Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, V.M.; Lewis, M.M.; Ostendorf, B. Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. J. Arid Environ. 2012, 78, 1–12. [Google Scholar] [CrossRef]
- de la Barrera, E. Recent invasion of buffel grass (Cenchrus ciliaris) of a natural protected area from the southern Sonoran Desert. Rev. Mex. Biodivers. 2008, 79, 385–392. [Google Scholar]
- Ibarra-Flores, F.A.; Marín-Rivera, M.H.; Quero-Carrillo, A.R. Pasto buffel Cenchrus ciliaris L. Link. (Pennisetum ciliare Lam.). In Gramíneas Introducidas: Importancia e Impacto En Ecosistemas Ganaderos, 1st ed.; Quero-Carrillo, A.R., Ed.; Colegio de Postgraduados: Texcoco, México, 2013; Volume 1, pp. 73–102. [Google Scholar]
- Arriaga, L.; Castellanos, V.A.E.; Moreno, E.; Alarcón, J. Potential ecological distribution of alien invasive species and risk assessment: A case study of buffel grass in arid regions of Mexico. Conserv. Biol. 2004, 18, 1504–1514. [Google Scholar] [CrossRef]
- Brenner, J.C.; Kanda, L.L. Buffelgrass (Pennisetum ciliare) invades lands surrounding cultivated pastures in Sonora, Mexico. Invasive Plant. Sci. Manag. 2013, 6, 187–195. [Google Scholar] [CrossRef]
- Blanco, L.J.; Ferrando, C.A.; Biurrun, F.N.; Orionte, E.L.; Namur, P.; Recalde, D.J.; Berone, G.D. Vegetation responses to roller chopping and buffelgrass seeding in Argentina. Rangel. Ecol. Manag. 2005, 58, 219–224. [Google Scholar] [CrossRef]
- Saucedo-Monarque, E.; García-Moya, E.; Castellanos-Villegas, A.E.; Flores-Flores, J.L. La riqueza, una variable de respuesta de la vegetación a la introducción del zacate buffel. Agrociencia 1997, 31, 83–90. [Google Scholar]
- Williams, D.G.; Baruch, Z. African grass invasion in the Americas: Ecosystem consequences and the role of ecophysiology. Biol. Invasions 2000, 2, 123–140. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Garmestani, A.S.; Angeler, D.G.; Herrmann, D.L.; Stow, C.A.; Nyström, M.; Sendzimir, J.; Hopton, M.E.; Kolasa, J.; Allen, C.R. Biological invasions, ecological resilience and adaptive governance. Environ. Manag. 2016, 183, 399–407. [Google Scholar] [CrossRef]
- Seipel, T.; Rew, L.J.; Taylor, K.T.; Maxwell, B.D. Disturbance type influences plant community resilience and resistance to Bromus tectorum invasion in the sagebrush steppe. Appl. Veg. Sci. 2018, 21, 385–394. [Google Scholar] [CrossRef]
- Lien, A.M.; Baldwin, E.; Franklin, K. Collective action and invasive species governance in Southern Arizona. Range Ecol. Manag. 2021, 74, 151–164. [Google Scholar] [CrossRef]
- Kumar, R.P.; Singh, J.S. Invasive alien plant species: Their impact on environmental, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Brooks, M.L.; Chambers, J.C. Resistance to invasion and resilience to fire in desert shrublands of North America. Rangeland Ecol. Manag. 2011, 64, 431–438. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5464456&fecha=07/12/2016 (accessed on 31 March 2022).
- Método de Evaluación Rápida de Invasibidad (MERI) para Especies Exóticas en México. Cenchrus ciliaris L. Available online: http://sivicoff.cnf.gob.mx/ContenidoPublico/MenuPrincipal/07Fichas%20tecnicas_OK/02Fichas%20tecnicas/Fichas%20t%C3%A9cnicas%20SEMARNAT_especies%20ex%C3%B3ticas/Cenchrus%20ciliaris.pdf (accessed on 31 March 2022).
