Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- Group control (CTRL) (peat 30% + pumice 70%), irrigated with water and substrate previously fertilised;
- Group with algae (AG) (peat 30% + pumice 70%) irrigated with water and substrate previously fertilised, dilution 1:1000 once a week (Kelpak biostimulant, Ecklonia maxima, Kelp products International);
- Group with Hypnea cornuta (HC) (peat 30% + pumice 70%) irrigated with water and substrate previously fertilised, dilution 1:1000 once a week;
- Group with Ulva ohnoi (UO) (peat 30% + pumice 70%) irrigated with water and substrate previously fertilised, dilution 1:1000 once a week;
- Group with Sargassum muticum (SM) (peat 30% + pumice 70%) irrigated with water and substrate previously fertilised, dilution 1:1000 once a week.
Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rama, R. Preparation of Liquid Seaweed Fertilizer from Sargassum. In Proceedings of the Seaweed Research and Utilization Association Workshop on Algal Products and Seminar on Phaeophyceae, Madras, India, 4–7 June 1990; p. 16. [Google Scholar]
- Spagnuolo, D.; Prisa, D. Evaluation of Growth Parameters on Carpobrotus edulis, Kalanchoe daigremontiana and Kalanchoe tubiflora in Relation to Different Seaweed Liquid Fertilizer (SLF) as a Biostimulant. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 67–76. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Russo, V.; Manghisi, A. Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). Sustainability 2022, 14, 3914. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 261, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Saeger, J.; Van Praet, S.; Han, T.; Depuydt, S. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Stirk, W.A.; Plačková, L.; Kulkarni, M.G.; Doležal, K.; Van Staden, J. Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). J. Plant Physiol. 2021, 262, 153437. [Google Scholar] [CrossRef]
- Hussain, H.I.; Kasinadhuni, N.; Arioli, T. The effect of seaweed extract on tomato plant growth, productivity and soil. J. Appl. Phycol. 2021, 33, 1305–1314. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.; Kyriakakis, G. Water Scarcity and Future Challenges for Food Production. Water 2015, 263, 975–992. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.; Saleem, M.F.; Ullah, N. Nutrition in Alleviation of Heat Stress in Cotton Plants Grown in Glasshouse and Field Conditions. Sci. Rep. 2019, 13022, 277. [Google Scholar] [CrossRef] [Green Version]
- Stirk, W.A.; Van Staden, J. Plant Growth Regulators in Seaweeds. Adv. Bot. Res. 2014, 71, 125–159. [Google Scholar]
- Benítez García, I.; Dueñas Ledezma, A.K.; Martínez Montaño, E. Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy 2020, 10, 866. [Google Scholar] [CrossRef]
- D’Acqui, L.P. EU-ICA4-CT-2001-10058; Use of Indigenous N2-Fixing Cyanobacteria for Sustainable Improvement of Soil Biogeochemical Performance and Physical Fertility in Semiarid Tropics; Final Report; EU: Brussels, Belgium, 2006; pp. 1–300. [Google Scholar]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. To the use of seaweed extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- D’Acqui, L.P.; Maliondo, S.M.; Malam Issa, O.; Le Bissonnais, Y.; Ristori, G.G. Influence of indigenous strains of cyanobacteria on physical and biochemical properties of tropical soils. In Proceedings of the 4th International Symposium of the Working Group MO-IsMOM 2004, Wuhan, China, 12–16 April 2004; p. 110. [Google Scholar]
