Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark
Abstract
:1. Introduction
2. Results
2.1. Metabolite Profiling of E. exsul Determined via LC-MS/MS
Peak | RT (min) | m/z [M+H]+ | Molecular Formulas [M] | MS2 | Ions Tentative Identification | Confidence Level |
---|---|---|---|---|---|---|
1 | 2.571 | 477.250 | C27H32N4O4 | 477.24, 460.74, 359.33, 265.95, 186.09, 120.08 | Unknown | 4 |
2 | 2.707 | 562.302 | C31H39N5O5 | 562.30, 477.24, 378.18, 174.09, 134.06, 120.08 | Mauritine F [13] | 3 |
3 | 2.745 | 576.319 | C32H41N5O5 | 576.31, 477.24, 378.18, 174.09, 134.06, 120.08 | Mauritine A [13] | 3 |
4 | 2.885 | 592.313 | C32H41N5O6 | 592.31, 477.24, 378.18, 174.09, 134.06, 120.08 | Mauritine A N-oxide [13] | 3 |
5 | 3.088 | 433.113 | C21H20O10 | 283.06, 313.07, 121.02, 165.01 | Vitexin | 3 |
6 | 3.206 | 599.330 | C30H38N12O2 | 336.21, 458.27 | Unknown | 4 |
7 | 3.282 | 313.086 | C17H12O6 | 315.08, 244.37, 272.80, 312.92, 103.07 | Aflatoxin B2 | 3 |
8 | 3.282 | 579.171 | C26H28O15 | 579.17, 152.01, 285.07, 460.87 | Rhoifolin | 3 |
9 | 3.661 | 439.357 | C30H46O2 | 393.35, 339.15, 313.07 | Ganodermenonol | 3 |
10 | 3.774 | 453.336 | C30H44O3 | 329.10, 264.23 | Kulactone | 3 |
11 | 4.646 | 322.23 | C19H31NO3 | 322.23, 163.063, 288.198 | 8-Dihydroantidesmone [14] | 3 |
12 | 4.987 | 306.243 | C19H31NO2 | 290.98, 296.48, 178.086, 163.063 | 8-Deoxoantidesmone [14] | 3 |
13 | 5.138 | 398.265 | C20H35N3O5 | 306.24, 194.11 | Unknown | 4 |
14 | 5.365 | 320.222 | C19H29NO3 | 278.24, 220.59, 222.11, 234.13, 163.063 | Antidesmone [14] | 3 |
15 | 5.782 | 256.133 | C16H17NO2 | Unknown | 4 | |
16 | 5.061 | 445.212 | C27H28N2O4 | 283.09, 398.26, 194.11 | Asperglaucide | 3 |
17 | 5.782 | 507.228 | C32H30N2O4 | 327.23, 256.13 | Asperphenamate | 3 |
18 | 6.123 | 317.196 | C16H28O6 | 2-Bornanol (1S,2R)-O-d-glucopyranoside | 3 |
2.2. MS/MS-Molecular Networking-Based Dereplication
2.3. Antioxidant Activity
2.4. Antimicrobial Assay
3. Materials and Methods
3.1. Plant Materials
3.2. Extraction and Fractionation
3.3. Data Dependent LC-HRMS2 Analyses
3.4. Feature-Based Molecular Networking Parameters
3.5. Molecular Network Analysis
3.6. Antioxidant Assay
3.7. 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH•) Assay
3.8. Antimicrobial Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feuya Tchouya, G.R.; Souza, A.; Tchouankeu, J.C.; Yala, J.-F.; Boukandou, M.; Foundikou, H.; Nguema Obiang, G.D.; Fekam Boyom, F.; Mabika Mabika, R.; Zeuko’o Menkem, E.; et al. Ethnopharmacological Surveys and Pharmacological Studies of Plants Used in Traditional Medicine in the Treatment of HIV/AIDS Opportunistic Diseases in Gabon. J. Ethnopharmacol. 2015, 162, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Moya, E.; Brea, M. A New Record of Fossil Wood of Vochysiaceae from the Late Pleistocene (Arroyo Feliciano Formation), Argentina, South America. Rev. Bras. Paleontol. 2015, 18, 83–90. [Google Scholar] [CrossRef]
- Sajo, M.G.; Rudall, P.J. Leaf and Stem Anatomy of Vochysiaceae in Relation to Subfamilial and Suprafamilial Systematics. Bot. J. Linn. Soc. 2002, 138, 339–364. [Google Scholar] [CrossRef] [Green Version]
