Fresh Pod Yield, Physical and Nutritional Quality Attributes of Common Bean as Influenced by Conventional or Organic Farming Practices
Abstract
:1. Introduction
2. Results
2.1. Yield Components and Morphological Characteristics of Green Pods
2.2. Nutrient Content of Fresh Pods
2.3. Biochemical Compounds
2.4. Sugars and Starch
2.5. Principal Component Analysis (PCA)
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Cultivation Practices
4.3. Samplings, Measurements and Methods
4.3.1. Yield, Physical Pod Quality and Nutrient Concentrations
4.3.2. Biochemical Compounds Content
Extraction Method
Antioxidant Assays
Total Phenolic Content (TPC) Determination
Total Flavonoid Content (TFC) Determination
Sugars and Starch Content Determination
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torstensson, G.; Aronsson, H.; Bergström, L. Nutrient Use Efficiencies and Leaching of Organic and Conventional Cropping Systems in Sweden. Agron. J. 2006, 98, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Greer, K.D.; Pittelkow, C.M. Linking Nitrogen Losses With Crop Productivity in Maize Agroecosystems. Front. Sustain. Food Syst. 2018, 2, 29. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Bilalis, D.; Pappa, V.A.; Rees, R.M.; Savvas, D. Effects of Organic Farming Practices and Salinity on Yield and Greenhouse Gas Emissions from a Common Bean Crop. Sci. Hort. 2015, 183, 48–57. [Google Scholar] [CrossRef]
- National Research Council. Toward Sustainable Agricultural Systems in the 21st Century; The National Academies Press: Washington, DC, USA, 2010; pp. 1–598. [CrossRef]
- Ahoudi, H.; Gnandi, K.; Tanouayi, G.; Ouro-Sama, K.; Yorke, J.-C.; Creppy, E.E.; Moesch, C. Assessment of Pesticides Residues Contents in the Vegetables Cultivated in Urban Area of Lome (Southern Togo) and Their Risks on Public Health and the Environment, Togo. Int. J. Biol. Chem. Sci. 2019, 12, 2172–2185. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Maroni, M.; Fait, A.; Colosio, C. Risk Assessment and Management of Occupational Exposure to Pesticides. Toxicol. Lett. 1999, 107, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, R.; Koocheki, A.; Brandt, K.; Wilcockson, S.; Leifert, C. Organic Agriculture and Food Production: Ecological, Environmental, Food Safety and Nutritional Quality Issues. Sustain. Agric. Rev. 2010, 3, 77–107. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Yfantopoulos, D.; Baltzoi, P.; Karapanos, I.C.; Tsirogiannis, I.; Patakioutas, G.; Savvas, D. Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop. Nitrogen 2021, 2, 347–358. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Savvas, D. Legume-Based Mobile Green Manure Can Increase Soil Nitrogen Availability and Yield of Organic Greenhouse Tomatoes. Plants 2021, 10, 2419. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Savvas, D. Impact of Legumes as a Pre-Crop on Nitrogen Nutrition and Yield in Organic Greenhouse Tomato. Plants 2021, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Giannakou, I.; Savvas, D. Nitrogen Nutrition Optimization in Organic Greenhouse Tomato Through the Use of Legume Plants as Green Manure or Intercrops. Agronοmy 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Elliott, L.F.; Unger, Y.L. Long-Term Effects of Organic and Conventional Farming on Soil Erosion. Nature 1987, 330, 370–372. