, S.; Smith, M.; Okita, T.W.; Andreo, C.S.; Edwards, G.E. Leaf development in the single-cell C4 system in Bienertia sinuspersici: Expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. Plant Physiol. 2008, 148, 593–610. [Google Scholar] [CrossRef]
- Offermann, S.; Okita, T.W.; Edwards, G.E. Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol. 2011, 155, 1612–1628. [Google Scholar] [CrossRef]
- Majeran, W.; Zybailov, B.; Ytterberg, J.A.; Dunsmore, J.; Sun, Q.; van Wijk, K.J. Consequences of C4 differentiation for chloroplast membrene proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics. 2008, 7, 1609–1638. [Google Scholar] [CrossRef]
- Hofer, M.U.; Santore, U.J.; Westhoff, P. Differential accumulation of the 10-, 16- and 23-kDa peripheral componentsof the water-splitting complex of photosystem II in mesophyll and bundle-sheath chloroplasts of the dicotyledonous C4 plant Flaveria trinervia (Spreng.) C. Mohr. Planta 1992, 186, 304–312. [Google Scholar] [CrossRef]
- Meierhoff, K.; Westhoff, P. Differential biogenesis of photosystem II in mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C4 plants:the non-stoichiometric abundance of the subunits of photosystem II in the bundle-sheath chloroplasts and the translational activity of the plastome-encoded genes. Planta 1993, 191, 23–33. [Google Scholar]
- Koteyeva, N.K.; Voznesenskaya, E.V.; Berry, J.O.; Cousins, A.B.; Edwards, G.E. The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodeaceae). J. Exp. Bot. 2016, 67, 2587–2601. [Google Scholar] [CrossRef]
- Lung, S.C.; Yanagisawa, M.; Chuong, S.D.D. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep. 2011, 30, 473–484. [Google Scholar] [CrossRef]
- Dengler, N.G.; Taylor, W.C. Developmental aspects of C4 photosynthesis. In Photosynthesis: Physiology and Metabolism; Leegood, R.C., Sharkey, T.D., von Caemmerer, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 471–495. [Google Scholar]
- Langdale, J.A.; Metzler, M.C.; Nelson, T. The Argentia mutation dilays normal development of photosynthetic cell-types in Zea mays. Dev. Biol. 1987, 122, 243–255. [Google Scholar] [CrossRef]
- Freitag, H.; Stichler, W. A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae. Plant Biol. 2000, 2, 154–160. [Google Scholar] [CrossRef]
- Lesner, C.P.; Cousins, A.B.; Offermann, S.; Okita, T.W.; Edwards, G.E. The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynth. Res. 2010, 106, 201–214. [Google Scholar] [CrossRef]
- Wimmer, D.; Bohnhorst, P.; Shekhar, V.; Hwang, I.; Offermann, S. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici. Sci. Rep. 2017, 7, 41187. [Google Scholar] [CrossRef]
- Anderson, J.M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: A personal perspective. Aust. J. Plant Physiol. 1999, 26, 625–639. [Google Scholar] [CrossRef]
- Adam, Z.; Charuvi, D.; Tsabari, O.; Knopf, R.R.; Reich, Z. Biogenesis of thylakoid networks in angiosperms: Knowns and unknowns. Plant Mol. Biol. 2010, 76, 221–234. [Google Scholar] [CrossRef]
- Offermann, S.; Friso, G.; Doroshenk, K.A.; Sun, Q.; Sharpe, R.M.; Okita, T.W.; Wimmer, D.; Edwards, G.E.; van Wijk, K.J. Developmental and subcellular organization of single-cell C4 photosynthesis in Bienertia sinuspercisi determined by large-scale proteomics and cDNA assembly from 454 DNA sequencing. J. Prot. Res. 2015, 14, 2090–2108. [Google Scholar] [CrossRef]
- Patel, M.; Berry, J.O. Rubisco gene expression in C4 plants. J. Exp. Bot. 2008, 59, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Rosnow, J.; Yerramsetty, P.; Berry, J.O.; Okita, T.W.; Edwards, G.E. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC Plant Biol. 2014, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Collett, H.; Butowt, R.; Smith, J.; Farrant, J.M.; Illing, N. Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J. Exp. Bot. 2003, 54, 2593–2595. [Google Scholar] [CrossRef] [PubMed]
