Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Environmental Variable Selection
4.3. Species Occurrence Data
4.4. Modeling the Species Suitable Habitats
4.5. Habitat Connectivity Analysis and Invasion Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weidenhamer, J.D.; Callaway, R.M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 2010, 36, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Vilà, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–359. [Google Scholar] [CrossRef]
- Lazzaro, L.; Bolpagni, R.; Buffa, G.; Gentili, R.; Lonati, M.; Stinca, A.; Lastrucci, L. Impact of invasive alien plants on native plant communities and Natura 2000 habitats: State of the art, gap analysis and perspectives in Italy. J. Environ. Manag. 2020, 274, 111140. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (accessed on 1 March 2022).
- Jovanović, S.; Hlavati-Širka, V.; Lakušić, D.; Jogan, N.; Nikolić, T.; Anastasiu, P.; Šinžar-Sekulić, J. Reynoutria niche modelling and protected area prioritization for restoration and protection from invasion: A Southeastern Europe case study. J. Nat. Conserv. 2018, 41, 1–15. [Google Scholar] [CrossRef]
- EC—European Commission. Commission Implementing Regulation (EU) 2019/1262 of 25 July 2019 amending Implementing Regulation (EU) 2016/1141 to update the list of invasive alien species of Union concern. Off. J. Eur. Union 2019, 199, 1–4. [Google Scholar]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Spear, D.; Van Wilgen, N.J.; McGeoch, M.A. Assessing the association between pathways of alien plant invaders and their impacts in protected areas. NeoBiota 2019, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Osawa, T.; Mitsuhashi, H.; Niwa, H. Many alien invasive plants disperse against the direction of stream flow in riparian areas. Ecol. Complex. 2013, 15, 26–32. [Google Scholar] [CrossRef]
- EPPO. Pest Risk Analysis for Humulus Scandens; EPPO: Paris, France, 2018; Available online: https://circabc.europa.eu/sd/a/6d248360-a7e5-4343-98f2-abab678bd1ee/Humulus_scandens.docx (accessed on 20 February 2022).
- Balogh, L.; Dancza, I. Humulus japonicus, an emerging invader in Hungary. In Plant Invasions: Human Perception, Ecological Impacts and Management; Tokarska-Guzik, B., Brock, J.H., Brundu, G., Child, L., Daehler, C.C., Pyšek, P., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2008; pp. 73–91. [Google Scholar]
- Brunel, S.; Schrader, G.; Brundu, G.; Fried, G. Emerging invasive alien plants for the Mediterranean Basin. EPPO Bull. 2010, 40, 219–238. [Google Scholar] [CrossRef]
- Kaufman, S.R.; Kaufman, W. Invasive Plants: A Guide to Identification, Impacts, and Control of Common North American Specie, 2nd ed.; Stackpole Books: Mechanicsburg, PA, USA, 2013; p. 528. [Google Scholar]
- Fried, G.; Mahaut, L.; Pinston, A.; Carboni, M. Abiotic constraints and biotic resistance control the establishment success and abundance of invasive Humulus japonicus in riparian habitats. Biol. Invasions 2018, 20, 315–331. [Google Scholar] [CrossRef]
- Krauss, O. Humulus L., Hopfen. In Pareys Blumengärtnerei. Erster Band; Bonstedt, C., Ed.; Verlag Paul Parey: Berlin, Germany, 1931; pp. 498–499. [Google Scholar]
- Hartmann, E.; Schuldes, H.; Kübler, R.; Konold, W. Neophyten. Biologie, Verbreitung und Kontrolle ausgewählter Arten; Ecomed Verlag: Landsberg, Germany, 1995; p. 301. [Google Scholar]
- Washitani, I.; Masuda, M. A comparative study of the germination characteristics of seeds from a moist tall grassland community. Funct. Ecol. 1990, 4, 543–557. [Google Scholar] [CrossRef]