- Hui, C.; Krug, R.M.; Richardson, D.M. Modelling spread in invasion ecology: A synthesis. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton, 1st ed.; Richardson, D.M., Ed.; Wiley: Oxford, UK, 2010; Volume 1, pp. 329–343. [Google Scholar] [CrossRef]
- Ramírez-Albores, J.E.; Bustamante, R.O.; Badano, E.I. Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE 2016, 11, e0156029. [Google Scholar] [CrossRef]
- Guerra-Coss, F.A.; Badano, E.I.; Cedillo-Rodríguez, I.E.; Ramírez-Albores, J.E.; Flores, J.; Barragán-Torres, F.; Flores-Cano, J.A. Modelling and validation of the spatial distribution of suitable habitats for the recruitment of invasive plants on climate change scenarios: An approach from the regeneration niche. Sci. Total Environ. 2021, 777, 146007. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2011; Volume 328, pp. 97–137. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Forster, P.M.; Maycock, A.C.; McKenna, C.M.; Smith, C.J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 2019, 10, 7–10. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Lonsdale, W.M. Global patterns of plant invasions and the concept of invasibility. Ecology 1999, 80, 1522–1536. [Google Scholar] [CrossRef]
- Bradley, B.A.; Blumenthal, D.M.; Wilcove, D.S.; Ziska, L.H. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant invaders. Science 2012, 335, 344–1348. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Peña-Gómez, F.T.; Guerrero, P.C.; Bizama, G.; Duarte, M.; Bustamante, R.O. Climatic niche conservatism and biogeographical non-equilibrium in Eschscholzia californica (Papaveraceae), an invasive plant in the Chilean Mediterranean region. PLoS ONE 2014, 9, e105025. [Google Scholar] [CrossRef][Green Version]
- Wan, J.Z.; Wang, C.J.; Yu, F.H. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biology 2019, 74, 757–766. [Google Scholar] [CrossRef]
- Suzart de Albuquerque, F.; Macías-Rodríguez, M.Á.; Búrquez, A.; Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 2019, 21, 3335–3347. [Google Scholar] [CrossRef]
- Stankowski, P.A.; Parker, W.H. Species distribution modelling: Does one size fit all? A phytogeographic analysis of Salix in Ontario. Ecol. Modell. 2010, 221, 1655–1664. [Google Scholar] [CrossRef]
- Agustín Breña-Naranjo, J.; Pedrozo-Acuña, A.; Pozos-Estrada, O.; Jiménez-López, S.A.; López-López, M.R. The contribution of tropical cyclones to rainfall in Mexico. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 111–122. [Google Scholar] [CrossRef]
- González-Medrano, F. Las Zonas Áridas y Semiáridas de México y Su Vegetación, 1st ed.; Instituto Nacional de Ecología: México City, Mexico, 2012; pp. 9–159. [Google Scholar]
- De la Barrera, E.; Castellanos, A.E. High temperature effects on gas exchange for the invasive buffel grass (Pennisetum ciliare [L.] Link). Weed Biol. Manag. 2007, 7, 128–131. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Bradley, R.S.; Diaz, H.F. Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Clim. Dyn. 2011, 37, 605. [Google Scholar] [CrossRef]
- Colorado-Ruiz, G.; Cavazos, T.; Salinas, J.A.; De Grau, P.; Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol. 2018, 38, 5699–5716. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G. Equilibrium of species’ distributions with climate. Ecography 2005, 28, 693–695. [Google Scholar] [CrossRef]