- Marin-Navarro, J.; Manuell, L.; Wu, J.; Mayfield, S.P. Chloroplast translation regulation. Photosynth. Res. 2007, 94, 359–374. [Google Scholar] [CrossRef]
- Mulo, P.; Sakurai, I.; Aro, E.M. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: From transcription to PSII repair. Biochim. Biophys. Acta. 2011, 1817, 247–257. [Google Scholar] [CrossRef]
- Fromm, H.; Devic, M.; Fluhr, R.; Edelman, M. Control of psbA gene expression: In mature Spirodela chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J. 1985, 4, 291–295. [Google Scholar] [CrossRef]
- Klein, R.R.; Mullet, J.E. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J. Biol. Chem. 1986, 261, 11138–11145. [Google Scholar] [CrossRef]
- Klaff, P.; Gruissem, W. Changes in chloroplast mRNA stability during leaf development. Plant Cell 1991, 3, 517–529. [Google Scholar] [CrossRef]
- Staub, J.M.; Maliga, P. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 1993, 12, 601–606. [Google Scholar] [CrossRef]
- Kim, J.; Eichacker, L.A.; Rudiger, W.; Mullet, J.E. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 1994, 104, 907–916. [Google Scholar] [CrossRef]
- van Wijk, K.J.; Bingsmark, S.; Aro, E.M.; Andersson, B. In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J. Biol. Chem. 1995, 270, 25685–25695. [Google Scholar] [CrossRef]
- Edhofer, I.; Muhlbauer, S.K.; Eichacker, L.A. Light regulates the rate of translation elongation of chloroplast reaction center protein D1. Eur. J. Biochem. 1998, 257, 78–84. [Google Scholar] [CrossRef]
- Xu, R.; Bingham, S.E.; Webber, A.N. Increased mRNA accumulation in a psaB frame-shift mutation of Chlamydomonas reinhardtii suggests a role for translation in psaB mRNA stability. Plant Mol. Biol. 1993, 22, 465–474. [Google Scholar] [CrossRef]
- Bowman, S.M.; Patel, M.; Yerramsetty, P.; Mure, C.; Zielinski, A.M.; Bruenn, J.A.; Berry, J.O. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol. 2013, 13, 138. [Google Scholar] [CrossRef]
- Yerramsetty, P.; Agar, E.M.; Yim, W.C.; Cushman, J.C.; Berry, J.O. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. J. Exp. Bot. 2017, 68, 4635–4649. [Google Scholar] [CrossRef][Green Version]
- Jiang, J.; Chai, X.; Manavski, N.; Williams-Carrier, R.; He, B.; Brachmann, A.; Ji, D.; Ouyang, M.; Liu, Y.; Barka, A.; et al. An RNA chaperone–like protein plays critical roles in chloroplast mRNA stability and translation in Arabidopsis and maize. Plant Cell 2019, 31, 1308–1327. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, K.; Lee, K.H.; Jung, S.; Jeon, Y.; Pai, H.S.; Kang, H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 2015, 83, 277–289. [Google Scholar] [CrossRef]
- Lung, S.C.; Yanagisawa, M.; Chuong, S.D.D. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici. Plant Methods 2012, 8, 8. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagisawa, M.; Chuong, S.D.X. Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants 2023, 12, 77. https://doi.org/10.3390/plants12010077
Yanagisawa M, Chuong SDX. Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants. 2023; 12(1):77. https://doi.org/10.3390/plants12010077
Chicago/Turabian StyleYanagisawa, Makoto, and Simon D. X. Chuong. 2023. "Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici" Plants 12, no. 1: 77. https://doi.org/10.3390/plants12010077
APA StyleYanagisawa, M., & Chuong, S. D. X. (2023). Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants, 12(1), 77. https://doi.org/10.3390/plants12010077