Cryo-Technologies for Ex Situ Conservation of Rosa Germplasm
Abstract
:1. Introduction
2. Results
2.1. In Vitro Culture Initiation and Micropropagation
2.2. Cryostorage
2.2.1. Regeneration following Droplet-Vitrification (DV)
2.2.2. Regeneration following Encapsulation-Dehydration (ED)
2.3. Photosynthetic Pigment Content
3. Discussion
4. Materials and Methods
4.1. Plant Material, Culture Conditions, Micropropagation
4.2. Cryopreservation Procedures
4.2.1. Droplet-Vitrification
4.2.2. Encapsulation-Dehydration
4.3. Assessment of Photosynthetic Pigments
4.4. Data Collection and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raymond, O.; Gouzy, J.; Just, J.; Badouin, H.; Verdenaud, M.; Lemainque, A.; Vergne, P.; Moja, S.; Choisne, N.; Pont, C.; et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Fougère-Danezan, M.; Joly, S.; Bruneau, A.; Gao, X.-F.; Zhang, L.-B. Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann. Bot. 2015, 115, 275–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudin, S. Rose: Genetics and Breeding. Plant Breed. Rev. 2010, 17, 159–189. [Google Scholar]
- Lynch, P.T. Cryopreservation of Rosa (Rose). In Cryopreservation of Plant Germplasm II; Towil, L.E., Bajaj, Y.P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 344–353. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose-a review. Biotech. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Ozudogru, E.A.; Previati, A.; Lambardi, M. In vitro conservation and cryopreservation of ornamental plants. In Protocols for In Vitro Propagation of Ornamental Plants; Jain, S.M., Ochatt, S.J., Eds.; Humana Press Springer: New York, NY, USA, 2010; pp. 303–324. [Google Scholar]
- Silva, D.P.C.; Ozudogru, E.A.; Valquíria dos Reis, M.; Lambardi, M. In vitro conservation of ornamental plants. Ornam. Hortic. 2018, 24, 28–33. [Google Scholar] [CrossRef]
- Wang, M.R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tissue Org. Cult. 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Kim, C.K.; Oh, J.Y.; Jee, S.O.; Chung, J.D. In vitro micropropagation of Rosa hybrida L. J. Plant Biotech. 2003, 5, 115–119. [Google Scholar]
- Dohare, S.R.; Shafi, M.; Kaicker, U.S. Micropropagation in roses. Acta Hortic. 1991, 289, 107–108. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. Vitr. Cell. Dev. Biol. Plant 2003, 40, 192–195. [Google Scholar] [CrossRef]
- Dohm, A.; Ludwig, C.; Nehring, K.; Debener, T. Somatic embryogenesis in roses. Acta Hortic. 2001, 547, 341–347. [Google Scholar] [CrossRef]
- Ecommerce News. Ecommerce Share of Floral Industry Europe: 30% in 2027. Available online: https://ecommercenews.eu/ecommerce-share-floral-industry-europe-30-2027/ (accessed on 28 February 2022).
- Migicovsky, Z.; Warschefsky, E.; Klein, L.L.; Miller, A.J. Using living germplasm collections to characterize, improve, and conserve woody perennials. Crop Sci. 2019, 59, 2365–2380. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, F. Importance of cryopreservation for the conservation of plant genetic resources. In Cryopreservation of Tropical Plant Germplasm—Current Research Progress and Applications; Engelmann, F., Takagi, H., Eds.; JIRCAS, Tsukuba/IPGRI: Rome, Italy, 2000; pp. 8–20. [Google Scholar]
- Hawkes, J.G.; Maxted, N.; Ford-Lloyd, B.V. Field gene banks, botanic gardens, in vitro, DNA and pollen conservation. In The Ex Situ Conservation of Plant Genetic Resources; Springer: Dordrecht, The Netherlands, 2000; pp. 92–107. [Google Scholar]
- Sakai, A.; Nishiyama, Y. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience 1978, 13, 225–227. [Google Scholar]
