Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilson, R.F. Soybean: Market Driven Research Needs. In Genetics and Genomics of Soybean; Stacey, G., Ed.; Plant Genetics and Genomics: Crops and Models; Springer: New York, NY, USA, 2008; Volume 2, pp. 3–15. [Google Scholar]
- La Menza, N.C.; Monzon, J.P.; Lindquist, J.L.; Arkebauer, T.J.; Knops, J.M.H.; Unkovich, M.; Specht, J.E.; Grassini, P. Insufficient nitrogen supply from symbiotic fixation reduces seasonal crop growth and nitrogen mobilization to seed in highly productive soybean crops. Plant Cell Environ. 2020, 43, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Kantolic, A.G.; Slafer, G.A. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering. Ann. Bot. 2007, 99, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Isoda, A.; Mori, M.; Matsumoto, S.; Li, Z.; Wang, P. High Yielding Performance of Soybean in Northern Xinjiang, China. Plant Prod. Sci. 2006, 9, 401–407. [Google Scholar] [CrossRef]
- Isoda, A.; Mao, H.; Li, Z.; Wang, P. Growth of High-Yielding Soybeans and Its Relation to Air Temperature in Xinjiang, China. Plant Prod. Sci. 2010, 13, 209–217. [Google Scholar] [CrossRef]
- Van Roekel, R.J.; Purcell, L.C.; Salmerón, M. Physiological and Management Factors Contributing to Soybean Potential Yield. Field Crops Res. 2015, 182, 86–97. [Google Scholar] [CrossRef]
- Pawlak, K.; Sowa, K. Zmiany w Produkcji i Handlu Soją w Polsce i Wybranych Krajach UE. PRS 2020, 20, 26–35. [Google Scholar] [CrossRef]
- Council of Ministers of republic of Poland. Multi-Annual Program (2016–2020) Called “Increasing the Use of Domestic Feed Protein for the Production of High-Quality Animal Products in Conditions of Sustainable Development” Resolution No. 222/2015 2015, Warsaw, Poland. Available online: https://www.gov.pl/attachment/4d6212fc-b13d-4add-8c5a-08f8208d60be (accessed on 15 September 2022).
- Saranraj, P.; Sivasakthivelan, P.; Al-Tawaha, A.R.M.; Sudha, A.; Al-Tawaha, A.R.; Sirajuddin, S.N. Hastang Diversity and Evolution of Bradyrhizobium Communities Relating to Soybean Cultivation: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012208. [Google Scholar] [CrossRef]
- Doss, B.D.; Pearson, R.W.; Rogers, H.T. Effect of Soil Water Stress at Various Growth Stages on Soybean Yield. Agron. J. 1974, 66, 297–299. [Google Scholar] [CrossRef]
- Bhatia, V.S.; Singh, P.; Wani, S.P.; Chauhan, G.S.; Rao, A.V.R.K.; Mishra, A.K.; Srinivas, K. Analysis of Potential Yields and Yield Gaps of Rainfed Soybean in India Using CROPGRO-Soybean Model. Agric. For. Meteorol. 2008, 148, 1252–1265. [Google Scholar] [CrossRef]
- He, L.; Jin, N.; Yu, Q. Impacts of Climate Change and Crop Management Practices on Soybean Phenology Changes in China. Sci. Total Environ. 2020, 707, 135638. [Google Scholar] [CrossRef]
- Kasperska-Wołowicz, W.; Rolbiecki, S.; Sadan, H.A.; Rolbiecki, R.; Jagosz, B.; Stachowski, P.; Liberacki, D.; Bolewski, T.; Prus, P.; Pal-Fam, F. Impact of the projected climate change on soybean water needs in the Kuyavia region in Poland. J. Water Land Dev. 2021, 51, 199–207. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E.; Kucharik, C.J. Soil-Dependent Responses of US Crop Yields to Climate Variability and Depth to Groundwater. Agric. Syst. 2021, 190, 103085. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A Cover Crop and No-Tillage System for Enhancing Soil Health by Increasing Soil Organic Matter in Soybean Cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of Soil Texture Suitability Zones for Soybean Cultivation: A Case Study in Continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Hodgson, E.W.; McCornack, B.P.; Tilmon, K.; Knodel, J.J. Management Recommendations for Soybean Aphid (Hemiptera: Aphididae) in the United States. J. Integr. Pest Manag. 2012, 3, E1–E10. [Google Scholar] [CrossRef]