- Pinston, A. Étude de la Plasticité Ecologique d’une Plante Invasive: Humulus Japonicus Siebold & Succ. Master’s Thesis, Université de Bourgogne, Anses, Montpellier, France, 2013. [Google Scholar]
- Kim, S.; Kim, J.G. Humulus japonicus accelerates the decomposition of Miscanthus sacchariflorus and Phragmites australis in a floodplain. J. Plant Biol. 2009, 52, 466–474. [Google Scholar] [CrossRef]
- Song, U. Temperature-dependent performance of competitive native and alien invasive plant species. Acta Oecologica 2017, 84, 8–14. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Bartolucci, F. An updated checklist of the vascular flora alien to Italy. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Kiraly, G.; Hohla, M.; Nikolić, T. Novelties in the vascular flora of Croatia. Nat. Croat. Period. Musei Hist. Nat. Croat. 2021, 30, 173–189. [Google Scholar] [CrossRef]
- Savić, D.; Anačkov, G.; Boža, P. New chorological data for flora of the Pannonian region of Serbia. Cent. Eur. J. Biol. 2008, 3, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, V. First record of Humulus japonicus (Cannabaceae) in the Bulgarian flora. In Proceedings of the Joint ESENIAS and DIAS Scientific Conference and 9th ESENIAS Workshop. Species, ecosystems and areas of conservation concern under threat from the invasive alien species, Ohrid, North Macedonia, 3–6 September 2019; Trajanovski, S., Trichkova, T., Tomov, R., Vladimirov, V., Kalcheva, H., Zdraveski, K., Eds.; Hydrobiological Institute Ohrid: Ohrid, North Macedonia; 2019; p. 97. [Google Scholar]
- Essl, F.; Rabitsch, W. Neobiota in Österreich; Umweltbundesamt GmbH: Wien, Austria; p. 432.
- Verloove, F. Catalogue of neophytes in Belgium (1800–2005). Scr. Bot. Belg. 2006, 39, 1–89. [Google Scholar]
- Pysek, P. Catalogue of alien plants of the Czech Republic. Preslia 2002, 74, 97–186. [Google Scholar]
- Uotila, P. Cannabaceae. Euro+Med Plantbase—The Information Resource for Euro-Mediterranean Plant Diversity. 2011. Available online: http://ww2.bgbm.org/EuroPlusMed (accessed on 9 February 2022).
- EPPO—European and Mediterranean Plant Protection Organization. Data sheets on pests recommended for regulation. EPPO Bul. 2019, 49, 267–272. [Google Scholar] [CrossRef] [Green Version]
- POWO—Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org (accessed on 3 February 2022).
- Andrik, H.; Balog, L.; Shevera, M.V. Humulus Japonicus Siebold. Et Zucc. (Cannabaceae)—New Adventive Type Of Flora Of Ukraine. Ukr. Botan. J. 2010, 67, 438–445. [Google Scholar]
- Anastasiu, P.; Negrean, G. Neophytes in Romania. In Neobiota in România; Rákosy, L., Momeu, L., Eds.; Editura Presa Univ. Clujeană: Cluj-Napoca, Romania, 2009; pp. 66–97. [Google Scholar]
- Sîrbu, C.; Oprea, A. Plante Adventive în Flora Romaniei; Editura Ion Ionescu de la BRAD: Iași, Romania, 2011. [Google Scholar]
- Morariu, I. O plantă străină cu tendinţă de încetăţenire în România (Humulus japonicus Siebold & Zucc). Rev. Şti. "V. Adamachi" 1942, 28, 189–190. [Google Scholar]
- Ciocârlan, V. Flora Ilustrată a României. Pteridophyta et Spermatophyta, 2nd ed.; Editura Ceres: Bucureşti, Romania, 2000; p. 1138. [Google Scholar]
- Vicol, E.C. Bidens frondosus în flora României. Stud. Cerc. Biol. Ser. Bot. 1970, 22, 297–301. [Google Scholar]
- Morariu, I.; Danciu, M.; Ularu, P. Date noi din flora Porţilor de Fier. Stud. Cerc. Biol. Ser. Bot. 1969, 21, 17–22. [Google Scholar]
- Roman, N. Flora şi Vegetaţia din Sudul Podişului Mehedinţi; Editura Academiei Române: Bucureşti, Romania.