- Kartha, K.K. Cryopreservation of Plant Cells and Organs; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Jenderek, M.M.; Reed, B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. Vitr. Cell. Dev. Biol. Plant 2017, 53, 299–308. [Google Scholar] [CrossRef]
- Wang, L.Y.; Li, Y.D.; Sun, Y.H.; Liu, H.G.; Tang, X.D.; Wang, Q.C.; Zhang, Z.D. An efficient droplet-vitrification cryopreservation for valuable blueberry germplasm. Sci. Hortic. 2017, 17, 60–69. [Google Scholar] [CrossRef]
- Edesi, J.; Tolonen, J.; Ruotsalainen, A.L.; Aspi, J.; Häggman, H. Cryopreservation enables long-term conservation of critically endangered species Rubus humilifolius. Biodiv. Conserv. 2020, 29, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Rantala, S.; Kaseva, J.; Nukari, A.; Laamanen, J.; Tuohlmetsä, S.; Karhu, S.; Veteläinen, M.; Häggman, H. Droplet-vitrification technique for cryopreservation of a large diversity of blackcurrant (Ribes nigrum L.) cultivars. Plant Cell Tissue Org. Cult. 2021, 44, 79–90. [Google Scholar] [CrossRef]
- Kaviani, B.; Negahdar, N. Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an engangered ornamental shrub. S. Afr. J. Bot. 2017, 111, 326–335. [Google Scholar] [CrossRef]
- Halmagyi, A.; Deliu, C.; Isac, V. Cryopreservation of Malus cultivars: Comparison of two droplet protocols. Sci. Hortic. 2010, 124, 387–392. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Kretzschmar, A.A.; Bonnart, R.; Shepherd, A.; Volk, G.M. Cryopreservation of 12 Vitis species using apical shoot tips derived from plants grown in vitro. HortScience 2019, 54, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Halmagyi, A.; Pinker, I. Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet vitrification method. Plant Cell Tissue Org. Cult. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Halmagyi, A.; Pinker, I. Cryopreservation of Rosa shoot tips: Importance of preculture conditions. Acta Hortic. 2006, 725, 351–356. [Google Scholar] [CrossRef]
- Pawłowska, B. Cryopreservation of Rosa canina and R. rubiginosa apical buds by the droplet vitrification method. Acta Hortic. 2012, 937, 905–909. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B. Droplet vitrification cryopreservation of Rosa canina and Rosa rubiginosa using shoot tips from in situ plants. Sci. Hortic. 2014, 168, 151–156. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B. Efficient cryopreservation by droplet vitrification of pentaploid roses and the phenotype of regenerated plants. Acta Soc. Bot. Poloniae 2015, 84, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Z.; Lin, L.H.; Dong, W.X. Cryopreservation of rose in vitro shoot tips rose by vitrification. J. Shenyang Agric. Univ. 2009, 40, 156–159. [Google Scholar]
- Lynch, P.T.; Harris, W.C.; Chartier-Hollis, J.M. Cryopreservation of shoot tips of Rosa multiflora. Plant Growth Regul. 1996, 20, 43–45. [Google Scholar] [CrossRef]
- Pawłowska, B. Employment of encapsulation-dehydration method for liquid nitrogen cryopreservation of ornamental plant explants propagated in vitro. Folia Hortic. 2008, 20, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Pawłowska, B.; Bach, A. Cryopreservation by encapsulation-dehydration of in vitro grown shoot buds of Rosa ‘New Dawn’. Acta Hortic. 2011, 908, 303–307. [Google Scholar] [CrossRef]
- Le Bras, C.; Le Besnerais, P.H.; Hamama, L.; Grapin, A. Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration. Plant Cell Tissue Org. Cult. 2014, 116, 235–242. [Google Scholar] [CrossRef]
- Lentola, A.; David, A.; Abdul-Sada, A.; Tapparo, A.; Goulson, D.; Hill, E.M. Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environ. Poll. 2017, 228, 297–304. [Google Scholar] [CrossRef]
