Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model
Abstract
:1. Introduction
2. Recent Studies
3. Research Methodology
3.1. Experimental Data
3.2. Preprocessing (Enhancement and Augmentation)
3.3. Convolutional Neural Networks (CNN)
3.4. Fine-Tuned CNN Transfer Learning-Based Model
- The CNN model is pre-trained.
- The last output layer is truncated, and all model designs and parameters are copied to generate a new CNN.
- The head of the CNN is replaced with a set of fully connected layers. Then the model parameters are initialized randomly.
- The output layer is trained from scratch, with all parameters fine-tuned based on the initial model.
3.5. Evaluation Metrics for the Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, R.; Joshi, R.K.; Zhao, K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Front. Plant Sci. 2018, 9, 1361. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.N.; Wani, S.P.; Ramesha, M.S.; Ladha, J.K. Rice Production Systems. In Rice Production Worldwide; Springer: Cham, Switzerland, 2017; pp. 185–205. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Prajapati, H.B.; Shah, J.P.; Dabhi, V.K. Detection and Classification of Rice Plant Diseases. Intell. Decis. Technol. 2017, 11, 357–373. [Google Scholar] [CrossRef]
- Phadikar, S.; Sil, J. Rice Disease Identification Using Pattern Recognition Techniques. In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27 December 2008. [Google Scholar] [CrossRef]
- Bashir, K.; Rehman, M.; Bari, M. Detection and classification of rice diseases: An automated approach using textural features. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 239–250. [Google Scholar] [CrossRef]
- Latif, G.; Alghazo, J.; Maheswar, R.; Vijayakumar, V.; Butt, M. Deep Learning Based Intelligence Cognitive Vision Drone for Automatic Plant Diseases Identification and Spraying. J. Intell. Fuzzy Syst. 2020, 39, 8103–8114. [Google Scholar] [CrossRef]
- Van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. iScience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Application of Artificial Intelligence Models and Optimization Algorithms in Plant Cell and Tissue Culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Shahsavar, A. The Application of Artificial Neural Networks in Modeling and Predicting the Effects of Melatonin on Morphological Responses of Citrus to Drought Stress. PLoS ONE 2020, 15, e0240427. [Google Scholar] [CrossRef]
- Hesami, M.; Alizadeh, M.; Jones, A.M.P.; Torkamaneh, D. Machine Learning: Its Challenges and Opportunities in Plant System Biology. Appl. Microbiol. Biotechnol. 2022, 106, 3507–3530. [Google Scholar] [CrossRef]
- Mishra, B.; Kumar, N.; Mukhtar, M.S. Systems biology and machine learning in plant–pathogen interactions. Mol. Plant-Microbe Interact. 2019, 32, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Grinblat, G.L.; Uzal, L.C.; Larese, M.G.; Granitto, P.M. Deep Learning for Plant Identification Using Vein Morphological Patterns. Comput. Electron. Agric. 2016, 127, 418–424. [Google Scholar] [CrossRef]
- Shaikh, E.; Mohiuddin, I.; Manzoor, A.; Latif, G.; Mohammad, N. Automated Grading for Handwritten Answer Sheets Using Convolutional Neural Networks. In Proceedings of the 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019. [Google Scholar] [CrossRef]
- Latif, G.; Butt, M.O.; Yousif Al Anezi, F.; Alghazo, J. Ultrasound Image Despeckling and Detection of Breast Cancer Using Deep CNN. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020. [Google Scholar] [CrossRef]
- Latif, G.; Morsy, H.; Hassan, A.; Alghazo, J. Novel Coronavirus and Common Pneumonia Detection from CT Scans Using Deep Learning-Based Extracted Features. Viruses 2022, 14, 1667. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Alawadh, I.N.A.; Latif, G.; Alghazo, J. Smart Nursery for Smart Cities: Infant Sound Classification Based on Novel Features and Support Vector Classifier. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, H.; Zhang, G.; Cao, H. Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci. Rep. 2019, 9, 2869. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.A.; Jadhav, B.D. Monitoring and Controlling Rice Diseases Using Image Processing Techniques. In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahidi, T.R.; Irfanul Alam, S.M.; Momen, S. Rice Leaf Disease Detection Using Machine Learning Techniques. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019. [Google Scholar] [CrossRef]