- Swoboda, C.; Pedersen, P. Effect of Fungicide on Soybean Growth and Yield. Agron. J. 2009, 101, 352–356. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Helios, W.; Jama-Rodzeńska, A.; Kozak, M.; Kotecki, A.; Kuchar, L. Effect of Sowing Date on Soybean Development in South-Western Poland. Agriculture 2021, 11, 413. [Google Scholar] [CrossRef]
- Zanon, A.J.; Streck, N.A.; Grassini, P. Climate and Management Factors Influence Soybean Yield Potential in a Subtropical Environment. Agron. J. 2016, 108, 1447–1454. [Google Scholar] [CrossRef]
- Hungria, M.; Araujo, R.S.; Júnior, E.B.S.; Zilli, J.É. Inoculum Rate Effects on the Soybean Symbiosis in New or Old Fields under Tropical Conditions. Agron. J. 2017, 109, 1106–1112. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Dai, L. Agricultural Practice Contributed More to Changes in Soybean Yield than Climate Change from 1981 to 2010 in n Ortheast C Hina. J. Sci. Food Agric. 2022, 102, 2387–2395. [Google Scholar] [CrossRef]
- Vann, R.A.; Drake-Stowe, K.; Buol, G.S.; Dunphy, E.J. Production Practices That Maximize Soybean Yield: What We Have Learned from the North Carolina Soybean Yield Contest. Agron. J. 2021, 113, 3399–3417. [Google Scholar] [CrossRef]
- Grassini, P.; Torrion, J.A.; Yang, H.S.; Rees, J.; Andersen, D.; Cassman, K.G.; Specht, J.E. Soybean Yield Gaps and Water Productivity in the Western U.S. Corn Belt. Field Crops Res. 2015, 179, 150–163. [Google Scholar] [CrossRef]
- Eck, H.V.; Mathers, A.C.; Musick, J.T. Plant Water Stress at Various Growth Stages and Growth and Yield of Soybeans. Field Crops Res. 1987, 17, 1–16. [Google Scholar] [CrossRef]
- Wójcik-Gront, E. Variables Influencing Yield-Scaled Global Warming Potential and Yield of Winter Wheat Production. Field Crops Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- Studnicki, M.; Derejko, A.; Wójcik-Gront, E.; Kosma, M. Adaptation Patterns of Winter Wheat Cultivars in Agro-Ecological Regions. Sci. Agric. Piracicaba Braz. 2019, 76, 148–156. [Google Scholar] [CrossRef]
- Studnicki, M.; Lenartowicz, T.; Noras, K.; Wójcik-Gront, E.; Wyszyński, Z. Assessment of Stability and Adaptation Patterns of White Sugar Yield from Sugar Beet Cultivars in Temperate Climate Environments. Agronomy 2019, 9, 405. [Google Scholar] [CrossRef]
- Derejko, A.; Studnicki, M.; Wójcik-Gront, E.; Gacek, E. Adaptive Grain Yield Patterns of Triticale (×Triticosecale Wittmack) Cultivars in Six Regions of Poland. Agronomy 2020, 10, 415. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, L.; Han, X.; Zhao, X.; Ma, Y. Classification and Regression Tree (CART) for Analysis of Soybean Yield Variability among Fields in Northeast China: The Importance of Phosphorus Application Rates under Drought Conditions. Agric. Ecosyst. Environ. 2009, 132, 98–105. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A.; Castro, C. Response of Soybean to Phosphorus Fertilization in Brazilian Oxisol. Commun. Soil Sci. Plant Anal. 2011, 42, 2716–2723. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Firmano, R.F.; Alleoni, L.R.F.; Oliveira, A.; Zhang, H. Soybean Yield Response to Phosphorus Fertilization in an Oxisol under Long-Term No-Till Management. Soil Sci. Soc. Am. J. 2019, 83, 173–180. [Google Scholar] [CrossRef]
- Sale, P.W.G.; Campbell, L.C. Yield and Composition of Soybean Seed as a Function of Potassium Supply. Plant Soil 1986, 96, 317–325. [Google Scholar] [CrossRef]
- Tiwari, S.; Joshi, O.; Vyas, A.; Billore, S. Potassium Nutrition in Yield and Quality Improvement of Soyabean. Proc. Int. Symp. Potassium Sustain. Crop Prod. 2002, 307–319. Available online: https://www.ipipotash.org/uploads/udocs/Potassium%20Nutrition%20in%20Yield%20and%20Quality.pdf (accessed on 15 September 2022).
