Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laboratory Scale Set Up and Sorbents Selection
2.3. Screening
2.4. Chemical Content Analysis and Sorbent Characterization
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.4.2. Morphology Analysis—Scanning Electron Microscope (SEM)
2.5. Statistical Experimental Design
2.5.1. One-Factor-at-a-Time (OFAT)
2.5.2. Response Surface Methodology (RSM)
Plackett–Burman Design
Central Composite Design (CCD)
3. Results and Discussion
3.1. Screening
3.2. Chemical Content Analysis and Sorbent Characterisation
3.2.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
3.2.2. Morphology Analysis-Scanning Electron Microscope (SEM)
3.3. Optimisation of Oil Absorbed Using One-Factor-at-a-Time (OFAT)
3.3.1. Effects of Temperature and Time
3.3.2. Effects of Packing Density
3.3.3. Effects of Oil Concentration
3.4. Optimisation of Oil Absorbed Using Response Surface Methodology (RSM)
3.4.1. Plackett–Burman Design
3.4.2. Central Composite Design (CCD)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Errington, I.; King, C.K.; Wilkins, D.; Spedding, T.; Hose, G.C. Ecosystem effects and the management of petroleum-contaminated soils on sub-Antarctic islands. Chemosphere 2018, 194, 200–210. [Google Scholar] [CrossRef]
- Neuman, S. Oil Spill Reported Off China Coast after Tanker, Bulk Carrier Collide 2021. Available online: https://www.npr.org/2021/04/27/991144729/oil-spill-reported-off-china-coast-after-tanker-bulk-carrier-collide (accessed on 14 September 2021).
- Macoustra, G.K.; King, C.K.; Wasley, J.; Robinson, S.A.; Jolley, D.F. Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants. Environ. Sci. Process Impacts 2015, 17, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, M.A.; Reddy, G.K. Crude Oil Spill Exposure and Human Health Risks. J. Occup. Environ. Med. 2014, 56, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Troisi, G.M.; Bexton, S.; Robinson, I. Polyaromatic Hydrocarbon and PAH metabolite burdens in oiled common guillemots (Uria aalge) Stranded on the East Coast of England (2001–2002). Environ. Sci. Technol. 2006, 40, 7938–7943. [Google Scholar] [CrossRef] [PubMed]
- Pohjola, S.K.; Savela, K.; Kuusimäki, L.; Kanno, T.; Kawanishi, M.; Weyand, E. Polycyclic aromatic hydrocarbons of diesel and gasoline exhaust and DNA adduct detection in calf thymus DNA and lymphocyte DNA of workers exposed to diesel exhaust. Polycycl. Aromat. Compd. 2004, 24, 451–465. [Google Scholar] [CrossRef]
- Khanna, S.; Gharpure, A.S. Petroleum carcinogenicity and aerodigestive tract: In context of developing nations. Cureus 2017, 9, e1202. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Boufadel, M.C. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat. Geosci. 2010, 3, 96–99. [Google Scholar] [CrossRef]
- Afenyo, M.; Veitch, B.; Khan, F. A state-of-the-art review of fate and transport of oil spills in open and ice-covered water. Ocean Eng. 2016, 119, 233–248. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Qu, C.; Yu, T.; Du, M. Bioremediation of clay with high oil content and biological response after restoration. Sci. Rep. 2021, 11, 9725. [Google Scholar] [CrossRef]
- Trejos-Delgado, C.; Cadavid-Restrepo, G.; Hormaza-Anaguano, A.; Agudelo, E.; Barrios-Ziolo, L.; Loaiza-Usuga, J.C.; Cardona-Gallo, S.A. Oil bioremediation in a tropical contaminated soil using a reactor. An. Acad. Bras. Ciênc. 2020, 92, 1–18. [Google Scholar] [CrossRef]
- Yousefi, K.; Mohebbi, A.; Pichtel, J. Biodegradation of weathered petroleum hydrocarbons using organic waste amendments. Appl. Environ. Soil Sci. 2021, 2021, 6620294. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bhatnagar, A.; Lima, E.C. Adsorption of rare earth metals: A review of recent literature. J. Mol. Liq. 2016, 221, 954–962. [Google Scholar] [CrossRef]