- Szatmari, P.-M. Adăugiri La Flora Judeţului Satu Mare. Satu Mare. Stud. Şi Comunicări Ser. Ştiinţele Nat. 2011, 12, 55–64. [Google Scholar]
- Karácsonyi, K.; Negrean, G.A. Szilágysági Növényvilág Jellegének Vizsgálata. Kanitzia 2013, 20, 101–118. [Google Scholar]
- Elith, J.; Kearney, M.; Phillips, S.J. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Elith, J.; Franklin, J. Species distribution modelling. Encycl. Biodivers. 2013, 6, 692–705. [Google Scholar]
- Silva, L.D.; Elias, R.B.; Silva, L. Modelling invasive alien plant distribution: A literature review of concepts and bibliometric analysis. Environ. Model. Softw. 2021, 145, 105203. [Google Scholar] [CrossRef]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Ausseil, A.G.E.; Daigneault, A.J.; Frame, B.; Teixeira, E.I. Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environ. Model. Softw. 2019, 119, 1–20. [Google Scholar] [CrossRef]
- Eker, S.; Rovenskaya, E.; Langan, S.; Obersteiner, M. Model validation: A bibliometric analysis of the literature. Environ. Model. Softw. 2019, 117, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Lafond, V.; Griess, V. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P.; Rejmanek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Peterson, A.T. Predicting the geography of species’ invasions via ecological niche modelling. Q. Rev. Biol. 2003, 78, 419–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettman, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve predictions of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 2006, 43, 835–847. [Google Scholar] [CrossRef]
- Bradley, B.A. Distribution models of invasive plants overestimate potential impact. Biol. Invasions 2013, 15, 1417–1429. [Google Scholar] [CrossRef]
- MacArthur, R.H. Geographical Ecology: Patterns in the Distribution of Species; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
- Pulliam, H.R. Sources, sinks and population regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Pulliam, H.R. On the relationship between niche and distribution. Ecol. Lett. 2000, 3, 349. [Google Scholar] [CrossRef]
- Gherghel, I.; Martin, R.A. Postglacial recolonization of North America by spadefoot toads: Integrating niche and corridor modeling to study species’ range dynamics over geologic time. Ecography 2020, 43, 1499–1509. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Angulo, E.; Ballesteros-Mejia, L.; Novoa, A.; Duboscq-Carra, V.; Diagne, C.; Courchamp, F. Economic costs of invasive alien species in Spain. NeoBiota 2021, 67, 267–297. [Google Scholar] [CrossRef]
- El-Barougy, R.F.; Dakhil, M.A.; Halmy, M.W.; Gray, S.M.; Abdelaal, M.; Khedr, A.H.A.; Bersier, L.F. Invasion risk assessment using trait-environment and species distribution modelling techniques in an arid protected area: Towards conservation prioritization. Ecol. Indic. 2021, 129, 107951. [Google Scholar] [CrossRef]
- Bartz, R.; Kowarik, I. Assessing the environmental impacts of invasive alien plants: A review of assessment approaches. NeoBiota 2019, 43, 69–99. [Google Scholar] [CrossRef] [Green Version]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. Anounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [Green Version]
- Sitzia, T.; Campagnaro, T.; Kowarik, I.; Trentanovi, G. Using forest management to control invasive alien species: Helping implement the new European regulation on invasive alien species. Biol. Invasions 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Bazzichetto, M.; Malavasi, M.; Bartak, V.; Acosta, A.T.R.; Rocchini, D.; Carranza, M.L. Plant invasion risk: A quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 2018, 95, 311–319. [Google Scholar] [CrossRef]
- Gudžinskas, Z.; Petrulaitis, L.; Žalneravičius, E. Emerging invasion threat of the liana Celastrus orbiculatus (Celastraceae) in Europe. NeoBiota 2020, 56, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kostrakiewicz-Gieralt, K.; Pliszko, A.; Barabasz-Krasny, B.; Bomanowska, A.; Dajdok, Z.; Gudžinskas, Z.; Kucharczyk, M.; Maćkowiak, L.; Majk, J.; Możdżeń, K.; et al. The relationships of habitat conditions, height level, and geographical position with fruit and seed traits in populations of invasive vine Echinocystis lobata (Cucurbitaceae) in Central and Eastern Europe. Forests 2022, 13, 256. [Google Scholar] [CrossRef]