- Václavík, T.; Meentemeyer, R.K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 2012, 18, 73–83. [Google Scholar] [CrossRef]
- Sol, D. Do successful invaders exist? Pre-adaptations to novel environments in terrestrial vertebrates. In Biological Invasions, 1st ed.; Nentwig, W., Ed.; Springer: Berlin, Germany, 2007; Volume 193, pp. 127–144. [Google Scholar] [CrossRef]
- Coutts, S.R.; van Klinken, R.D.; Yokomizo, H.; Buckley, Y.M. What are the key drivers of spread in invasive plants: Dispersal, demography or landscape: And how can we use this knowledge to aid management? Biol. Invasions 2011, 13, 1649–1661. [Google Scholar] [CrossRef]
- Meijer, K.; Schilthuizen, M.; Beukeboom, L.; Smit, C. A review and meta-analysis of the enemy release hypothesis in plant-herbivorous insect systems. PeerJ 2016, 4, e2778. [Google Scholar] [CrossRef]
- Ibarra-Flores, F.A.; Martin-Rivera, M.H.; Moreno-Medina, S.; Ibarra-Martín, F.A.; Retes-López, R. Impacto económico asociado con los daños del tizón foliar en la producción de semilla del zacate buffel en el centro de Sonora, México. Rev. Mex. Agronegocios 2019, 45, 313–324. [Google Scholar]
- Morales-Romero, D.; Lopez-Garcia, H.; Martinez-Rodriguez, J.; Molina-Freaner, F. Documenting a plant invasion: The influence of land use on buffelgrass invasion along roadsides in Sonora, Mexico. J. Arid Environ. 2019, 164, 53–59. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions, 1st ed.; Nentwig, W., Ed.; Springer: Berlin, Germany, 2007; Volume 193, pp. 97–125. [Google Scholar] [CrossRef]
- Stevens, J.; Falk, D.A. Can buffelgrass invasions be controlled in the American Southwest? Using invasion ecology theory to understand buffelgrass success and develop comprehensive restoration and management. Ecol. Restor. 2009, 27, 417–427. [Google Scholar] [CrossRef]
- James, S.A.; Soltis, P.S.; Belbin, L.; Chapman, A.D.; Nelson, G.; Paul, D.L.; Collins, M. Herbarium data: Global biodiversity and societal botanical needs for novel research. Appl. Plant. Sci. 2018, 6, e1024. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Barry, S.; Elith, J.; Barry, S.; Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 2006, 43, 413–423. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Modell. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model. Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin: New York, NY, USA, 2005; pp. 2–39. [Google Scholar]
Climate Unit | Highly Suitable Habitats | Moderately Suitable Habitats | Unsuitable Habitats |
---|---|---|---|
Cold | 0% | 8% | 92% |
Semi-cold semi-dry | 0% | 48% | 52% |
Semi-cold sub-humid | 0% | 31% | 69% |
Temperate dry | 30% | 65% | 5% |
Temperate highly dry | 3% | 72% | 26% |
Temperate humid | 1% | 54% | 45% |
Temperate semi-dry | 45% | 53% | 3% |
Temperate sub-humid | 37% | 54% | 9% |
Semi-warm dry | 66% | 34% | 0% |
Semi-warm highly dry | 51% | 47% | 2% |
Semi-warm humid | 10% | 43% | 46% |
Semi-warm semi-dry | 62% | 38% | 0% |
Semi-warm sub-humid | 73% | 27% | 0% |
Warm dry | 89% | 11% | 0% |
Warm highly dry | 84% | 15% | 2% |
Warm semi-dry | 94% | 6% | 0% |
Warm sub-humid | 37% | 60% | 2% |
Warm wet | 0% | 14% | 86% |
Highly warm highly dry | 100% | 0% | 0% |