- Geng, N.; Wu, Y.; Zhang, M.; Tsang, D.C.; Rinklebe, J.; Xia, Y.; Ok, Y.S. Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A Critical review. Environ. Int. 2019, 131, 105015. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Sulaim, F. The Oil Palm Wastes in Malaysia. In Biomass Now-Sustainable Growth and Use; InTechOpen Limited: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Husseien, M.; Amer, A.A.; El-Maghraby, A.; Hamedallah, N. A comprehensive characterization of corn stalk and study of carbonized corn stalk in dye and gas oil sorption. J. Anal. Appl. Pyrolysis 2009, 86, 360–363. [Google Scholar] [CrossRef]
- Cao, S.; Dong, T.; Xu, G.; Wang, F. Oil Spill Cleanup by Hydrophobic Natural Fibers. J. Nat. Fibers 2017, 14, 727–735. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Nasr, S.M.; Thabet, W.M. Palm fibers and modified palm fibers adsorbents for different oils. Alex. Eng. J. 2017, 56, 749–755. [Google Scholar] [CrossRef]
- Cheu, S.C.; Kong, H.; Song, S.T.; Saman, N.; Johari, K.; Mat, H. High removal performance of dissolved oil from aqueous solution by sorption using fatty acid esterified pineapple leaves as novel sorbents. RSC Adv. 2016, 6, 13710–13722. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.; Ngadi, M. Palm oil:Processing, characterization and utilization in the food industry—A review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
- Alam, F.A.S.A.; Begum, H. Malaysian oil palm industry: Prospect and problem. J. Food Agric. Environ. 2015, 13, 143–148. [Google Scholar]
- Chavalparit, O.; Rulkens, W.H.; Mol, A.P.J.; Khaodhair, S. Options for environmental sustainability of the crude palm oil industry in Thailand through enhancement of industrial ecosystems. Environ. Dev. Sustain. 2006, 8, 271–287. [Google Scholar] [CrossRef]
- Jahi, N.; Othaman, R.; Mat Lazim, A.; Ramli, S. Empty fruit Bunch Cellulose Based Sorbent for OIL Sorption in palm oil Mill Effluent. Sains Malays. 2020, 49, 2323–2333. [Google Scholar] [CrossRef]
- Dungani, R.; Aditiawati, P.; Aprilia, S.; Yuniarti, K.; Karliati, T.; Suwandhi, I.; Sumardi, I. Biomaterial from Oil Palm Waste: Properties, Characterization and Applications. In Palm Oil; InTechOpen Limited: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Siti Aisyah, M.S.; Uemura, Y.; Yusup, S. The Effect of Alkaline Addition in Hydrothermal Pretreatment of Empty Fruit Bunches on Enzymatic Hydrolysis Efficiencies. Procedia Chem. 2014, 9, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Astimar, A.A.; Husin, M.; Anis, M. Preparation of cellulose from oil palm empty fruit bunches via ethanol digestion: Effect of acid and alkali catalyst. J. Oil Palm Res. 2002, 14, 9–14. [Google Scholar]
- Daneshfozoun, S.; Abdullah, M.A.; Abdullah, B. Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crops Prod. 2017, 105, 93–103. [Google Scholar] [CrossRef]
- Joseph, C.G.; Daud, W.M.A.W.; Shane, Q.K.; Sanmugam, K. Parametric and adsorption kinetic studies of reactive black 5 removal from textile simulated wastewater using oil palm (Elais guineensis) empty fruit Bunch. J. Appl. Sci. 2015, 15, 1103–1111. [Google Scholar] [CrossRef]
- Ibrahim, S.; Baharuddin, S.N.I.B.; Ariffin, B.; Hanafiah, M.A.K.M.; Kantasamy, N. Cogon grass for oil sorption: Characterization and sorption studies. Key Eng. Mater. 2018, 775, 359–364. [Google Scholar] [CrossRef]
- Onwuka, J.C.; Agbaji, E.B.; Ajibola, V.O.; Okibe, F.G. Treatment of crude oil-contaminated water with chemically modified natural fiber. Appl. Water Sci. 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, N.N.; Gomez-Fuentes, C.; Abdul Khalil, K.; Convey, P.; Roslee, A.F.A.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.A.; Cardenas, L.; Ahmad, S.A. Statistical optimisation of diesel biodegradation at low temperatures by an Antarctic marine bacterial consortium isolated from non-contaminated seawater. Microorganisms 2021, 9, 1213. [Google Scholar] [CrossRef]