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct Soil Microbial Diversity under Long-Term Organic and Conventional Farming. ISME J. 2014, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meemken, E.M.; Qaim, M. Organic Agriculture, Food Security, and the Environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 7397, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Paul, J. Consumer Behavior and Purchase Intention for Organic Food: A Review and Research Agenda. J. Retail. Consum. Serv. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. 2004, 7, 161–173. [Google Scholar] [CrossRef]
- De Souza Araújo, D.F.; Da Silva, A.M.R.B.; De Andrade Lima, L.L.; Da Silva Vasconcelos, M.A.; Andrade, S.A.C.; Asfora Sarubbo, L. The Concentration of Minerals and Physicochemical Contaminants in Conventional and Organic Vegetables. Food Control 2014, 44, 242–248. [Google Scholar] [CrossRef]
- Lairon, D. Nutritional Quality and Safety of Organic Food. A Review. Agron. Sustain. Dev. 2010, 30, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Maldonado, S.H.; Acosta-Gallegos, J.; Paredes-López, O. Protein and Mineral Content of a Novel Collection of Wild and Weedy Common Bean (Phaseolus Vulgaris L). J. Sci. Food and Agric. 2000, 80, 1874–1881. [Google Scholar] [CrossRef]
- Sgarbieri, V.C.; Whitaker, J.R. Physical, Chemical, and Nutritional Properties of Common Bean (Phaseolus) Proteins. Adv. Food Res. 1982, 28, 93–166. [Google Scholar] [CrossRef] [PubMed]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant Activity in Common Beans (Phaseolus Vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Paredes-Lapez, O. Hard-to-cook Phenomenon in Common Beans—A Review. Crit. Rev. Food Sci. Nutr. 2009, 33, 227–286. [Google Scholar] [CrossRef]
- Graham, P.H. Some Problems of Nodulation and Symbiotic Nitrogen Fixation in Phaseolus Vulgaris L.: A Review. Field Crops Res. 1981, 4, 93–112. [Google Scholar] [CrossRef]
- Martínez-Romero, E. Diversity of Rhizobium-Phaseolus Vulgaris Symbiosis: Overview and Perspectives. Plant Soil 2003, 252, 11–23. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, E.; Ropokis, A.; Sabatino, L.; Tran, F.; et al. Agronomic Practices to Increase the Yield and Quality of Common Bean (Phaseolus Vulgaris L.): A Systematic Review. Agronomy 2022, 12, 271. [Google Scholar] [CrossRef]
- Bélec, C.; Villeneuve, S.; Coulombe, J.; Tremblay, N. Influence of Nitrogen Fertilization on Yield, Hollow Stem Incidence and Sap Nitrate Concentration in Broccoli. Can. J. Plant Sci. 2011, 81, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Beverly, R.B.; Jarrell, W.M.; Letey, J. A Nitrogen and Water Response Surface for Sprinkler-Irrigated Broccoli1. J. Agron. 1986, 78, 91–94. [Google Scholar] [CrossRef]
- Letey, J.; Jarrell, W.M.; Valoras, N.; Beverly, R. Fertilizer Application and Irrigation Management of Broccoli Production and Fertilizer Use Efficiency1. J. Agron. 1983, 75, 502–507. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba Bean in Cropping Systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Bullock, D.G. Crop Rotation. Crit. Rev. Plant Sci. 2008, 11, 309–326. [Google Scholar] [CrossRef]
- Schmeer, M.; Loges, R.; Dittert, K.; Senbayram, M.; Horn, R.; Taube, F. Legume-Based Forage Production Systems Reduce Nitrous Oxide Emissions. Soil Tillage Res. 2014, 143, 17–25. [Google Scholar] [CrossRef]