- Benelli, C.; Ozudogru, E.A.; Lambardi, M.; Dradi, G. In vitro conservation of ornamental plants by slow growth storage. Acta Hortic. 2012, 961, 89–93. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V. Conservation and sustainable use of wild species as sources of new ornamentals. Acta Hortic. 2003, 598, 43–53. [Google Scholar] [CrossRef]
- Pati, P.K.; Kaur, N.; Sharma, M.; Ahuja, P.S. In vitro propagation of rose. In Protocols for In Vitro Propagation of Ornamental Plants Volume 589; Jain, S.M., Ochatt, S.J., Eds.; Humana Press, Springer: New York, NY, USA, 2010; pp. 163–176. [Google Scholar]
- Mitrofanova, I.V.; Brailko, V.A.; Lesnikova-Sedoshenko, N.; Mitrofanova, O. Clonal micropropagation and some physiology aspects of essential oil roses valuable cultivars regeneration in vitro. Agric. Forest. 2016, 62, 73–81. [Google Scholar] [CrossRef]
- Wojtania, A.; Matysiak, B. In vitro propagation of Rosa ‘Kontancin’ (R. rugosa x R. beggeriana), a plant with high nutritional and pro-health value. Folia Hortic. 2018, 30, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Clapa, D.; Fira, A.; Borsai, O.; Hârţa, M.; Sisea, C.; Pop, R.; Pamfil, D. Micropropagation of Rosa damascena Mill.: The effects of gelling agents on the multiplication stages and acclimatization. Agric. Sci. Pract. 2017, 3–4, 56–62. [Google Scholar]
- Nikbakht, A.; Kafi, M.; Mirmasoumi, M.; Babalar, M. Micropropagation of damask rose (Rosa damascena Mill.) cvs. Azaran and Ghamsar. Intl. J. Agric. Biol. 2015, 7, 535–538. [Google Scholar]
- Sharma, P.K. Medium engineering for micropropagation of rose (Rosa hybrida L.) cv. First Red. Biol. Forum Int. J. 2017, 9, 26–30. [Google Scholar]
- Kapchina-Toteva, V.; van Telgen, H.J.; Yakimova, E. Role of phenylurea cytokinin CPPU in apical dominance release in in vitro cultured Rosa hybrida L. J. Plant Growth Regul. 2000, 19, 232–237. [Google Scholar] [CrossRef]
- Kulus, D.; Zalewska, M. Cryopreservation as a tool used in long-term storage of ornamental species—A review. Sci. Hortic. 2014, 168, 88–107. [Google Scholar] [CrossRef]
- Kwaśniewska, E.; Dziedzic, E.; Pawłowska, B. Integration of cryopreservation and tissue culture for germplasm conservation and propagation of Rosa pomifera ‘Karpatia’. Not. Bot. Horti. Agrobot. 2017, 45, 208–2014. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.M. Pretreatment strategies for the cryopreservation of plant tissues. In Techniques in In Vitro Conservation of Plant Genetic Resources; Normah, M.N., Narimah, M.K., Clyde, M.M., Eds.; Universiti Kebangsaan Malaysia Publishers: Kuala Lumpur, Malaysia, 1996; pp. 73–87. [Google Scholar]
- Trouvelot, S.; Héloir, M.C.; Poinssot, B.; Gauthier, A.; Paris, F.; Guillier, C.; Combier, M.; Trdá, L.; Daire, X.; Adrian, M. Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Front. Plant Sci. 2014, 5, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, G.M.; Henk, A.D.; Bonnart, R.M.; Shepherd, A.; Gross, B.L. Plant shoot tip response to treatment with plant vitrification solution #2. Acta Hortic. 2014, 1039, 81–84. [Google Scholar]
- Lawson, A.; Ahmad, H.; Sambanis, A. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology 2011, 62, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, F. Encapsulation-dehydration for cryopreservation: Past, present and future. Acta Hortic. 2011, 908, 165–172. [Google Scholar] [CrossRef]
- Fabre, J.; Dereuddre, J. Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot tips. CryoLetters 1990, 11, 413–426. [Google Scholar]
