Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves
Abstract
:1. Introduction
2. Results
2.1. Phenolic Compositions
2.2. Antioxidant Activities
2.3. Enzyme Inhibitory Activities
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Preparation, and Extraction
4.2. Determination of Phenolic Profiles
4.3. Determination of Antioxidant Activities
4.4. Determination of Inhibitory Activities
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kodahl, N.; Sørensen, M. Sacha inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy 2021, 11, 1066. [Google Scholar] [CrossRef]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Dugo, L.; Cacciola, F.; Beccaria, M.; Grasso, S.; Dachà, M.; Dugo, P.; Mondello, L. Chemical characterization of sacha inchi (Plukenetia volubilis L.) oil. J. Agric. Food Chem. 2011, 59, 13043–13049. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, L.F.; Rosada, L.M.; Jiménez, A. Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites 2011, 62, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, D.M.; Gómez Rave, L.J.; Soto, J.A. Biological activity of sacha inchi (Plukenetia volubilis Linneo) and potential uses in human health: A review. Food. Technol. Biotechnol. 2021, 59, 253–266. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Valles, C.; Gilman, R.; Hardmeier, R.M.; Clark, D.; Garcia, H.H.; Gonzales, A.E.; Kohlstad, I.; Castro, M.; Valdivia, R.; et al. Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis L.). Cereal Chem. 1992, 69, 461–463. [Google Scholar]
- Follegatti-Romero, L.A.; Piantino, C.R.; Grimaldi, R.; Cabral, A. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. J. Supercrit. Fluids 2009, 49, 323–329. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Hudthagosol, C.; Sanporkha, P.; Sapwarobol, S.; Temviriyanukul, P.; Suttisansanee, U. Evaluation of sacha inchi (Plukenetia volubilis L.) by-products as valuable and sustainable sources of health benefits. Horticulturae 2022, 8, 344. [Google Scholar] [CrossRef]
- Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. 2003, 523–524, 9–20. [Google Scholar] [CrossRef]
- Nascimento, A.K.L.; Silveira, R.F.M.; Santos, N.D.; Fernandes, J.M.; Zucolotto, S.M.; Rocha, H.A.O.; Scortecci, K.C. Antioxidant and antiproliferative activities of leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evid.-Based Complement. Altern. Med. 2013, 2013, 950272. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J. Biol. Sci. 2014, 21, 605–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuttisin, N.; Nararatwanchai, T.; Sarikaphuti, A. Total phenolic, flavonoid, flavonol contents and antioxidant activity of Inca peanut (Plukenetia volubilis L.) leaves extracts. Food Res. 2021, 5, 216–224. [Google Scholar] [CrossRef]
- Lin, J.; Wen, J.; Xiao, N.; Cai, Y.T.; Xiao, J.; Dai, W.; Chen, J.P.; Zeng, K.W.; Liu, F.; Du, B.; et al. Anti-diabetic and gut microbiota modulation effects of sacha inchi (Plukenetia volubilis L.) leaf extract in streptozotocin-induced type 1 diabetic mice. J. Sci. Food Agric. 2022; in press. [Google Scholar]
- Papoutsis, K.; Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase inhibitors for obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef] [PubMed]