- Weniger, B.; Lobstein, A.; Um, B.-H.; Vonthron-Sénéchau, C.; Anton, R.; Usuga, N.J.; Basaran, H.; Lugnier, C. Bioactive Triterpenoids from Vochysia Pacifica Interact with Cyclic Nucleotide Phosphodiesterase Isozyme PDE4. Phytother. Res. 2005, 19, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.R.; Justino, A.B.; Martins, M.M.; Silva, C.G.; Campana, P.R.V.; Lopes, J.C.D.; De Almeida, V.L.; Espindola, F.S. Phytoscreening of Vochysiaceae Species: Molecular Identification by HPLC-ESI-MS/MS and Evaluating of Their Antioxidant Activity and Inhibitory Potential against Human α-Amylase and Protein Glycation. Bioorganic Chem. 2019, 91, 103122. [Google Scholar] [CrossRef]
- Dornelo-Silva, D.; Dianese, J.C. Hyphomycetes on the Vochysiaceae from the Brazilian Cerrado. Mycologia 2003, 95, 1239–1251. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Quinn, R.A.; Nothias, L.-F.; Vining, O.; Meehan, M.; Esquenazi, E.; Dorrestein, P.C. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol. Sci. 2017, 38, 143–154. [Google Scholar] [CrossRef]
- Allard, P.-M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Mad Nasir, N.; Ezam Shah, N.S.; Zainal, N.Z.; Kassim, N.K.; Faudzi, S.M.M.; Hasan, H. Combination of Molecular Networking and LC-MS/MS Profiling in Investigating the Interrelationships between the Antioxidant and Antimicrobial Properties of Curculigo Latifolia. Plants 2021, 10, 1488. [Google Scholar] [CrossRef]
- Buckingham, J. Dictionary of Natural Products, Supplement 4; CRC Press: Boca Raton, FL, USA, 1997; ISBN 978-0-412-60440-9. [Google Scholar]
- Buckingham, J.; Baggaley, K.H.; Roberts, A.D.; Szabo, L.F. (Eds.) Dictionary of Alkaloids with CD-ROM, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-14537-7. [Google Scholar]
- Han, J.; Ji, C.-J.; He, W.-J.; Shen, Y.; Leng, Y.; Xu, W.-Y.; Fan, J.-T.; Zeng, G.-Z.; Kong, L.-D.; Tan, N.-H. Cyclopeptide Alkaloids from Ziziphus Apetala. J. Nat. Prod. 2011, 74, 2571–2575. [Google Scholar] [CrossRef] [PubMed]
- Buske, A.; Schmidt, J.; Hoffmann, P. Chemotaxonomy of the Tribe Antidesmeae (Euphorbiaceae): Antidesmone and Related Compounds. Phytochemistry 2002, 60, 489–496. [Google Scholar] [CrossRef]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, G.J.; Shukla, Y.N.; Morton, J.F.; Lloyd, H.A. New Cyclopeptide Alkaloids from Melochia Tomentosa. Phytochemistry 1977, 16, 1431–1433. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- El Maaiden, E.; El Kharrassi, Y.; Qarah, N.A.S.; Essamadi, A.K.; Moustaid, K.; Nasser, B. Genus Ziziphus: A Comprehensive Review on Ethnopharmacological, Phytochemical and Pharmacological Properties. J. Ethnopharmacol. 2020, 259, 112950. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Shukla, Y.N.; Basak, S.P.; Sokoloski, E.A.; Fales, H.M. The Melosatins—A Novel Class of Alkaloids from Melochia Tomentosa. Tetrahedron 1980, 36, 2441–2447. [Google Scholar] [CrossRef]
- Bhakuni, R.S.; Shukla, Y.N.; Thakur, R.S. Cyclopeptide Alkaloids from Melochia Corchorifolia. Phytochemistry 1986, 26, 324–325. [Google Scholar] [CrossRef]
- Arbain, D.; Taylor, W.C. Cyclopeptide Alkaloids from Antidesma Montana. Phytochemistry 1993, 33, 1263–1266. [Google Scholar] [CrossRef]