Highly warm semi-dry | 85% | 15% | 0% |
Highly warm dry | 91% | 9% | 0% |
Climate Scenario | Highly Suitable Habitats | Moderately Suitable Habitats | Unsuitable Habitats | Overlapping with Negative MESS Areas | |
---|---|---|---|---|---|
Current climate | 42.2% | 45.6% | 12.3% | – | |
2041–2060 | SSP2.6 | SSP2.6 | 52.4% | 39.2% | 8.4% |
SSP4.5 | SSP4.5 | 54.5% | 37.6% | 7.9% | |
SSP7.0 | SSP7.0 | 56.8% | 35.8% | 7.4% | |
SSP8.5 | SSP8.5 | 58.1% | 34.6% | 7.3% | |
2061–2080 | SSP2.6 | SSP2.6 | 52.1% | 39.1% | 8.7% |
SSP4.5 | SSP4.5 | 57.2% | 35.4% | 7.5% | |
SSP7.0 | SSP7.0 | 62.2% | 31.0% | 6.9% | |
SSP8.5 | SSP8.5 | 64.2% | 29.3% | 6.6% | |
2081–2100 | SSP2.6 | SSP2.6 | 51.4% | 39.8% | 8.8% |
SSP4.5 | SSP4.5 | 57.9% | 34.6% | 7.5% | |
SSP7.0 | SSP7.0 | 68.1% | 25.9% | 6.1% | |
SSP8.5 | SSP8.5 | 72.0% | 22.7% | 5.2% |
Climate Scenario | Results of Regression Analyses | Empirical Linear Regression Function | |
---|---|---|---|
2041–2060 | SSP2.6 | F(1, 9998) = 80,688.383, p < 0.001, R2 = 0.890 | = 0.069 * + 1.032 * Pc |
SSP4.5 | F(1, 9998) = 59,827.316, p < 0.001, R2 = 0.857 | Pf = 0.090 * + 1.025 * Pc | |
SSP7.0 | F(1, 9998) = 43,507.023, p < 0.001, R2 = 0.813 | Pf = 0.119 * + 1.013 * Pc | |
SSP8.5 | F(1, 9998) = 40,987.125, p < 0.001, R2 = 0.804 | Pf = 0.132 * + 0.988 * Pc | |
2061–2080 | SSP2.6 | F(1, 9998) = 80,439.742, p < 0.001, R2 = 0.889 | Pf = 0.063 * + 1.036 * Pc |
SSP4.5 | F(1, 9998) = 41,775.102, p < 0.001, R2 = 0.807 | Pf = 0.121 * + 1.010 * Pc | |
SSP7.0 | F(1, 9998) = 24,058.211, p < 0.001, R2 = 0.706 | Pf = 0.198 * + 0.931 * Pc | |
SSP8.5 | F(1, 9998) = 19,815.479, p < 0.001, R2 = 0.665 | Pf = 0.234 * + 0.884 * Pc | |
2081–2100 | SSP2.6 | F(1, 9998) = 84,131.766, p < 0.001, R2 = 0.894 | Pf = 0.058 * + 1.038 * Pc |
SSP4.5 | F(1, 9998) = 36,641.332, p < 0.001, R2 = 0.786 | Pf = 0.133 * + 0.981 * Pc | |
SSP7.0 | F(1, 9998) = 13,323.927, p < 0.001, R2 = 0.571 | Pf = 0.293 * + 0.804 * Pc | |
SSP8.5 | F(1, 9998) = 10,316.182, p < 0.001, R2 = 0.508 | Pf = 0.344 * + 0.738 * Pc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siller-Clavel, P.; Badano, E.I.; Villarreal-Guerrero, F.; Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Corrales-Lerma, R.; Álvarez-Holguín, A.; Hernández-Quiroz, N.S. Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate. Plants 2022, 11, 1160. https://doi.org/10.3390/plants11091160
Siller-Clavel P, Badano EI, Villarreal-Guerrero F, Prieto-Amparán JA, Pinedo-Alvarez A, Corrales-Lerma R, Álvarez-Holguín A, Hernández-Quiroz NS. Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate. Plants. 2022; 11(9):1160. https://doi.org/10.3390/plants11091160
Chicago/Turabian StyleSiller-Clavel, Pablo, Ernesto I. Badano, Federico Villarreal-Guerrero, Jesús A. Prieto-Amparán, Alfredo Pinedo-Alvarez, Raúl Corrales-Lerma, Alan Álvarez-Holguín, and Nathalie S. Hernández-Quiroz. 2022. "Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate" Plants 11, no. 9: 1160. https://doi.org/10.3390/plants11091160
APA StyleSiller-Clavel, P., Badano, E. I., Villarreal-Guerrero, F., Prieto-Amparán, J. A., Pinedo-Alvarez, A., Corrales-Lerma, R., Álvarez-Holguín, A., & Hernández-Quiroz, N. S. (2022). Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate. Plants, 11(9), 1160. https://doi.org/10.3390/plants11091160