- Mascarenhas, H.; Tanaka, R.; Wutke, E.; Braga, N.; de Miranda, M. Potassium for Soybeans. Better Crops 2004, 88, 26–27. [Google Scholar]
- Santachiara, G.; Borrás, L.; Salvagiotti, F.; Gerde, J.A.; Rotundo, J.L. Relative Importance of Biological Nitrogen Fixation and Mineral Uptake in High Yielding Soybean Cultivars. Plant Soil 2017, 418, 191–203. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.; Specht, J.; Walters, D.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crop. Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Streeter, J.; Wong, P.P. Inhibition of Legume Nodule Formation and N 2 Fixation by Nitrate. Crit. Rev. Plant Sci. 1988, 7, 1–23. [Google Scholar] [CrossRef]
- Kaschuk, G.; Nogueira, M.A.; de Luca, M.J.; Hungria, M. Response of Determinate and Indeterminate Soybean Cultivars to Basal and Topdressing N Fertilization Compared to Sole Inoculation with Bradyrhizobium. Field Crops Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E. Nitrogen Application to Soybean at Early Reproductive Development. Agron. J. 2005, 97, 615–619. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Salvagiotti, F. New Insights into Soybean Biological Nitrogen Fixation. Agron. J. 2018, 110, 1185–1196. [Google Scholar] [CrossRef]
- Gai, Z.; Zhang, J.; Li, C. Effects of Starter Nitrogen Fertilizer on Soybean Root Activity, Leaf Photosynthesis and Grain Yield. PLoS ONE 2017, 12, e0174841. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef]
- Kiran Kumar, T.; Rana, D.S.; Nain, L. Legume Residue and N Management for Improving Productivity and N Economy and Soil Fertility in Wheat (Triticum Aestivum)-Based Cropping Systems. Natl. Acad. Sci. Lett. 2019, 42, 297–307. [Google Scholar] [CrossRef]
- COBORU Polish Post-Registration Variety Testing System 2022. Available online: https://coboru.gov.pl/en/pdo (accessed on 15 September 2022).
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Podstawy Systemu Monitoringu Suszy Rolniczej. Woda Sr. Obsz. Wiej. 2012, 12, 77–91. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 2017; ISBN 978-1-315-13947-0. [Google Scholar]
- De’ath, G.; Fabricius, K.E. Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- StatSoft STATISTICA ver. 13 (Data Analysis Software System) 2014; TIBCO Inc.: Palo Alto, CA, USA, 2014.
- Iwańska, M.; Oleksy, A.; Dacko, M.; Skowera, B.; Oleksiak, T.; Wójcik-Gront, E. Use of Classification and Regression Trees (CART) for Analyzing Determinants of Winter Wheat Yield Variation among Fields in Poland. Biom. Lett. 2018, 55, 197–214. [Google Scholar] [CrossRef]
Mean ± SD | Min–Max | ||
---|---|---|---|
independent quantitative | Soil organic carbon (%) | 2.0 ± 0.6 | 1.2–3.6 |
sand (%) | 50.2 ± 20.4 | 11.6–79.0 | |
clay (%) | 15.5 ± 7.5 | 5.3–27.3 | |
Soil nitrogen (g kg−1) | 1.8 ± 0.5 | 1.1–3.0 | |
CWB_1 | −75.6 ± 60.5 | −188.3–130.6 | |
CWB_4 | −93.0 ± 69.6 | −227.7–121.4 | |
CWB_7 | −106.3 ± 68.4 | −254.7–62.9 | |
CWB_10 | −74.5 ± 77.5 | −231.3–175.0 | |
CWB_13 | −40.1 ± 65.9 | −173.4–123.0 | |
Soil pH | 6.3 ± 0.5 | 4.0–7.6 | |
rate of N (kg ha−1) | 33.1 ± 18.1 | 0.0–105.0 | |