- Önen, H.; Farooq, S.; Tad, S.; Özaslan, C.; Gunal, H.; Chauhan, B.S. The influence of environmental factors on germination of Burcucumber (Sicyos angulatus) seeds: Implications for range expansion and management. Weed Sci. 2018, 66, 494–501. [Google Scholar] [CrossRef]
- Larcombe, M.J.; Silva, J.S.; Vaillancourt, R.E.; Potts, B.M. Assessing the invasive potential of Eucalyptus globulus in Australia: Quantification of wildling establishment from plantations. Biol. Invasions 2013, 15, 2763–2781. [Google Scholar] [CrossRef]
- Terzano, D.; Kotzé, I.; Marais, C.; Cianciullo, S.; Farcomeni, A.; Caroli, P.; Malatesta, L.; Attorre, F. Environmental and anthropogenic determinants of the spread of alien plant species: Insights from South Africa’s quaternary catchments. Plant Ecol. 2018, 219, 277–297. [Google Scholar] [CrossRef]
- Hierro, J.L.; Eren, Ö.; Khetsuriani, L.; Diaconu, A.; Török, K.; Montesinos, D.; Callaway, R.M. Germination responses of an invasive species in native and non-native ranges. Oikos 2009, 118, 529–538. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, Z.; Yang, J.; Zheng, J.; Zhang, F. Nowhere to invade: Rumex crispus and Typha latifolia projected to disappear under future climate scenarios. PLoS ONE 2013, 8, e70728. [Google Scholar] [CrossRef]
- Bălteanu, D.; Mitrică, B.; Mocanu, I.; Sima, M.; Popescu, C. Caracterizarea geografică a regiunilor de dezvoltare Romania. In Natură și Societate; Editura Academiei Române: Bucurelti, România, 2016; pp. 621–652. [Google Scholar]
- Roekaerts, M. The Biogeographical Regions Map of Europe. Basic Principles of Its Creation and Overview of Its Development; European Environment Agency: Copenhagen, Denmark, 2002. [Google Scholar]
- Ministry of Environment and Climate Change—Romania’s Sixth National Communication on Climate Change and First Biennial Report. 2013. Available online: https://unfccc.int/sites/default/files/6th_nccc_and_1st_br_of_romania%5B1%5D.pdf (accessed on 15 March 2022).
- European Comision; Directorate-General for Environment; Sundseth, K. Natura 2000 in the Steppic Region. Publications Office. 2010. Available online: https://data.europa.eu/doi/10.2779/7833 (accessed on 15 March 2022).
- Romanescu, G.; Sandu, I.; Stoleriu, C.; Sandu, I.G. Water resources in Romania and theor quality in the Main Lacustrine Basins. Rev. Chim. 2014, 65, 344–349. [Google Scholar]
- Haidu, I.; Strapazan, C. Flash flood prediction in small to medium-sized watersheds. Case study: Bistra River (Apuseni Mountains, Romania). Carpathian J. Earth Environ. Sci. 2019, 14, 439–448. [Google Scholar] [CrossRef]
- Birsan, M.V.; Dumitrescu, A. Snow variability in Romania in connection to large-scale atmospheric circulation. Int. J. Climatol. 2014, 34, 134–144. [Google Scholar] [CrossRef]
- Nelson, M.; Lajtha, K. What Makes an “Urban Soil”? In Reference Module in Earth Systems and Environmental Sciences.; Elsevier Inc.: Corvallis, OR, USA, 2017. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modelling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbet-Massin, M.; Jetz, W. A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Divers. Distrib. 2014, 20, 1285–1295. [Google Scholar] [CrossRef]
- Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Schmid, H.; Bollmann, K. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 2013, 36, 971–983. [Google Scholar] [CrossRef]
- Chapman, D.; Pescott, O.L.; Roy, H.E.; Tanner, R. Improving species distribution models for invasive non-native species with biologically informed pseudo-absence selection. J. Biogeogr. 2019, 46, 1029–1040. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf 2018, 10, m9. [Google Scholar]
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata (accessed on 1 February 2022).