- Reneta Nafu, Y.; Foba-Tendo, J.; Njeugna, E.; Oliver, G.; Omar Cooke, K. Extraction and characterization of fibres from the stalk and spikelets of empty Fruit Bunch. J. Appl. Chem. 2015, 2015, 750818. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.S.; Ismail, H.; Rozman, H.D.; Ahmad, M.N. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym. J. 2001, 37, 1037–1045. [Google Scholar] [CrossRef]
- Xiao, X.; Bian, J.; Li, M.F.; Xu, H.; Xiao, B.; Sun, R.C. Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus gigantus munro) culm by hydrothermal pretreatment. Biores. Technol. 2014, 159, 41–47. [Google Scholar] [CrossRef]
- Hao, Y.; Pan, Y.; Du, R.; Wang, Y.; Chen, Z.; Zhang, X.; Wang, X. The influence of a thermal treatment on the decay resistance of wood via FTIR Analysis. Adv. Mater. Sci. Eng. 2018, 2018, 8461407. [Google Scholar] [CrossRef] [Green Version]
- Rosli, N.S.; Harun, S.; Jahim, J.M.; Othaman, R. Chemical and physical characterization of oil palm empty fruit bunch. Malays. J. Anal. Sci. 2017, 21, 188–196. [Google Scholar] [CrossRef]
- Ibrahim, S.; Ha-Ming, A.; Wang, S. Removal of emulsifed food and mineral oils from wastewater using surfactant modifed barley straw. Biores. Technol. 2009, 100, 5744–5749. [Google Scholar] [CrossRef] [PubMed]
- Isroi, C.A.; Panji, T.; Wibowo, N.A.; Syamsu, K. Bioplastic production from cellulose of oil palm empty fruit bunch. IOP Conf. Ser. Earth Environ. Sci. 2017, 65, 012011. [Google Scholar] [CrossRef]
- Law, K.N.; Daud, W.W.; Ghazali, A. Morphology and chemical nature of fiber strands of oil palm empty fruit bunch (OPEFB). Bioresources 2007, 2, 351–362. [Google Scholar]
- Lins, U.; Barros, C.F.; Da Cunha, M.; Miguens, F.C. Structure, morphology and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart) Becc. Protoplasma 2002, 220, 89–96. [Google Scholar] [CrossRef]
- Yoon, C.J.; Kim, K.W. Anatomical descriptions of silicified woods from Madagascar and Indonesia by scanning electron microscopy. Micron 2008, 39, 815–831. [Google Scholar] [CrossRef]
- Chin, S.X.; Chia, C.H.; Zakaria, S.; Fang, Z.; Ahmad, S. Ball milling pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB) fibres for the production of levulinic acid. J. Taiwan Inst. Chem. Eng. 2015, 52, 85–92. [Google Scholar] [CrossRef]
- Mohammad, I.N.; Ongkudon, C.M.; Misson, M. Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch. Energies 2020, 13, 5966. [Google Scholar] [CrossRef]
- Ahmad, R.; Hamid, R.; Osman, S.A. Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Adv. Civ. Eng. 2019, 2019, 5185806. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Thomas, S.P.; Saiter, J.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1777–1784. [Google Scholar] [CrossRef]
- El Gheriany, I.A.; Ahmad El Saqa, F.; Abd El Razek Amer, A.; Hussein, M. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 2020, 59, 925–932. [Google Scholar] [CrossRef]
- Angelova, D.; Uzunov, I.; Uzunova, S.; Gigova, A.; Minchev, L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J. 2011, 172, 306–311. [Google Scholar] [CrossRef]
- Husseien, M.; Amer, A.A.; El-Maghraby, A.; Taha, N.A. Experimental Investigation of Thermal Modification Influence on Sorption Qualities of Barley Straw. J. Appl. Sci. Res. 2008, 4, 652–657. [Google Scholar]
- Kudaybergenov, K.K.; Ongarbayev, E.K.; Mansurov, Z.A. Thermally treated rice husks for petroleum adsorption. Int. J. Biol. Chem. 2012, 1, 3–12. [Google Scholar]
- Kudaybergenov, K.K.; Ongarbayev, E.K.; Mansurov, Z.A. Carbonaceous composites from agricultural wastes for adsorption of hydrocarbon contamination in water. Eurasian Chem. J. 2010, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shen, H.; Xu, G. Evaluation of oil sorption kinetics behavior and wetting characteristic of cattail fiber. Cellulose 2019, 27, 1531–1541. [Google Scholar] [CrossRef]