- Chekanai, V.; Chikowo, R.; Vanlauwe, B. Response of Common Bean (Phaseolus Vulgaris L.) to Nitrogen, Phosphorus and Rhizobia Inoculation across Variable Soils in Zimbabwe. Agric. Ecosyst. Environ. 2018, 266, 167–173. [Google Scholar] [CrossRef] [PubMed]
- HA, E. Growth and Yield of Common Bean (Phaseolus Vulgaris L.) in Response to Rhizobium Inoculation, Nitrogen and Molybdenum Fertilization. Alex. Sci. Exch. 2009, 30, 319–332. [Google Scholar] [CrossRef]
- Karasu, A.; Oz, M.; Dogan, R. The Effect of Bacterial Inoculation and Different Nitrogen Doses on Yield and Yield Components of Some Dwarf Dry Bean Cultivars (Phaseolus Vulgaris L.). Bulg. J. Agric. Sci. 2011, 17, 296–305. [Google Scholar]
- Da Silva, M.G.; Arf, O.; De Sá, M.E.; Rodrigues, R.A.F.; Buzetti, S. Nitrogen Fertilization and Soil Management of Winter Common Bean Crop. Sci. Agricola. 2004, 61, 307–312. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Quality of Plant Products from Organic Agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Adediran, J.A.; Taiwo, L.B.; Akande, M.O.; Sobulo, R.A.; Idowu, O.J. Application of Organic and Inorganic Fertilizer for Sustainable Maize and Cowpea Yields in Nigeria. J. Plant Nutr. 2007, 27, 1163–1181. [Google Scholar] [CrossRef]
- Dangour, A.D.; Dodhia, S.K.; Hayter, A.; Allen, E.; Lock, K.; Uauy, R. Nutritional Quality of Organic Foods: A Systematic Review. Am. J. Clin. Nutr. 2009, 90, 680–685. [Google Scholar] [CrossRef]
- Azeez, J.O.; Van Averbeke, W. Nitrogen Mineralization Potential of Three Animal Manures Applied on a Sandy Clay Loam Soil. Bioresour. Technol. 2010, 101, 5645–5651. [Google Scholar] [CrossRef] [PubMed]
- Brust, G.E. Management Strategies for Organic Vegetable Fertility. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar] [CrossRef]
- Sims, J.T.; Edwards, A.C.; Schoumans, O.F.; Simard, R.R. Integrating Soil Phosphorus Testing into Environmentally Based Agricultural Management Practices. J. Environ. Qual. 2000, 29, 60–71. [Google Scholar] [CrossRef]
- Oberson, A.; Frossard, E. Phosphorus Management for Organic Agriculture. Phosphorus Agric. Environ. 2015, 761–779. [Google Scholar] [CrossRef]
- Pieper, J.R.; Barrett, D.M. Effects of Organic and Conventional Production Systems on Quality and Nutritional Parameters of Processing Tomatoes. J. Sci. Food Agric. 2009, 89, 177–194. [Google Scholar] [CrossRef]
- Woese, K.; Lange, D.; Boess, C.; Bo, K.W. A Comparison of Organically and Conventionally Grown Foods-Results of a Review of the Relevant Literature. J. Sci. Food Agric. 1997, 74, 281–293. [Google Scholar] [CrossRef]
- Herencia, J.F.; García-Galavís, P.A.; Dorado, J.A.R.; Maqueda, C. Comparison of Nutritional Quality of the Crops Grown in an Organic and Conventional Fertilized Soil. Sci. Hortic. 2011, 129, 882–888. [Google Scholar] [CrossRef]
- Bourn, D.; Prescott, J. A Comparison of the Nutritional Value, Sensory Qualities, and Food Safety of Organically and Conventionally Produced Foods. Crit. Rev. Food Sci. Nutr. 2010, 42, 1–34. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Liasis, E.; Iannetta, P.P.M.; Tampakaki, A.; Savvas, D. Impact of Rhizobial Inoculation and Reduced N Supply on Biomass Production and Biological N2 Fixation in Common Bean Grown Hydroponically. J. Sci. Food Agric. 2017, 97, 4353–4361. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Paradiso, R.; Barbieri, G. Quality and Nutritional Value of Vegetables from Organic and Conventional Farming. Sci. Hortic. 2013, 164, 532–539. [Google Scholar] [CrossRef]