- Moussa, C.E. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin. Investig. Drugs 2017, 26, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Roslan, A.S.; Ismail, A.; Ando, Y.; Azlan, A. Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. J. Food Prod. Process. Nutr. 2020, 8, 8. [Google Scholar] [CrossRef]
- Nadeem, M.; Zeb, A. Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol. Mol. Biol. Plants 2018, 24, 881–887. [Google Scholar] [CrossRef]
- Mokhtar, M.; Bouamar, S.; Di Lorenzo, A.; Temporini, C.; Daglia, M.; Riazi, A. The influence of ripeness on the phenolic content, antioxidant and antimicrobial activities of pumpkins (Cucurbita moschata Duchesne). Molecules 2021, 26, 3623. [Google Scholar] [CrossRef]
- Sirichai, P.; Kittibunchakul, S.; Thangsiri, S.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Inthachat, W.; Nuchuchua, O.; Aursalung, A.; Sahasakul, Y.; et al. Impact of drying processes on phenolics and in vitro health-related activities of indigenous plants in Thailand. Plants 2022, 11, 294. [Google Scholar] [CrossRef]
- Kratchanova, M.; Denev, P.; Ciz, M.; Lojek, A.; Mihailov, A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010, 57, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Hong, P.K.; Betti, M. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production. Food Chem. 2016, 212, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, Y.; Ghajari, M.A.; Sedighe, T. Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J. Food Sci. Technol. 2019, 56, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Hopper, D.; Ghan, R.; Cramer, G. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Hortic. Res. 2014, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Zhang, M.; Mujumdar, A.S.; Du, W.; Sun, J. Effects of different drying methods on the quality changes of granular edamame. Drying Technol. 2006, 24, 1025–1032. [Google Scholar]
- Khan, M.W.A.; Otaibi, A.A.; Sherwani, S.; Khan, W.A.; Alshammari, E.M.; Al-Zahrani, S.A.; Saleem, M.; Khan, S.N.; Alouffi, S. Glycation and oxidative stress increase autoantibodies in the elderly. Molecules 2020, 25, 3675. [Google Scholar] [CrossRef]
- Wu, C.H.; Huang, S.M.; Yen, G.C. Silymarin: A novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid. Redox Signal 2011, 14, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Peng, X.; Liu, J.; Fan, K.W.; Wang, M.; Chen, F. Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (AGEs). Food Chem. 2010, 120, 261–267. [Google Scholar] [CrossRef]
- Ávila, F.; Ravello, N.; Manriquez, C.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; Theoduloz, C. Antiglycating effect of phenolics from the Chilean currant Ribes cucullatum under thermal treatment. Antioxidants 2021, 10, 665. [Google Scholar] [CrossRef]
- Katalinić, M.; Rusak, G.; Barović, J.D.; Šinko, G.; Jelić, D.; Antolović, R.; Kovarik, Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur. J. Med. Chem. 2010, 45, 186–192. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Pan, J.; Hu, X.; Zhang, Y.; Gong, D.; Zhang, G. Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J. Funct. Foods 2020, 72, 104041. [Google Scholar] [CrossRef]