- Dereuddre, J.; Scottez, C.; Arnaud, Y.; Duron, M. Effets d’un endurcissement au froid des vitroplants de poirier (Pyrus communis L. cv. Beurré Hardy) sur la résistance des apex axillaires à une congelation dans l’azote liquid. Comptes Rendus L’académie Sci. Série III Sci. Vie 1990, 310, 317–323. [Google Scholar]
- Halmagyi, A.; Fischer-Klüver, G.; Mix-Wagner, G.; Schumacher, H.M. Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) by different approaches. Plant Cell Rep. 2004, 22, 371–375. [Google Scholar] [CrossRef]
- Kulus, D.; Rewers, M.; Serocka, M.; Mikuła, A. Cryopreservation by encapsulation-dehydration affects the vegetative growth of chrysanthemum but does not disturb its chimeric structure. Plant Cell Tissue Org. Cult. 2019, 138, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Kulus, D.; Abratowska, A. (Cryo)conservation of Ajania pacifica (Nakai) Bremer et Humphries shoot tips via encapsulation-dehydration technique. CryoLetters 2017, 38, 387–398. [Google Scholar]
- González-Arnao, M.T.; Juárez, J.; Ortega, C.; Navarro, L.; Duran-Vila, N. Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. CryoLetters 2003, 24, 85–94. [Google Scholar] [PubMed]
- Butiuc-Keul, A.; Coste, A.; Farkas, A.; Cristea, V.; Isac, V.; Halmagyi, A. Molecular characterization of apple (Malus x domestica Borkh.) genotypes originating from three complementary conservation strategies. Turkish J. Agric. For. 2019, 43, 464–477. [Google Scholar] [CrossRef]
- Pedroso, A.N.V.; Lazarini, R.A.M.; Tamaki, V.; Nievola, C.C. In vitro culture at low temperature and ex vitro acclimatization of Vriesea inflata an ornamental bromeliad. Rev. Brasil. Bot. 2010, 33, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Han, Q.; Ding, C.; Huang, Y.; Liao, J.; Chen, T.; Feng, S.; Zhou, L.; Zhang, Z.; Chen, Y.; et al. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int. J. Mol. Sci. 2020, 21, 1390. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, E.; Petrova, D.; Yordanova, Z.; Kapchina-Toteva, V.; Cellarova, E.; Chaneva, G. Influence of cryopreservation on the antioxidative activity of in vitro cultivated Hypericum species. Biotechnol. Biotechnol. Equip. 2014, 28, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Zevallos, B.; Cejas, I.; Rodríguez, R.C.; Yabor, L.; Aragón, C.; González, J. Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters 2016, 37, 413–421. [Google Scholar]
- Popova, E.V.; Shukla, M.R.; McIntosh, T.; Saxena, P.K. In vitro and cryobiotechnology approaches to safeguard Lupinus rivularis Douglas ex Lindl., an endangered plant in Canada. Agronomy 2021, 11, 37. [Google Scholar] [CrossRef]
- Villalobos, A.; Arguedas, M.; Escalante, D.; Martínez, J.; Zevallos, B.E.; Cejas, I.; Yabor, L.; Martínez-Montero, M.E.; Sershen, S.; Feijoo, J.C.L. Cryopreservation of sorghum seeds modifies germination and seedling growth but not field performance of adult plants. J. App. Bot. Food Qual. 2019, 92, 94–99. [Google Scholar]
- The International Union for the Protection of New Varieties of Plants (UPOV). Protocol for Distinctness, Uniformity and Stability Tests Rosa L., European Union Community Plant Variety Office. Available online: https://cpvo.europa.eu/sites/default/files/documents/rosa_2_rev.pdf (accessed on 28 February 2022).
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cell cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
Rosa Genotypes | Explants | Response of Explants | ||
---|---|---|---|---|
Shoot Regeneration (% ± SD) * | Multiplication Index (nr. ± SD) | Height of Shoots (cm ± SD) | ||
‘Ioana’ | apical | 76 ± 2.5 a | 5.4 ± 2.0 a | 5.6 ± 1.2 a |