- Tal, A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic Foods Contribution to Nutritional Quality and Value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Faller, A.L.K.; Fialho, E. The Antioxidant Capacity and Polyphenol Content of Organic and Conventional Retail Vegetables after Domestic Cooking. Food Res. Int. 2009, 42, 210–215. [Google Scholar] [CrossRef]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic Food: Nutritious Food or Food for Thought? A Review of the Evidence. Int. J. Food Sci Nutr. 2009, 54, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.E.; Mele, M.A.; Lee, Y.T.; Islam, M.Z. Consumer Preference, Quality, and Safety of Organic and Conventional Fresh Fruits, Vegetables, and Cereals. Foods 2021, 10, 105. [Google Scholar] [CrossRef]
- Mastura, H.; Hasnah, Y.; Dang, H. Total Phenolic Content and Antioxidant Capacity of Beans: Organic vs Inorganic. Int. Food Res. J. 2017, 24, 510–517. [Google Scholar]
- Conti, S.; Villari, G.; Faugno, S.; Melchionna, G.; Somma, S.; Caruso, G. Effects of Organic vs. Conventional Farming System on Yield and Quality of Strawberry Grown as an Annual or Biennial Crop in Southern Italy. Sci. Hortic. 2014, 180, 63–71. [Google Scholar] [CrossRef]
- Maggio, A.; Carillo, P.; Bulmetti, G.S.; Fuggi, A.; Barbieri, G.; De Pascale, S. Potato Yield and Metabolic Profiling under Conventional and Organic Farming. Eur. J. Agron. 2008, 28, 343–350. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. The Nutritional Value and Vitamin C Content of Different Raspberry Cultivars from Organic and Conventional Production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Hallmann, E. The Influence of Organic and Conventional Cultivation Systems on the Nutritional Value and Content of Bioactive Compounds in Selected Tomato Types. J. Food Compos. Anal. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Kapoulas, N.; Ilić, Z.S.; Durovka, M.; Trajković, R.; Milenković, L. Effect of Organic and Conventional Production Practices on Nutritional Value and Antioxidant Activity of Tomatoes. Afr. J. Biotechnol. 2011, 10, 15938–15945. [Google Scholar] [CrossRef]
- Bliss, F.A. Common Bean. In Hybridization of Crop Plants; Fehr, W.R., Hadley, H.H., Eds.; American Society of Agronomy: Madison, WI, USA, 1980; pp. 273–284. [Google Scholar] [CrossRef]
- Escribano, M.R.; Santalla, M.; De Ron, A.M. Genetic Diversity in Pod and Seed Quality Traits of Common Bean Populations from Northwestern Spain. Euphytica 1997, 93, 71–81. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis; Norman, A.G., Ed.; Agronomy Monographs American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.; Khan, M.R.; Rashid, U.; Bokhari, J. Assessment of Antioxidant Potential, Total Phenolics and Flavonoids of Different Solvent Fractions of Monotheca Buxifolia Fruit. Osong Public Heal. Res. Perspect. 2013, 4, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [Green Version]