- D’Acqui, L.P. Use of Indigenous Cyanobacteria for Sustainable Improvement of Biogeochemical and Physical Fertility of Marginal Soils in Semiarid Tropics. In Bioformulations: For Sustainable Agriculture; Arora, N.K., Mehnaz, S., Balestrini, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Prisa, D. Possible use of Spirulina and Klamath algae as biostimulant in Portulaca grandiflora (Moss Rose). World J. Adv. Res. Rev. 2019, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Prisa, D.; Gobbino, M. Microbic and Algae biofertilizers in Aloe barbadensis Miller. Open Access Res. J. Biol. Pharm. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Prisa, D. Biological mixture of brown algae extracts influences the microbial community of Lobivia arachnacantha, Lobivia aurea, Lobivia jajoiana and Lobivia Grandiflora in pot cultivation. GSC Adv. Res. Rev. 2021, 3, 43–53. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Salama, D.M.; El-Tanahy, A.M.M.; Abd El-Samad, E.H. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Ann. Agric. Sci. 2019, 64, 167–175. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Abetz, P.; Young, C.L. The effect of seaweed extract sprays derived from Ascophyllum nodosum on lettuce and cauliflower crops. Bot. Mar. 1983, 10, 487–492. [Google Scholar] [CrossRef]
- Basavaraja, P.K.; Yogendra, N.D.; Zodape, S.T. Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J. Plant Nutr. 2018, 14, 1851–1861. [Google Scholar] [CrossRef]
- Moheimani, N.R.; BorowitzKa, M.A. The long term culture of the coccolithophore Pleurochrysis carterae (Haptophyta in outdoor raceway ponds. J. Appl. Phycol. 2006, 18, 703–712. [Google Scholar] [CrossRef]
- Pushparaj, B.; Pelosi, E.; Tredici, M.R.; Pinzani, E.; Materassi, R. An integrated culture system for outdoor production of microalgae and cyanobacteria. J. Appl. Phycol. 1997, 9, 113–119. [Google Scholar] [CrossRef]
- Radmann, E.M.; Rheinehr, C.O.; Costa, J.A.V. Optimisation of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture 2007, 265, 118–126. [Google Scholar] [CrossRef]
- Prisa, D. Ascophyllum nodosum extract on growth plants in Rebutia heliosa and Sulcorebutia canigueralli. GSC Biol. Pharm. Sci. 2020, 1, 39–45. [Google Scholar] [CrossRef]
- Fornes, F.; Sanchez-Perales, M.; Guardiola, J.L. Effect of seaweed extract on citrus fruit maturation. Acta Hortic. 1983, 379, 75–82. [Google Scholar] [CrossRef]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 2018, 10, plx051. [Google Scholar] [CrossRef]
- El Arroussi, H.; El Mernissi, N.; Benhima, R. Microalgae polysaccharides a promising plant growth biostimulant. J. Algal Biomass Utln 2016, 7, 55–63. [Google Scholar]
- Garcia- Gonzalez, J.; Sommerfeld, M. Biofertiliser and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016, 28, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Grima, E.M.; Belarbi, E.H.; Fernandez, F.A. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dahms, H.U.; Won, E.J. Microalgae. A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef]
- Kumar, M.; Prasanna, R.; Bidyarani, N. Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci. Hortic. 2013, 17, 94–101. [Google Scholar] [CrossRef]
- Prisa, D. Biostimulant based on Inula viscosa L. (Dittrichia viscosa L.), algae and microorganisms in the growth and defense of Spinacia oleracea L. and Lactuca sativa L. Int. J. Sci. Res. Multidiscip. Stud. 2020, 11, 1–6. [Google Scholar]