nodal | 69 ± 1.6 c | 4.2 ± 1.9 a | 4.4 ± 1.1 a | |
‘Mariana’ | apical | 85 ± 1.5 a | 5.6 ± 1.1 a | 5.4 ± 1.5 a |
nodal | 73 ± 2.5 a,b | 4.6 ± 1.9 a | 3.8 ± 1.0 a | |
‘Vulcan’ | apical | 90 ± 2.3 a | 6.8 ± 1.3 a | 6.1 ± 2.0 a |
nodal | 85 ± 1.8 a | 5.6 ± 1.9 a | 4.9 ± 1.7 a |
Rosa Genotypes | Shoot Regeneration (% ± SD) * | ||||||||
---|---|---|---|---|---|---|---|---|---|
PVS2 Dehydration Duration (min) | |||||||||
0 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | ||
‘Ioana’ | −LN | 96.6 ± 0.5 a | 88.3 ± 1.6 a | 80.0 ± 1.5 a,b | 75.0 ± 1.3 a,b | 75.0 ± 1.8 a,b | 71.6 ± 2.4 a,b | 55.0 ± 3.5 b,c | 33.3 ± 2.1 c |
+LN | 0 c | 8.30 ± 1.3 b,c | 21.6 ± 1.8 b | 45.0 ± 1.5 a | 56.6 ± 1.2 a | 65.0 ± 1.8 a | 46.6 ± 2.2 a | 18.3 ± 1.9 b,c | |
‘Mariana’ | −LN | 88.3 ± 0.7 a | 85.0 ± 1.3 a | 78.3 ± 1.1 a,b | 75.0 ± 1.8 a,b | 70.0 ± 1.6 a,b | 68.3 ± 2.0 a,b | 56.6 ± 3.0 b | 25.0 ± 1.3 c |
+LN | 0 d | 0 d | 26.6 ± 1.6 b,c | 46.6 ± 1.9 a,b | 51.6 ± 1.8 a | 58.3 ± 2.5 a | 50.0 ± 2.6 a | 15.0 ± 1.7 c,d | |
‘Vulcan’ | −LN | 91.6 ± 0.9 a | 80.0 ± 1.4 a | 78.3 ± 1.4 a | 73.3 ± 1.6 a,b | 71.6 ± 2.1 a,b | 73.3 ± 1.7 a,b | 55.0 ± 1.8 b | 31.6 ± 1.9 b |
+LN | 0 e | 11.3 ± 1.8 d,e | 26.6 ± 1.5 c,d | 41.6 ± 2.1 b,c | 56.6 ± 2.2 a,b | 71.7 ± 2.8 a | 53.3 ± 2.1 a,b | 21.6 ± 1.7 c,d,e |
Rosa Cultivars | Cryopreservation Procedure | Response of Explants | |||
---|---|---|---|---|---|
Multiplication Index (nr. ± SD) * | Height of Shoots (cm ± SD) | ||||
−LN | +LN | −LN | +LN | ||
‘Ioana’ | DV | 5.5 ± 1.3 a | 5.1 ± 1.1 a,b | 5.3 ± 1.8 a | 5.0 ± 1.6 a |
ED | 4.8 ± 1.7 a | 4.3 ± 1.0 b | 4.8 ± 1.5 a | 4.8 ± 1.0 a | |
‘Mariana’ | DV | 5.8 ± 1.4 a | 5.5 ± 1.6 a,b | 4.3 ± 1.6 a | 4.9 ± 1.4 a |
ED | 5.1 ± 1.7 a | 4.6 ± 1.9 a,b | 4.8 ± 1.4 a | 4.7 ± 1.7 a | |
‘Vulcan’ | DV | 6.5 ± 1.0 a | 6.3 ± 1.0 a | 6.0 ± 1.0 a | 5.8 ± 1.3 a |
ED | 5.8 ± 0.7 a | 5.3 ± 1.5 a,b | 4.7 ± 1.4 a | 5.0 ± 1.1 a |
Rosa Cultivars | Procedure | Chlorophyll a (mg/g FW ± SD) * | Chlorophyll b (mg/g FW ± SD) | Carotenoids (mg/g FW ± SD) |
---|---|---|---|---|
Droplet-vitrification | ||||
‘Ioana’ | −LN | 0.91 ± 0.10 a | 0.51 ± 0.11 a | 0.04 ± 0.00 b |
+LN | 0.85 ± 0.09 a | 0.48 ± 0.07 a | 0.04 ± 0.00 b | |
‘Mariana’ | −LN | 0.85 ± 0.13 a | 0.34 ± 0.10 a | 0.08 ± 0.00 a |
+LN | 0.88 ± 0.11 a | 0.27 ± 0.06 a | 0.08 ± 0.00 a | |
‘Vulcan’ | −LN | 0.76 ± 0.02 a | 0.44 ± 0.07 a | 0.05 ± 0.00 b |
+LN | 0.74 ± 0.01 a | 0.46 ± 0.11 a | 0.05 ± 0.00 b | |
Encapsulation-dehydration | ||||
‘Ioana’ | −LN | 0.93 ± 0.09 a | 0.55 ± 0.12 a | 0.04 ± 0.00 b |
+LN | 0.88 ± 0.07 a | 0.49 ± 0.03 a | 0.04 ± 0.00 b | |
‘Mariana’ | −LN | 0.86 ± 0.14 a | 0.37 ± 0.03 a | 0.08 ± 0.00 a |
+LN | 0.90 ± 0.10 a | 0.31 ± 0.16 a | 0.09 ± 0.00 a | |
‘Vulcan’ | −LN | 0.72 ± 0.03 a | 0.43 ± 0.11 a | 0.06 ± 0.00 b |
+LN | 0.74 ± 0.04 a | 0.47 ± 0.08 a | 0.05 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halmagyi, A.; Vălimăreanu, S.; Șovărel, G.; Coste, A. Cryo-Technologies for Ex Situ Conservation of Rosa Germplasm. Plants 2022, 11, 1095. https://doi.org/10.3390/plants11081095
Halmagyi A, Vălimăreanu S, Șovărel G, Coste A. Cryo-Technologies for Ex Situ Conservation of Rosa Germplasm. Plants. 2022; 11(8):1095. https://doi.org/10.3390/plants11081095
Chicago/Turabian StyleHalmagyi, Adela, Sergiu Vălimăreanu, Gabriela Șovărel, and Ana Coste. 2022. "Cryo-Technologies for Ex Situ Conservation of Rosa Germplasm" Plants 11, no. 8: 1095. https://doi.org/10.3390/plants11081095
APA StyleHalmagyi, A., Vălimăreanu, S., Șovărel, G., & Coste, A. (2022). Cryo-Technologies for Ex Situ Conservation of Rosa Germplasm. Plants, 11(8), 1095. https://doi.org/10.3390/plants11081095