- Mu, H.; Bai, Y.-H.; Wang, S.-T.; Zhu, Z.-M.; Zhang, Y.-W. Research on Antioxidant Effects and Estrogenic Effect of Formononetin from Trifolium Pratense (Red Clover). Phytomedicine 2009, 16, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.K.L.; Shanmugam, M.K.; Fan, L.; Fraser, S.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Bishayee, A. Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers 2019, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Machado Dutra, J.; Espitia, P.J.P.; Andrade Batista, R. Formononetin: Biological Effects and Uses—A Review. Food Chem. 2021, 359, 129975. [Google Scholar] [CrossRef]
- Peng, S.; Hu, C.; Liu, X.; Lei, L.; He, G.; Xiong, C.; Wu, W. Rhoifolin Regulates Oxidative Stress and Proinflammatory Cytokine Levels in Freund’s Adjuvant-Induced Rheumatoid Arthritis via Inhibition of NF-ΚB. Braz. J. Med. Biol. Res. 2020, 53. [Google Scholar] [CrossRef]
- Elagbar, Z.A.; Shakya, A.K.; Barhoumi, L.M.; Al-Jaber, H.I. Phytochemical Diversity and Pharmacological Properties of Rhus Coriaria. Chem. Biodivers. 2020, 17, e1900561. [Google Scholar] [CrossRef]
- Najdabbasi, N.; Mirmajlessi, S.M.; Dewitte, K.; Landschoot, S.; Mänd, M.; Audenaert, K.; Ameye, M.; Haesaert, G. Biocidal Activity of Plant-Derived Compounds against Phytophthora Infestans: An Alternative Approach to Late Blight Management. Crop Prot. 2020, 138, 105315. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.-L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal Activity of Hop Extracts and Compounds against the Wheat Pathogen Zymoseptoria Tritici. Ind. Crops Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Panseeta, P.; Lomchoey, K.; Prabpai, S.; Kongsaeree, P.; Suksamrarn, A.; Ruchirawat, S.; Suksamrarn, S. Antiplasmodial and Antimycobacterial Cyclopeptide Alkaloids from the Root of Ziziphus Mauritiana. Phytochemistry 2011, 72, 909–915. [Google Scholar] [CrossRef]
- Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; et al. Antifungal Quinoline Alkaloids from Waltheria Indica. J. Nat. Prod. 2016, 79, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, F.; Cometa, M.F.; Tomassini, L.; Palmery, M. Antibacterial Activity of Hydrastis Canadensis Extract and Its Major Isolated Alkaloids. Planta Med. 2001, 67, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Banso, A.; Adeyemo, S.O.; Jeremiah, P. Antimicrobial Properties of Vernonia Amygdalina Extract. J. Appl. Sci. Manag. 1999, 3, 9–11. [Google Scholar]
- Platel, R.; Chaveriat, L.; Le Guenic, S.; Pipeleers, R.; Magnin-Robert, M.; Randoux, B.; Trapet, P.; Lequart, V.; Joly, N.; Halama, P.; et al. Importance of the C12 Carbon Chain in the Biological Activity of Rhamnolipids Conferring Protection in Wheat against Zymoseptoria Tritici. Molecules 2021, 26, 40. [Google Scholar] [CrossRef]
m/z [M+H]+ | Molecular Formulas [M] | Adducts Types | Cosine Score | Compound |
---|---|---|---|---|
758.570 | C42H82NO8P | [M+H]+ | 0.92 | 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine |
784.588 | C44H80NO8P | [M+H]+ | 0.77 | 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine |
772.582 | C43H85NO8P | [M+H]+ | 0.70 | 1-Heptadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine |
275.201 | C19H30O2 | [M+H−H2O]+ | 0.73 | Androstenediol |
309.207 | C19H30O3 | [M+H]+ | 0.76 | Epioxandrolone |
321.242 | C21H34O2 | [M+H]+ | 0.73 | Methasteron |
454.919 | C24H36O8 | [M+H]+ | 0.71 | [(1S,2R,4aR,8aR)-1-Acetyloxy-1,4a-dimethyl-6-oxo-7-propan-2-ylidene-2,3,4,5,8,8a-hexahydronaphthalen-2-yl]-3_acetyloxy-2-hydroxy-2-methylbutanoate |
439.840 | C21H22O9 | [M+Na]+ | 0.78 | Isoliquiritin |
437.341 | C24H32O6 | [M+Na]+ | 0.73 | [1S,3R,3aS,4S,8aR)-1-Acetyloxy-3-hydroxy-6,8a-dimethyl-3-propan-2-yl-1,2,3a,4,5,8-hexahydroazulen-4-yl]4-hydroxybenzoate |
406.259 | C20H30O6 | [M+K]+ | 0.81 | 3-[2-(6,7-Dihydroxy-1,2,4a-trimethylspiro [3,4,6,7,8,8a-hexahydro-2H-naphthalene-5,2′-oxirane]-1-yl)ethyl]-2-hydroxy-2H-furan-5-one |
369.263 | C27H46O | [M+H−H2O]+ | 0.82 | Cholesterol |
410.258 | C22H32O7 | [M+H]+ | 0.74 | [6,10a-dihydroxy-4-(hydroxymethyl)-4,7,11b-trimethyl-9-oxo-1,2,3,4a,5,6,6a,7,11,11a-decahydronaphtho[2,1-f][1]benzofuran-5-yl] acetate |
507.232 | C32H30N2O4 | [M+H]+ | 0.83 | Asperphenamate |
269.083 | C16H12O4 | [M+H]+ | 0.87 | Formononetin |
413.380 | C27H42O3 | [M+H]+ | 0.83 | 3-Oxocholest-4-en-26-oic acid |
579.177 | C26H28O15 | [M+H]+ | 0.76 | Rhoifolin |
663.463 | C34H48O13 | [M+H]+ | 0.73 | Sarmentoside B |
Test Sample | FRAP (µM TE/g DW) | DPPH (µM TE/g DW) |
---|---|---|
EE crude extract | 2173.40 ± 13.92 | 29.04 ± 6.01 |
EE fraction 1 | 234.37 ± 12.21 | 42.47 ± 4.19 |
EE fraction 2 | 1959.24 ± 7.33 | 39.58 ± 1.95 |
EE fraction 3 | 1369.14 ± 83.57 | 145.51 ± 6.69 |
EE fraction 4 | 2173.40 ± 7.33 | 253.67 ± 50.50 |
EE fraction 5 | 2246.52 ± 44.42 | 498.03 ± 23.17 |
EE fraction 6 | 2307.54 ± 48.40 | 464.62 ± 8.57 |
EE fraction 7 | 2329.42 ± 47.90 | 565.51 ± 9.29 |
EE fraction 8 | 2187.22 ± 85.49 | 574.03 ± 7.94 |
Ascorbic Acid | 631.99 ± 39.08 | 1261.79 ± 150.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essono Mintsa, M.; Otogo N’nang, E.; Choque, É.; Siah, A.; Jacquin, J.; Muchembled, J.; Molinié, R.; Roulard, R.; Cailleu, D.; Beniddir, M.A.; et al. Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. Plants 2022, 11, 1505. https://doi.org/10.3390/plants11111505
Essono Mintsa M, Otogo N’nang E, Choque É, Siah A, Jacquin J, Muchembled J, Molinié R, Roulard R, Cailleu D, Beniddir MA, et al. Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. Plants. 2022; 11(11):1505. https://doi.org/10.3390/plants11111505
Chicago/Turabian StyleEssono Mintsa, Morel, Elvis Otogo N’nang, Élodie Choque, Ali Siah, Justine Jacquin, Jerome Muchembled, Roland Molinié, Romain Roulard, Dominique Cailleu, Mehdi A. Beniddir, and et al. 2022. "Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark" Plants 11, no. 11: 1505. https://doi.org/10.3390/plants11111505
APA StyleEssono Mintsa, M., Otogo N’nang, E., Choque, É., Siah, A., Jacquin, J., Muchembled, J., Molinié, R., Roulard, R., Cailleu, D., Beniddir, M. A., Sima Obiang, C., Ondo, J.-P., Kumulungui, B., & Mesnard, F. (2022). Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. Plants, 11(11), 1505. https://doi.org/10.3390/plants11111505