- Shrivastava, V.K.; Pradhan, M.K. Rice Plant Disease Classification Using Color Features: A Machine Learning Paradigm. J. Plant Pathol. 2020, 103, 17–26. [Google Scholar] [CrossRef]
- Aggarwal, S.; Suchithra, M.; Chandramouli, N.; Sarada, M.; Verma, A.; Vetrithangam, D.; Pant, B.; Ambachew Adugna, B. Rice Disease Detection Using Artificial Intelligence and Machine Learning Techniques to Improvise Agro-Business. Sci. Program. 2022, 2022, 1757888. [Google Scholar] [CrossRef]
- Bari, B.S.; Islam, M.N.; Rashid, M.; Hasan, M.J.; Razman, M.A.M.; Musa, R.M.; Ab Nasir, A.F.; Abdul Majeed, A.P.P. A Real-Time Approach of Diagnosing Rice Leaf Disease Using Deep Learning-Based Faster R-CNN Framework. PeerJ Comput. Sci. 2021, 7, e432. [Google Scholar] [CrossRef]
- Kiratiratanapruk, K.; Temniranrat, P.; Kitvimonrat, A.; Sinthupinyo, W.; Patarapuwadol, S. Using Deep Learning Techniques to Detect Rice Diseases from Images of Rice Fields. In Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices; Springer: Cham, Switzerland, 2020; Volume 12144, pp. 225–237. [Google Scholar] [CrossRef]
- Koklu, M.; Cinar, I.; Taspinar, Y.S. Classification of Rice Varieties with Deep Learning Methods. Comput. Electron. Agric. 2021, 187, 106285. [Google Scholar] [CrossRef]
- Daniya, T.; Vigneshwari, S. Deep Neural Network for Disease Detection in Rice Plant Using the Texture and Deep Features. Comput. J. 2021, 65, 1812–1825. [Google Scholar] [CrossRef]
- Aldrin Rice Disease Dataset. Available online: https://github.com/aldrin233/RiceDiseases-DataSet/tree/master/brownspot (accessed on 2 August 2022).
- Wang, Y.; Wang, H.; Peng, Z. Rice Diseases Detection and Classification Using Attention Based Neural Network and Bayesian Optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Ginneken; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A Large Annotated Medical Image Dataset for the Development and Evaluation of Segmentation Algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Sowmyalakshmi, R.; Jayasankar, T.; Ayyem PiIllai, V.; Subramaniyan, K.; Pustokhina, I.V.; A. Pustokhin, D.; Shankar, K. An Optimal Classification Model for Rice Plant Disease Detection. Comput. Mater. Contin. 2021, 68, 1751–1767. [Google Scholar] [CrossRef]
- Rice Leaf Diseases Dataset. Available online: https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases (accessed on 5 August 2022).
- Li, L.; Zhang, S.; Wang, B. Plant Disease Detection and Classification by Deep Learning—A Review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Latif, G.; Alghazo, J. IoT Cloud Based Rx Healthcare Expert System. In Fog Computing for Healthcare 4.0 Environments; Springer: Cham, Switzerland, 2020; pp. 251–265. [Google Scholar] [CrossRef]
- Latif, G.; Shankar, A.; Alghazo, J.M.; Kalyanasundaram, V.; Boopathi, C.S.; Arfan Jaffar, M. I-CARES: Advancing Health Diagnosis and Medication through IoT. Wirel. Netw. 2019, 26, 2375–2389. [Google Scholar] [CrossRef]
- Kaur, A.; Bhardwaj, V. Rice Plant Disease Detection Based on Clustering and Binarization. Vijay Bhardwaj Int. J. Eng. Technol. Sci. Res. IJETSR 2018, 5, 245–249. [Google Scholar]
- Ramesh, S.; Vydeki, D. Rice Blast Disease Detection and Classification Using Machine Learning Algorithm. In Proceedings of the 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), Ghaziabad, India, 20–21 September 2018. [Google Scholar] [CrossRef]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Ade, F. Rice Leaf Diseases Dataset. Available online: https://www.kaggle.com/datasets/adefiqri12/riceleafsv3 (accessed on 5 April 2022).