- Spackman, V.M.T.; Cobb, A.H. An Enzyme-Based Method for the Rapid Determination of Sucrose, Glucose and Fructose in Sugar Beet Roots and the Effects of Impact Damage and Postharvest Storage in Clamps. J. Sci. Food Agric. 2002, 82, 80–86. [Google Scholar] [CrossRef]
- Smith, A.M.; Zeeman, S.C. Quantification of Starch in Plant Tissues. Nat. Protoc. 2006, 1, 1342–1345. [Google Scholar] [CrossRef]
Treatment | Pods | MFW | PL | SS | Curvature | PW | Seed | DMC (%) |
---|---|---|---|---|---|---|---|---|
(N/Plant) | (g) | (cm) | (cm) | (SS/PL) | (cm) | (Ν/pod) | ||
CON | 56.8 a | 9.90 a | 14.8 ab | 18.6 a | 1.25 | 1.37 b | 6.73 a | 9.86 b |
O (SM + BR) | 46.2 b | 9.63 b | 14.1 b | 17.9 b | 1.28 | 1.37 b | 6.21 b | 10.83 a |
O (SM + GM) | 53.8 a | 9.94 a | 15.5 a | 18.9 a | 1.22 | 1.42 a | 6.88 a | 9.67 b |
Statistical significance | * | * | * | * | NS | * | * | *** |
Treatment | FRAP (Asc mg/g) | TEAC (Trolox mg/g) | TPC (Gallic mg/g) | TFC (Querc. mg/g) |
---|---|---|---|---|
CON | 1.68 b | 2.67 b | 7.14 b | 9.68 b |
SM + BR | 2.05 a | 3.17 a | 8.25 a | 13.94 a |
SM + GM | 1.90 ab | 3.03 ab | 6.84 b | 8.89 b |
Statistical significance | * | ** | * | ** |
Treatment | Sugars (mg/g) | Starch (mg/g eq. to Ahnydro Glycose) | ||
---|---|---|---|---|
Glucose | Fructose | Sucrose | ||
CON | 22.5 | 11.7 | 1.73 | 82.0 |
SM + BR | 23.2 | 11.3 | 1.52 | 79.0 |
SM + GM | 22.0 | 12.6 | 1.82 | 79.9 |
Statistical significance | NS | NS | NS | NS |
Parameter | Value | Parameter | Value |
---|---|---|---|
Clay | 20% | K 2 | 478 mg kg−1 |
Silt | 14% | Ca 2 | 3.88 g kg−1 |
Sand | 66% | Mg 2 | 1.36 g kg−1 |
pH | 7.7 | Fe 1 | 10.2 mg kg−1 |
Electrical conductivity | 710 μS cm−1 | Cu 1 | 2.54 mg kg−1 |
Organic matter | 5% | Zn 1 | 5.10 mg kg−1 |
Total CaCO3 | 16.0% | Mn 1 | 7.84 mg kg−1 |
Total N | 0.20% | B 1 | 1.06 mg kg−1 |
P 1 | 153.5 mg kg−1 |
Winter Cultivation Period | Summer Cultivation Period | |
---|---|---|
Organic broccoli | (a) →(SM + BR) | Organic common bean |
Green manure | (b) → (SM + GM) | |
Conventional broccoli | (c) → (CON) | Conventional common bean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karavidas, I.; Ntatsi, G.; Marka, S.; Ntanasi, T.; Consentino, B.B.; Sabatino, L.; Iannetta, P.P.M.; Savvas, D. Fresh Pod Yield, Physical and Nutritional Quality Attributes of Common Bean as Influenced by Conventional or Organic Farming Practices. Plants 2023, 12, 32. https://doi.org/10.3390/plants12010032
Karavidas I, Ntatsi G, Marka S, Ntanasi T, Consentino BB, Sabatino L, Iannetta PPM, Savvas D. Fresh Pod Yield, Physical and Nutritional Quality Attributes of Common Bean as Influenced by Conventional or Organic Farming Practices. Plants. 2023; 12(1):32. https://doi.org/10.3390/plants12010032
Chicago/Turabian StyleKaravidas, Ioannis, Georgia Ntatsi, Sofia Marka, Theodora Ntanasi, Beppe Benedetto Consentino, Leo Sabatino, Pietro P. M. Iannetta, and Dimitrios Savvas. 2023. "Fresh Pod Yield, Physical and Nutritional Quality Attributes of Common Bean as Influenced by Conventional or Organic Farming Practices" Plants 12, no. 1: 32. https://doi.org/10.3390/plants12010032
APA StyleKaravidas, I., Ntatsi, G., Marka, S., Ntanasi, T., Consentino, B. B., Sabatino, L., Iannetta, P. P. M., & Savvas, D. (2023). Fresh Pod Yield, Physical and Nutritional Quality Attributes of Common Bean as Influenced by Conventional or Organic Farming Practices. Plants, 12(1), 32. https://doi.org/10.3390/plants12010032