- Bhadra, P.; Maitra, S.; Shankar, T.; Hossain, A.; Praharaj, S.; Aftab, T. Climate change impact on plants: Plant responses and adaptations. In Plant Perspectives to Global Climate Changes; Academic Press: Cambridge, MA, USA, 2002; pp. 1–24. [Google Scholar]
- Prisa, D. Biofertilizer based on liquid fermented with Inula viscosa, microorganisms and algae in the growth and biocontrol of Sphaerotheca pannosa var. rosae of seed rose plants. World J. Biol. Pharm. Health Sci. 2021, 3, 20–26. [Google Scholar] [CrossRef]
- Mulberry, W.; Konrad, S.; Pisarro, C. Bio fertilizers from algal treatment of dairy and swine manure effluents. J. Veg. Sci. 2007, 12, 107–125. [Google Scholar]
- Hofmann, D.; Singh, D.; Ebonhoh, O. Evaluating potential of green alga Chlorella Vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J. Appl. Phycol. 2018, 30, 2827–2836. [Google Scholar]
- Tarraf, S.A.; Talaat, I.M.; El-Sayed, A.E.K.B. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils. Amino Acids 2015, 16, 19–58. [Google Scholar] [CrossRef]
- Franciraldo de Lima, J. Utilization of Chlorella spp. as biostimulant in the germination of melon seeds (Cucumis melo L.). J. Agric. Stud. 2020, 8, 2. [Google Scholar]
- Hernandez-Carlos, B.; Gamboa-Angulo, M.M. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem. Rev. 2011, 10, 261–286. [Google Scholar] [CrossRef]
- Faheed, F.A.; El Fattah, Z.A. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Agwa, O.K.; Ogugbue, C.J.; Williams, E.E. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int. J. Agric. Res. 2017, 12, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Ismbert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of fresh water and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Priya, H.; Prasanna, R.; Ramakrishnan, B. Influence of cyanobacterial inoculation on the culturable microbiome and growth rice. Microbiol. Res. 2015, 171, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, K.; Priya, H.; Ramakrishnan, B. Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl. Soil Ecol. 2016, 108, 195–203. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Castellanos-Barriga, L.G.; Santacruz-Ruvalcaba, F.; Hernández-Carmona, G.; Ramírez-Briones, E.; Hernández-Herrera, R.M. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). J. Appl. Phycol. 2017, 29, 2479–2488. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Prasanna, R. Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Acea, M. Cyanobacterial inoculation of heated soils: Effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol. Biochem. 2003, 4, 513–524. [Google Scholar] [CrossRef]
- Trejo Valencia, R.; Sánchez Acosta, L.; Fortis Hernández, M.; Preciado Rangel, P.; Gallegos Robles, M.Á.; Antonio Cruz, R.d.C.; Vázquez Vázquez, C. Effect of Seaweed Aqueous Extracts and Compost on Vegetative Growth, Yield, and Nutraceutical Quality of Cucumber (Cucumis sativus L.) Fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Graziani, G.; Ritieni, A.; Cirillo, A.; Cice, D.; Di Vaio, C. Effects of Biostimulants on Annurca Fruit Quality and Potential Nutraceutical Compounds at Harvest and during Storage. Plants 2020, 9, 775. [Google Scholar] [CrossRef]
- Abed, R.M.M. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeterior. Biodegrad. 2010, 64, 58–64. [Google Scholar] [CrossRef]
- Chaudhary, V.; Prasanna, R.; Nain, L. Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World J. Microbiol. Biotechnol. 2012, 28, 3301–3310. [Google Scholar] [CrossRef]