- Sanyal, P.; Patel, S.C. Pattern recognition method to detect two diseases in rice plants. Imaging Sci. J. 2008, 56, 319–325. [Google Scholar] [CrossRef]
- Rajan, G. Transfer-Learning Analysis for Sign Language Classification Models. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 1423–1433. [Google Scholar] [CrossRef]
- Latif, G.; Bouchard, K.; Maitre, J.; Back, A.; Bédard, L.P. Deep-Learning-Based Automatic Mineral Grain Segmentation and Recognition. Minerals 2022, 12, 455. [Google Scholar] [CrossRef]
- Junaidi, A.; Lasama, J.; Adhinata, F.D.; Iskandar, A.R. Image Classification for Egg Incubator Using Transfer Learning of VGG16 and VGG19. In Proceedings of the 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Purwokerto, Indonesia, 17–18 July 2021. [Google Scholar] [CrossRef]
- Dasgupta, R.; Chowdhury, Y.S.; Nanda, S. Performance Comparison of Benchmark Activation Function ReLU, Swish and Mish for Facial Mask Detection Using Convolutional Neural Network. Algorithms Intell. Syst. 2021, 31, 355–367. [Google Scholar] [CrossRef]
Reference | Method | Dataset Used | Performance (Accuracy %) |
---|---|---|---|
Sowmyalakshmi et al. (2021) [31] | CNNIR-OWELM-based deep learning | 115 images | 94.2% |
Wang et al. (2021) [29] | attention-based NN with Bayesian optimization | 2370 images | 94.65% |
Bashir et al. (2019) [6] | SVM image processing-based technique | 400 images | 94.17% |
Liang et al. (2019) [19] | Convolutional Neural System (CNN). | 5808 samples | 95% |
Prajapati et al. (2018) [4] | K-means clustering and Support Vector Machines | NA | 73.33% |
Kaur et al. (2018) [36] | k-NN and SVM | NA | 95.16% |
Ramesh et al. (2018) [37] | L*a*b, HSV and Texture Features with ANN classifier | 300 images | 90% |
Lu et al. (2017) [38] | Convolutional Neural Networks | 500 images | 95.48% |
Joshi et al. (2016) [20] | Minimum Distance Classifier (MDC) and k-NN | 115 images | 89.23% |
Metric | Equation | Measure |
---|---|---|
Accuracy | A measure of the ratio of all correct classifications to the total number of the classifications | |
Precision | The ratio of the true positive cases over the total classified positive cases | |
Recall | (Sensitivity) The measure of the proportion of the actual positive cases that were classified correctly | |
Specificity | The measure of the proportion of the actual negative cases that were classified correctly | |
F1-Score | The harmonic mean of the precision and recall |
CNN Model | Accuracy | Precision | Recall | Specificity | F1_score | |
---|---|---|---|---|---|---|
Non-Normalized | GoogleNet | 83.87% | 0.8373 | 0.8404 | 0.9677 | 0.8379 |
VGG16 | 88.71% | 0.8885 | 0.8889 | 0.9774 | 0.8835 | |