rate of P2O5 (kg ha−1) | 48.8 ± 21.9 | 0.0–105.0 | |
rate of K2O (kg ha−1) | 85.9 ± 29.5 | 0.0–163.0 | |
herbicides (l ha−1) | 3.3 ± 2.1 | 0.0–9.0 | |
insecticides (kg ha−1) | 0.1 ± 0.2 | 0.0–1.9 | |
dependent | yield (Mg ha−1) | 3.2 ± 1.0 | 1.0–5.4 |
plant height (cm) | 87.6 ± 17.0 | 38.0–121.0 | |
1000-grain weight (g) | 194.4 ± 27.3 | 111.8–261.9 |
Yield (Mg ha−1) | Height (cm) | 1000-Grain Weight (g) | |
---|---|---|---|
soil organic carbon (%) | −0.220 | −0.055 | −0.136 |
sand (%) | −0.202 | −0.096 | 0.109 |
clay (%) | 0.301 | 0.102 | −0.091 |
Soil nitrogen (g kg−1) | −0.192 | −0.035 | −0.158 |
CWB_1 | −0.004 | 0.144 | −0.246 |
CWB_4 | 0.050 | 0.295 | −0.003 |
CWB_7 | 0.258 | 0.427 | 0.112 |
CWB_10 | 0.293 | 0.442 | 0.046 |
pH | 0.180 | 0.066 | −0.049 |
CWB_13 | 0.068 | 0.311 | −0.088 |
N (kg ha−1) | 0.100 | 0.161 | −0.053 |
P2O5 (kg ha−1) | 0.015 | −0.038 | −0.106 |
K2O (kg ha−1) | −0.102 | −0.026 | −0.109 |
sowing | 0.123 | 0.009 | 0.050 |
herbicides (l ha−1) | 0.119 | 0.008 | 0.191 |
insecticides (kg ha−1) | 0.024 | 0.029 | 0.004 |
yield (Mg ha−1) | 0.427 | 0.396 | |
height (cm) | −0.009 |
Yield | R2 = 0.40 | Height | R2 = 0.34 | 1000-Grain Weight | R2 = 0.20 | |
---|---|---|---|---|---|---|
b | p-Value | b | p-Value | b | p-Value | |
y-intercept | −2.050 | 0.131 | 68.162 | 0.005 | 214.266 | 0.000 |
soil organic carbon (%) | −0.078 | 0.603 | 0.837 | 0.756 | 0.031 | 0.995 |
sand (%) | 0.033 | 0.000 | 0.178 | 0.271 | 0.096 | 0.738 |
clay (%) | 0.131 | 0.000 | 0.262 | 0.549 | 0.285 | 0.713 |
Nitrogen (g kg−1) | −0.210 | 0.283 | −1.745 | 0.619 | −8.555 | 0.170 |
CWB_1 | −0.003 | 0.118 | −0.021 | 0.532 | −0.194 | 0.001 |
CWB_4 | 0.000 | 0.987 | 0.064 | 0.079 | 0.144 | 0.026 |
CWB_7 | 0.001 | 0.796 | 0.038 | 0.318 | −0.079 | 0.244 |
CWB_10 | 0.006 | 0.002 | 0.084 | 0.009 | 0.133 | 0.020 |
CWB_13 | −0.002 | 0.201 | 0.017 | 0.595 | −0.079 | 0.166 |
pH | 0.286 | 0.024 | 3.152 | 0.163 | −1.520 | 0.703 |
sowing | 0.007 | 0.268 | 0.121 | 0.301 | −0.005 | 0.982 |
N (kg ha−1) | 0.006 | 0.095 | 0.117 | 0.079 | −0.134 | 0.258 |
P2O5 (kg ha−1) | 0.001 | 0.742 | −0.020 | 0.743 | −0.139 | 0.195 |
K2O (kg ha−1) | −0.002 | 0.510 | −0.023 | 0.631 | −0.040 | 0.631 |
herbicides (l ha−1) | 0.080 | 0.012 | 0.161 | 0.776 | 2.398 | 0.018 |
insecticides (kg ha−1) | −0.088 | 0.824 | −1.781 | 0.801 | −4.116 | 0.742 |
Yield (Mg ha−1) | Height (cm) | 1000-Grain Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|
n | Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | ||
Soil group (FAO WRB) | Albeluvisols | 17 | 3.1 ± 0.7 | 1.4–4.2 | 94.1 ± 12.6 | 74.4–118.0 | 186.1 ± 20.2 | 149.4–212.0 |
Cambisols | 40 | 2.8 ± 1.1 | 1.0–5.0 | 83.8 ± 19.5 | 38.0–121.0 | 194.4 ± 26.5 | 148.0–257.0 | |
Fluvisols | 4 | 2.5 ± 0.5 | 2.1–3.0 | 73.8 ± 8.4 | 66.0–81.0 | 182.8 ± 16.5 | 168.0–197.0 | |
Gleysols | 10 | 3.3 ± 0.4 | 2.9–4.0 | 98.6 ± 12.4 | 83.0–112.0 | 198.2 ± 22.0 | 166.4–230.1 | |
Luvisols | 102 | 3.5 ± 1.0 | 1.0–5.4 | 87.5 ± 16.5 | 39.0–121.0 | 195.9 ± 29.3 | 111.8–261.9 | |