- Jeong, E.Y.; Cho, K.S.; Le, H.S. α-Amylase and α-glucosidase inhibitors isolated from Triticum aestivum L. sprouts. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 47–51. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Núñez-Gastélum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D. Anticholinesterase activity of phenolic acids and their derivatives. Z. Nat. 2013, 68c, 125–132. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.C.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Miyazawa, M. Tyrosinase inhibitory activities of cinnamic acid analogues. Die Pharm. 2010, 65, 913–918. [Google Scholar]
- Youn, K.; Jun, M. Inhibitory effects of key compounds isolated from Corni fructus on BACE1 activity. Phytother. Res. 2012, 26, 1714–1718. [Google Scholar] [CrossRef]
- Panzella, L.; Napolitano, A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.; Eck, P.; Chen, S.; Corpe, C.P.; Lee, J.H.; Kruhlak, M.; Levine, M. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007, 21, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Gholamhoseinian, A.; Shahouzehi, B.; Sharifi-far, F. Inhibitory effect of some plant extracts on pancreatic lipase. Int. J. Pharmacol. 2010, 6, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Chumanee, S.; Khoomsab, R. The determination of phytochemical content, antioxidant activity, and mineral from the Plukenetia volubilis L. leaves. PSRU J. Sci. Tech. 2020, 5, 98–113. [Google Scholar]
- Deetae, P.; Parichanon, P.; Trakunleewatthana, P.; Chanseetis, C.; Lertsiri, S. Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem. 2012, 133, 953–959. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Sritalahareuthai, V.; Promyos, N.; Thangsiri, S.; Pruesapan, K.; Srinuanchai, W.; Nuchuchua, O.; Siriwan, D.; On-nom, N.; Suttisansanee, U. The effect of sacred lotus (Nelumbo nucifera) and its mixtures on phenolic profiles, antioxidant activities, and inhibitions of the key enzymes relevant to Alzheimer’s disease. Molecules 2020, 25, 3713. [Google Scholar] [CrossRef] [PubMed]
- Hinkaew, J.; Sahasakul, Y.; Tangsuphoom, N.; Suttisansanee, U. The effect of cultivar variation on total phenolic contents and antioxidant activities of date palm fruit (Phoenix dactylifera L.). Curr. Res. Nutr. Food Sci. 2020, 8, 155–163. [Google Scholar] [CrossRef]
- Sripum, C.; Kukreja, R.K.; Charoenkiatkul, S.; Kriengsinyos, W.; Suttisansanee, U. The effect of extraction conditions on antioxidant activities and total phenolic contents of different processed Thai Jasmine rice. Int. Food Res. J. 2017, 24, 1644–1650. [Google Scholar]
Phenolics (mg/100 g DW) | Sacha Inchi Leaves | |||
---|---|---|---|---|
Young | Mature | |||
Freeze-Dried | Oven-Dried | Freeze-Dried | Oven-Dried | |
Flavonoids | ||||
Kaempferol | 10.76 ± 0.13 e,†,* | 8.50 ± 0.18 f, § | 9.52 ± 0.15 f,* | 7.62 ± 0.06 e |
Apigenin | 5.68 ± 0.16 f,* | 2.47 ± 0.06 g, § | 5.82 ± 0.12 g,* | 4.27 ± 0.16 f |
Isorhamnetin | 1.52 ± 0.13 f,†,* | 1.22 ± 0.15 g, § | 2.80 ± 0.07 h,i,* | 0.77 ± 0.04 g |
Phenolic acids | ||||
Gallic acid | 43.25 ± 1.85 c,†,* | 32.91 ± 0.66 c,§ | 21.48 ± 0.55 c | 20.21 ± 1.23 d |
4-Hydroxybenzoic acid | 75.43 ± 3.63 b,†,* | 53.42 ± 2.53 b,§ | 49.09 ± 1.39 b,* | 43.34 ± 1.55 b |
Vanillic acid | 4.17 ± 0.15 f,†,* | 3.67 ± 0.09 g,§ | 4.72 ± 0.21 g,h,* | 4.16 ± 0.19 f |
Caffeic acid | 15.74 ± 0.41 d,†,* | 9.98 ± 0.40 f,§ | 19.10 ± 0.41 d,* | 7.48 ± 0.19 e |