VGG19 | 87.10% | 0.8674 | 0.8725 | 0.9742 | 0.8681 | |
DenseNet201 | 89.86% | 0.9005 | 0.9005 | 0.9797 | 0.8986 | |
AlexNet | 86.18% | 0.8764 | 0.8629 | 0.9722 | 0.8554 | |
Normalized Augmented | GoogleNet | 85.24% | 0.8492 | 0.8524 | 0.9705 | 0.8480 |
VGG16 | 87.14% | 0.8723 | 0.8714 | 0.9743 | 0.8677 | |
VGG19 | 85.00% | 0.8465 | 0.8500 | 0.9700 | 0.8454 | |
DenseNet201 | 88.33% | 0.8795 | 0.8833 | 0.9767 | 0.8797 | |
AlexNet | 82.38% | 0.8588 | 0.8238 | 0.9648 | 0.7975 | |
Non-Normalized Augmented | GoogleNet | 82.03% | 0.8235 | 0.8219 | 0.9640 | 0.8158 |
VGG16 | 82.72% | 0.8515 | 0.8279 | 0.9653 | 0.8202 | |
VGG19 | 81.11% | 0.8128 | 0.8120 | 0.9622 | 0.7920 | |
DenseNet201 | 83.41% | 0.8460 | 0.8364 | 0.9668 | 0.8368 | |
AlexNet | 79.72% | 0.8100 | 0.8004 | 0.9594 | 0.7899 |
CNN Model | Accuracy | Precision | Recall | Specificity | F1_Score | |
---|---|---|---|---|---|---|
Non-Normalized | GoogleNet | 89.63% | 0.8964 | 0.8976 | 0.9792 | 0.8967 |
VGG16 | 95.62% | 0.9570 | 0.9571 | 0.9912 | 0.9570 | |
VGG19 | 96.01% | 0.9626 | 0.9614 | 0.9921 | 0.9609 | |
DenseNet201 | 94.24% | 0.9433 | 0.9435 | 0.9885 | 0.9431 | |
AlexNet | 92.63% | 0.9306 | 0.9272 | 0.9852 | 0.9251 | |
Normalized Augmented | GoogleNet | 86.90% | 0.8721 | 0.8690 | 0.9738 | 0.8675 |
VGG16 | 94.76% | 0.9501 | 0.9476 | 0.9895 | 0.9475 | |
VGG19 | 92.38% | 0.9255 | 0.9238 | 0.9848 | 0.9233 | |
DenseNet201 | 92.86% | 0.9277 | 0.9286 | 0.9857 | 0.9280 | |
AlexNet | 88.81% | 0.8868 | 0.8881 | 0.9776 | 0.8857 | |
Non-Normalized Augmented | GoogleNet | 86.64% | 0.8681 | 0.8677 | 0.9732 | 0.8639 |
VGG16 | 94.93% | 0.9529 | 0.9499 | 0.9898 | 0.9503 | |
VGG19 | 96.08% | 0.9620 | 0.9617 | 0.9921 | 0.9616 | |
DenseNet201 | 88.71% | 0.8983 | 0.8897 | 0.9774 | 0.8887 | |
AlexNet | 85.71% | 0.8584 | 0.8597 | 0.9714 | 0.8555 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, G.; Abdelhamid, S.E.; Mallouhy, R.E.; Alghazo, J.; Kazimi, Z.A. Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants 2022, 11, 2230. https://doi.org/10.3390/plants11172230
Latif G, Abdelhamid SE, Mallouhy RE, Alghazo J, Kazimi ZA. Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants. 2022; 11(17):2230. https://doi.org/10.3390/plants11172230
Chicago/Turabian StyleLatif, Ghazanfar, Sherif E. Abdelhamid, Roxane Elias Mallouhy, Jaafar Alghazo, and Zafar Abbas Kazimi. 2022. "Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model" Plants 11, no. 17: 2230. https://doi.org/10.3390/plants11172230
APA StyleLatif, G., Abdelhamid, S. E., Mallouhy, R. E., Alghazo, J., & Kazimi, Z. A. (2022). Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants, 11(17), 2230. https://doi.org/10.3390/plants11172230