previous crop | cereal | 146 | 3.2 ± 0.9 | 1.0–5.4 | 87.7 ± 17.7 | 38.0–121.0 | 193.5 ± 27.2 | 111.8–257.0 |
legumes | 3 | 3.2 ± 0.7 | 2.6–4.0 | 94.3 ± 12.9 | 80.0–105.0 | 193.4 ± 36.5 | 151.3–217.0 | |
rapeseed | 9 | 3.2 ± 1.1 | 1.6–4.6 | 87.7 ± 12.2 | 71.0–106.0 | 204.0 ± 25.4 | 163.3–242.7 | |
root crop | 15 | 3.6 ± 1.4 | 1.3–5.4 | 85.9 ± 12.9 | 66.0–105.0 | 197.6 ± 29.0 | 150.8–261.9 | |
inoculum | 138 | 3.3 ± 1.0 | 1.0–5.4 | 87.5 ± 17.8 | 38.0–121.0 | 196.0 ± 27.7 | 111.8–257.0 | |
no inoculum | 35 | 3.1 ± 0.9 | 1.2–5.4 | 88.2 ± 13.6 | 54.7–110.0 | 187.9 ± 24.8 | 141.0–261.9 | |
no fungicides | 170 | 3.2 ± 1.0 | 1.0–5.4 | 87.6 ± 17.1 | 38.0–121.0 | 193.9 ± 26.7 | 111.8–257.0 | |
fungicides | 3 | 4.3 ± 1.8 | 2.2–5.4 | 91.3 ± 11.7 | 81.0–104.0 | 219.5 ± 51.2 | 162.7–261.9 | |
year | 2012 | 4 | 2.9 ± 0.6 | 2.1–3.6 | 95.3 ± 4.5 | 93.0–102.0 | 155.4 ± 25.7 | 118.6–175.3 |
2013 | 4 | 2.6 ± 1.3 | 1.0–3.8 | 84.0 ± 4.2 | 81.0–90.0 | 150.3 ± 16.9 | 135.0–173.9 | |
2014 | 5 | 3.4 ± 0.8 | 2.5–4.5 | 108.0 ± 15.2 | 82.0–121.0 | 199.4 ± 11.5 | 180.6–211.0 | |
2015 | 6 | 2.2 ± 1.0 | 1.0–3.3 | 68.6 ± 21.3 | 38.0–100.0 | 151.7 ± 21.4 | 111.8–175.7 | |
2016 | 11 | 3.2 ± 0.7 | 2.2–4.7 | 92.1 ± 12.7 | 73.0–106.0 | 178.2 ± 26.8 | 151.3–224.1 | |
2017 | 10 | 3.3 ± 0.7 | 2.0–4.5 | 90.1 ± 14.2 | 75.0–112.0 | 188.3 ± 22.4 | 139.0–215.0 | |
2018 | 30 | 3.9 ± 0.9 | 2.5–5.4 | 85.0 ± 13.7 | 53.0–108.0 | 210.4 ± 20.2 | 163.3–261.9 | |
2019 | 30 | 2.9 ± 1.0 | 1.2–4.9 | 71.2 ± 14.4 | 39.0–95.0 | 201.7 ± 21.5 | 164.6–243.0 | |
2020 | 35 | 3.1 ± 0.9 | 1.4–4.9 | 89.6 ± 14.9 | 62.0–118.0 | 208.1 ± 24.9 | 161.0–257.0 | |
2021 | 38 | 3.3 ± 1.0 | 1.4–5.2 | 98.9 ± 12.7 | 77.4–121.0 | 184.5 ± 21.1 | 141.0–228.0 |
Abbreviation Used for Certain Climatic Water Balance | Period for which CWB Is Calculated | Growth Phase of Soybean for which CWB Is Calculated * |
---|---|---|
CWB_1 | from 01 April to 31 May | from before sowing to the emergence of soybean |
CWB_4 | from 01 May to 30 June | from sowing to the end of vegetative stage |
CWB_7 | from 01 June to 31 July | from the emergence to the full flowering |
CWB_10 | from 01 July to 31 August | from the beginning of the flowering to the full seed stage |
CWB_13 | from 01 August to 30 September | from the beginning of pod stage to the full maturity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Gront, E.; Gozdowski, D.; Derejko, A.; Pudełko, R. Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data. Plants 2022, 11, 2922. https://doi.org/10.3390/plants11212922
Wójcik-Gront E, Gozdowski D, Derejko A, Pudełko R. Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data. Plants. 2022; 11(21):2922. https://doi.org/10.3390/plants11212922
Chicago/Turabian StyleWójcik-Gront, Elżbieta, Dariusz Gozdowski, Adriana Derejko, and Rafał Pudełko. 2022. "Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data" Plants 11, no. 21: 2922. https://doi.org/10.3390/plants11212922
APA StyleWójcik-Gront, E., Gozdowski, D., Derejko, A., & Pudełko, R. (2022). Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data. Plants, 11(21), 2922. https://doi.org/10.3390/plants11212922