- Wildlife Conservation Society—WCS; Center for International Earth Science Information Network—CIESIN—Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2005; Available online: https://doi.org/10.7927/H4M61H5F (accessed on 29 January 2022). [CrossRef]
- About Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 25 January 2022).
- Florea, B.; Patrichi, M. Harta Solurilor (Generalizare după Harta Solurilor, Scara 1:1000,000, Atlasul R.S.România) [Soil Map (Generalised from 1:1000,000 soil Map Atlas of Romania]; Institutul de Cercetări pentru Pedologie și Agrochimie (ICPA): Bucharest, România, 1978; Available online: https://esdac.jrc.ec.europa.eu/content/harta-solurilor-generalizare-dupa-harta-solurilor-scara-11000000-atlasul-rsromania-1978-soil (accessed on 27 January 2022).
- Szatmari, P.M. The last wetlands in the Ier Valley Natura 2000 Protected Area Case Study: The Habitats Around Pir Village, Satu Mare County, Romania. Contrib. Bot. 2017, 52, 69–83. [Google Scholar] [CrossRef]
- Georgescu, M.I.; Săvulescu, E.; Popa, V.I.; Luchian, V.; Moisescu, E.; Miloș, G.C. Some observations on the ecology and morphological features of a Humulus Scandens (Lour.) Merr.(H. Japonicus Siebold & Zucc.) populations found on the Dâmbovița River banks. Scientific Papers. Ser. B Hortic. 2021, 65, 631–636. [Google Scholar]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Schmitt, S.; Pouteau, R.; Justeau, D.; de Boissieu, F.; Birnbaum, P. SSDM: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 2017, 8, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Chefaoui, R.M.; Lobo, J.M. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Model. 2008, 210, 478–486. [Google Scholar] [CrossRef]
- Iturbide, M.; Bedia, J.; Gutiérrez, J.M. Tackling Uncertainties of Species Distribution Model Projections with Package mopa. R J. 2018, 10, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Rew, J.; Cho, Y.; Moon, J.; Hwang, E. Habitat Suitability Estimation Using a Two-Stage Ensemble Approach. Remote Sens. 2020, 12, 1475. [Google Scholar] [CrossRef]
- Linkage-mapper A GIS tool designed to support regional wildlife habitat connectivity analyses. Available online: https://www.sciencebase.gov/catalog/item/get/51cda33fe4b0e7a904971be4?files.sort=name&files.order=asc&files.metadataFirst=false (accessed on 28 January 2022).