Syringic acid | 1.51 ± 0.26 f,† | 1.51 ± 0.20 g | 1.79 ± 0.04 I,* | 1.46 ± 0.08 g |
p-Coumaric acid | 89.71 ± 4.06 a,* | 28.34 ± 1.46 d | 89.15 ± 1.47 a,* | 31.28 ± 0.57 c |
Ferulic acid | 73.10 ± 1.46 b,† | 71.79 ± 5.26 a,§ | 90.96 ± 2.37 a,* | 83.66 ± 1.96 a |
Sinapic acid | 17.58 ± 0.66 d,†,* | 14.39 ± 0.55 e,§ | 14.18 ± 0.06 e,* | 8.82 ± 0.18 e |
TPCs (mg GAE/g DW) | 20.74 ± 0.30 †,* | 12.82 ± 0.23 § | 21.37 ± 0.24 * | 13.10 ± 0.11 |
Antioxidant Activities (µmol TE/g DW) | Sacha Inchi Leaves | |||
---|---|---|---|---|
Young | Mature | |||
Freeze-Dried | Oven-Dried | Freeze-Dried | Oven-Dried | |
DPPH radical scavenging activity | 0.049 ± 0.001 * | 0.050 ± 0.001 | 0.049 ± 0.001 | 0.051 ± 0.002 |
FRAP activity | 43.04 ± 3.51 †,* | 48.26 ± 2.21 § | 46.61 ± 3.87 | 45.70 ± 2.73 |
ORAC activity | 131.58 ± 10.48 †,* | 163.93 ± 15.20 § | 162.20 ± 11.46 * | 144.23 ± 17.34 |
Inhibitory Activities (% Inhibition) | Leaves of Sacha Inchi | |||
---|---|---|---|---|
Young | Mature | |||
Freeze-Dried | Oven-Dried | Freeze-Dried | Oven-Dried | |
1 α-Amylase | 37.13 ± 2.38 * | 41.62 ± 3.74 | 39.68 ± 3.58 | 39.61 ± 2.21 |
1 α-Glucosidase | 9.93 ± 0.94 †,* | 8.11 ± 0.65 § | 11.81 ± 1.19 * | 9.96 ± 0.68 |
2 Lipase | 9.49 ± 0.93 | 9.79 ± 0.79 | 9.43 ± 1.23 | 9.80 ± 1.14 |
2 AChE | 4.15 ± 0.47 * | 10.93 ± 1.21 § | 4.27 ± 0.69 * | 14.64 ± 1.11 |
2 BChE | 24.13 ± 1.97 †,* | 20.88 ± 1.27 § | 30.09 ± 1.62 * | 25.36 ± 1.13 |
2 BACE-1 | ND | ND | ND | ND |
1 Glucose-induced glycation | 78.30 ± 2.25 †,* | 82.12 ± 2.76 § | 83.98 ± 0.32 * | 92.98 ± 2.40 |
1 MG-induced glycation | 81.35 ± 0.54 †,* | 84.22 ± 0.23f § | 84.11 ± 1.97 * | 90.51 ± 1.85 |
Time (min) | Solvent A (%) | Solvent B (%) | Solvent C (%) |
---|---|---|---|
0 | 90 | 6 | 4 |
5 | 85 | 9 | 6 |
30 | 71 | 17.4 | 11.6 |
60 | 0 | 85 | 15 |
61 | 90 | 6 | 4 |
66 | 90 | 6 | 4 |
Enzyme | Substrate | Indicator | Detected wavelength |
---|---|---|---|
≥10 unit/mg (type VII), porcine pancreatic α-amylase | p-nitrophenyl-α-d-maltopentaoside | 405 nm | |
≥10 U/mg protein (type I), Saccharomyces cerevisiae α-glucosidase | p-nitrophenyl-α-d-glucopyranoside | ||
≥700 unit/mg (type VII), Candida rugosa lipase | DNPDB | DTNB | 412 nm |
1000 units/mg, Electrophorus electricus AChE | acetylthiocholine | ||
≥10 units/mg, equine serum BChE | butyrylthiocholine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittibunchakul, S.; Hudthagosol, C.; Sanporkha, P.; Sapwarobol, S.; Suttisansanee, U.; Sahasakul, Y. Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. Plants 2022, 11, 1515. https://doi.org/10.3390/plants11111515
Kittibunchakul S, Hudthagosol C, Sanporkha P, Sapwarobol S, Suttisansanee U, Sahasakul Y. Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. Plants. 2022; 11(11):1515. https://doi.org/10.3390/plants11111515
Chicago/Turabian StyleKittibunchakul, Suwapat, Chatrapa Hudthagosol, Promluck Sanporkha, Suwimol Sapwarobol, Uthaiwan Suttisansanee, and Yuraporn Sahasakul. 2022. "Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves" Plants 11, no. 11: 1515. https://doi.org/10.3390/plants11111515
APA StyleKittibunchakul, S., Hudthagosol, C., Sanporkha, P., Sapwarobol, S., Suttisansanee, U., & Sahasakul, Y. (2022). Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. Plants, 11(11), 1515. https://doi.org/10.3390/plants11111515