- Al-Mhanna, N.M.; Huebner, H.; Buchholz, R. Analysis of the Sugar Content in Food Products by Using Gas Chromatography Mass Spectrometry and Enzymatic Methods. Foods 2018, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Prisa, D.; Attanasio, F. Biostimulant derived from the fermentation of Inula viscosa (Inort) in the germination and growth of Amaranthus hypochondriacus. World J. Adv. Res. Rev. 2022, 16, 27–33. [Google Scholar] [CrossRef]
Groups | PH (cm) | SN (n°) | VW (g) | RW (g) | PC (cm) | FN (n°) | FL (days) | NT (n°) | LT (mm) |
---|---|---|---|---|---|---|---|---|---|
CTRL | 7.46 c | 1.6 d | 32.89 d | 21.55 c | 4.86 d | 13.6 c | 2.6 c | 95.0 a | 2.58 a |
AG | 8.23 b | 2.6 c | 34.97 b | 22.93 b | 5.29 c | 15.4 b | 3.6 b | 96.4 a | 3.28 a |
HC | 8.14 b | 3.2 bc | 34.86 b | 23.14 b | 5.80 b | 14.8 b | 3.6 b | 95.6 a | 3.36 a |
UO | 9.38 a | 4.4 a | 37.72 a | 25.75 a | 6.63 a | 22.6 a | 4.6 a | 95.0 a | 10.3 a |
SM | 8.25 b | 3.4 b | 34.37 c | 23.14 b | 5.86 b | 14.4 bc | 3.4 b | 96.0 a | 2.74 a |
ANOVA | *** | *** | *** | *** | *** | *** | *** | ns | ns |
Groups | PH | MC (cfu/g) | FN (n°) | FW (g) | SC (g) | Vit. A (mg) | Vit. C (mg) | Vit. E (mg) |
---|---|---|---|---|---|---|---|---|
CTRL | 6.48 a | 1.25 × 102 d | 5.8 c | 2.50 d | 4.57 d | 7.36 a | 8.45 c | 0.024 c |
AG | 6.48 a | 1.23 × 103 c | 7.4 b | 3.17 c | 4.68 c | 7.24 a | 8.62 b | 0.026 c |
HC | 6.48 a | 1.27 × 103 b | 7.8 b | 3.33 b | 4.76 b | 7.26 a | 8.72 b | 0.054 ab |
UO | 6.44 a | 1.29 × 103 a | 14.0 a | 3.72 a | 4.85 a | 7.32 a | 8.95 a | 0.064 a |
SM | 6.44 a | 1.26 × 103 b | 7.4 b | 3.29 b | 4.82 a | 6.98 b | 8.86 a | 0.044 b |
ANOVA | ns | *** | *** | *** | *** | *** | *** | *** |
Groups | PH (cm) | SN (n°) | VW (g) | RW (g) | PC (cm) | FN (n°) | FL (days) | NT (n°) | LT (mm) |
---|---|---|---|---|---|---|---|---|---|
CTRL | 5.38 d | 1.2 c | 26.46 e | 17.68 c | 4.63 d | 8.6 c | 2.8 c | 97.0 c | 1.44 d |
AG | 6.29 c | 2.2 b | 27.87 c | 18.87 b | 5.27 c | 12.8 b | 3.8 ab | 111.8 b | 2.22 c |
HC | 6.31 c | 2.2 b | 28.27 b | 18.86 b | 5.94 b | 12.8 b | 3.8 ab | 100.4 c | 2.42 b |
UO | 6.48 a | 3.4 a | 29.23 a | 20.13 a | 6.25 a | 15.0 a | 4.4 a | 124.2 a | 3.06 a |
SM | 6.41 b | 1.6 bc | 27.48 d | 17.74 c | 5.83 b | 12.4 b | 3.6 b | 99.0 c | 2.16 c |
ANOVA | *** | *** | *** | *** | *** | *** | ** | *** | *** |
Groups | PH | MC (cfu/g) | FN (n°) | FW (g) | SC (g) | Vit. A (mg) | Vit. C (mg) | Vit. E (mg) |
---|---|---|---|---|---|---|---|---|
CTRL | 6.46 a | 1.25 × 102 d | 5.6 c | 2.43 e | 3.70 e | 6.14 d | 7.36 b | 0.03 bc |
AG | 6.42 a | 1.26 × 103 c | 8.2 b | 3.72 c | 4.26 c | 7.11 b | 7.90 a | 0.02 c |
HC | 6.44 a | 1.32 × 103 b | 7.6 b | 3.29 d | 4.44 b | 7.13 b | 7.93 a | 0.03 bc |
UO | 6.46 a | 1.64 × 103 a | 11.4 a | 4.07 a | 4.55 a | 7.30 a | 8.05 a | 0.06 a |
SM | 6.48 a | 1.32 × 103 b | 7.4 b | 3.84 b | 4.18 d | 6.98 c | 7.95 a | 0.04 b |
ANOVA | ns | *** | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prisa, D.; Spagnuolo, D. Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii. Plants 2022, 11, 3586. https://doi.org/10.3390/plants11243586
Prisa D, Spagnuolo D. Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii. Plants. 2022; 11(24):3586. https://doi.org/10.3390/plants11243586
Chicago/Turabian StylePrisa, Domenico, and Damiano Spagnuolo. 2022. "Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii" Plants 11, no. 24: 3586. https://doi.org/10.3390/plants11243586
APA StylePrisa, D., & Spagnuolo, D. (2022). Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii. Plants, 11(24), 3586. https://doi.org/10.3390/plants11243586