- Dong, X.; Zhang, J.; Gu, X.; Wang, Y.; Bai, W.; Huang, Q. Evaluating habitat suitability and potential dispersal corridors across the distribution landscape of the Chinese red panda (Ailurus styani) in Sichuan, China. Glob. Ecol. Conserv. 2021, 28, e01705. [Google Scholar] [CrossRef]
- Chan, L.M.; Brown, J.L.; Yoder, A.D. Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol. Phylogenetics Evol. 2011, 59, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Pyšek, P.; Prach, K. How important are rivers for supporting plant invasions? In Ecology and Management of Invasive Riverside Plants; Waal, L.C., Child, L.E., Wade, P.M., Brock, J.H., Eds.; John Wiley and Sons: Chichester, UK, 1994; pp. 19–26. [Google Scholar]
- Tickner, D.; Angold, P.; Gurnell, A.; Mountford, O. The role of flooding in riparian invasions—A novel approach to assessment of propagule transport. In Proceedings of the 5th International Conference on the Ecology of Invasive Alien Plants, La Maddalena, Sardinia, Italy, 13–16 October 1999; p. 116. [Google Scholar]
SDMs | SDM Performance | ||||
---|---|---|---|---|---|
Sensitivity | Specificity | AUC | TSS | Omission Rate | |
MAXENT | 0.8875 | 0.9020 | 0.8947 | 0.7895 | 0.1125 |
CTA | 0.5313 | 0.9766 | 0.7539 | 0.5078 | 0.4688 |
MARS | 0.8750 | 0.9111 | 0.8931 | 0.7861 | 0.1250 |
RF | 0.9375 | 0.9309 | 0.9342 | 0.8684 | 0.0625 |
Ensemble SDM Performance (ESDM) | |||||
ESDM | 0.8078 | 0.9301 | 0.8690 | 0.7379 | 0.1921 |
Variables (Abbreviation) | Description | Units | Values Range (Min; Max) | Variables Contribution to the ESDM (%) |
---|---|---|---|---|
Bio6 | Mean minimum temperature of the coldest month. One of the limiting factors of H. scandens in Europe has been reported to be low temperatures of the vegetation season [12]. | °C | −89; −29 | 11.64 |
Bio12 | Annual precipitation (relevant to vegetation growth). The stress caused by drought seem to be another limiting factor of H. scandens distribution across Europe. In dry environments, the species exhibits low invasion potential [16]. | mm | 525; 819 | 5.64 |
LUType | Land use types. The species can grow in disturbed areas including roadsides, old fields, and forest edges [12]. | Categorical | - | 13.79 |
DistLakes | Calculated path distance to lakes using DEM as a surface raster. | m | 1; 11,826.96 | 3.98 |
DistWaterc | Calculated path distance to watercourses using DEM as a surface raster. | m | 1; 1297.55 | 6.92 |
DistRoadsRailw | Calculated path distance to roads and railways using DEM as a surface raster. In its native range, H. scandens usually establish in disturbed habitats near settlements, roadsides, buildings, and waste deposits [13]. | m | 0; 1139.17 | 12.04 |
HII | Human Impact Index with values ranging from 1 to 100, estimating the relative anthropogenic impact. It is believed that H. scandens may have a preference for human-disturbed habitats [12]. | # | 14; 56 | 6.28 |
Slope | Derived from DEM | ° | 0.06; 24.33 | 6.88 |
SoilClass | Soil classes of Romania | Categorical | - | 4.12 |
SoilText | Soil texture. In its native range it mostly establishes on loamy-sandy ground [13]. | Categorical | - | 17.42 |
SoilStruct | Soil structure | Categorical | - | 2.55 |
SolarRad | Solar radiation derived from DEM | W/m2 | 1194.73; 1405.11 | 5.98 |
TreeDens | Tree density index, showing the percentage of tree cover. It is thought that H. scandens may prefer open-canopy areas or shaded areas for reasons unrelated to soil moisture content [22]. | % | 0; 82 | 2.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urziceanu, M.M.; Cîșlariu, A.G.; Nagodă, E.; Nicolin, A.L.; Măntoiu, D.Ș.; Anastasiu, P. Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis. Plants 2022, 11, 857. https://doi.org/10.3390/plants11070857
Urziceanu MM, Cîșlariu AG, Nagodă E, Nicolin AL, Măntoiu DȘ, Anastasiu P. Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis. Plants. 2022; 11(7):857. https://doi.org/10.3390/plants11070857
Chicago/Turabian StyleUrziceanu, Mariana Mihaela, Alina Georgiana Cîșlariu, Eugenia Nagodă, Alma Lioara Nicolin, Dragoș Ștefan Măntoiu, and Paulina Anastasiu. 2022. "Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis" Plants 11, no. 7: 857. https://doi.org/10.3390/plants11070857
APA StyleUrziceanu, M. M., Cîșlariu, A. G., Nagodă, E., Nicolin, A. L., Măntoiu, D. Ș., & Anastasiu, P. (2022). Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis. Plants, 11(7), 857. https://doi.org/10.3390/plants11070857