- Zhu, L.; Perwuelz, A.; Lewandowski, M.; Campagne, C. Static and dynamic aspects of liquid capillary flow in thermally bonded polyester nonwoven fabrics. J. Adhes. Sci. Technol. 2008, 22, 745–760. [Google Scholar]
- Dong, T.; Wang, F.; Xu, G. Theoretical and experimental study on the oil sorption behavior of kapok assemblies. Ind. Crops Prod. 2014, 61, 325–330. [Google Scholar] [CrossRef]
- Wang, J.T.; Zheng, Y.A.; Wang, A.Q. Effect of kapok fibre treated with various solvents on oil absorbency. Ind. Crops. Prod. 2012, 40, 178–184. [Google Scholar] [CrossRef]
- Thompson, N.E.; Emmanuel, G.C.; Adagadzu, K.J.; Yusuf, N.B. Sorption studies of crude oil on acetylated rice husks. Scholars research library. Arch. Appl. Sci. Res. 2010, 2, 142–151. [Google Scholar]
- Zhou, J.; Yu, X.; Ding, C.; Wang, Z.; Zhou, Q.; Pao, H.; Cai, W. Optimization of phenol degradation by Candida tropicalis using Plackett-Burman design and response surface methodology. J. Environ. Sci. 2011, 23, 22–30. [Google Scholar] [CrossRef]
Variables | Code | Unit | Experimental Range | |
---|---|---|---|---|
Low (−1) | High (+1) | |||
Temperature | A | °C | 160 | 190 |
Time | B | min | 15 | 30 |
Packing density | C | g/cm3 | 0.08 | 0.11 |
Oil concentration | D | % (v/v) | 5 | 15 |
Symbol | Unit | Experimental Values | |||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | +1 | +2 | |||
Temperature | A | °C | 145 | 160 | 175 | 190 | 205 |
Time | B | min | 7.5 | 15 | 22.5 | 30 | 37.5 |
Packing density | C | g/cm3 | 0.065 | 0.08 | 0.095 | 0.11 | 0.125 |
Oil concentration | D | % (v/v) | 0 | 5 | 10 | 15 | 20 |
Run | A | B | C | D | Oil Absorbed | Water Absorbed |
---|---|---|---|---|---|---|
1 | 190 | 15 | 0.08 | 5 | 14.6667 | 16.6667 |
2 | 190 | 15 | 0.11 | 15 | 25 | 10 |
3 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
4 | 160 | 30 | 0.11 | 5 | 9.33333 | 15.6667 |
5 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
6 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
7 | 160 | 30 | 0.08 | 15 | 14.667 | 7.3333 |
8 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
9 | 160 | 15 | 0.08 | 5 | 12 | 12 |
10 | 190 | 30 | 0.08 | 15 | 17.1667 | 10.3333 |
11 | 160 | 30 | 0,11 | 15 | 22.3333 | 10 |
12 | 160 | 15 | 0.11 | 5 | 13.3333 | 20 |
13 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
14 | 190 | 30 | 0.08 | 5 | 12.6667 | 11.6667 |
15 | 190 | 15 | 0.11 | 15 | 25 | 10 |
16 | 160 | 15 | 0.08 | 15 | 19.6667 | 11 |
17 | 190 | 30 | 0.11 | 5 | 15 | 16.3333 |
18 | 175 | 22.5 | 0.095 | 10 | 24 | 11 |
Source | Sum of Squares | DF | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 269.42 | 4 | 67.35 | 33.37 | ˂0.0001 |
A | 27.50 | 1 | 27.50 | 13.63 | 0.0031 |
B | 28.52 | 1 | 28.52 | 14.13 | 0.0027 |
C | 30.61 | 1 | 30.61 | 15.17 | 0.0021 |
D | 182.78 | 1 | 182.78 | 90.56 | ˂0.0001 |
Residual | 24.22 | 12 | 2.02 | 104.57 | |
Cor Total | 504.69 | 17 | |||
Std. Dev. | 1.42 | R2 | 0.9175 | ||
Mean | 19.16 | Adjusted R2 | 0.8900 | ||
C.V. | 7.42 | Predicted R2 | 0.7576 | ||
Adequate Precision | 17.1700 |
Run Order | A | B | C | D | Oil Absorbed (mL) | |
---|---|---|---|---|---|---|
Experimental Value | Predicted Value | |||||
1 | 175 | 22.5 | 0.095 | 10 | 24.30 | 24.20 |
2 | 190 | 15 | 0.11 | 5 | 13.00 | 12.56 |
3 | 175 | 22.5 | 0.065 | 10 | 14.00 | 16.51 |
4 | 175 | 22.5 | 0.095 | 10 | 24.30 | 24.20 |
5 | 175 | 22.5 | 0.095 | 10 | 24.00 | 24.20 |
6 | 160 | 30 | 0.08 | 15 | 17.33 | 15.98 |
7 | 190 | 30 | 0.08 | 5 | 11.33 | 10.31 |
8 | 190 | 30 | 0.11 | 15 | 19.67 | 18.48 |
9 | 175 | 22.5 | 0.095 | 0 | 0.000 | 3.569 |
10 | 190 | 15 | 0.08 | 15 | 16.67 | 16.01 |
11 | 175 | 7.5 | 0.095 | 10 | 15.00 | 14.35 |
12 | 160 | 30 | 0.11 | 15 | 20.00 | 20.76 |
13 | 175 | 22.5 | 0.095 | 10 | 24.00 | 24.20 |
14 | 175 | 22.5 | 0.095 | 20 | 18.00 | 17.68 |
15 | 160 | 15 | 0.11 | 15 | 22.67 | 21.90 |
16 | 190 | 15 | 0.11 | 15 | 19.67 | 20.45 |
17 | 175 | 37.5 | 0.095 | 10 | 9.500 | 13.40 |
18 | 160 | 15 | 0.08 | 5 | 9.333 | 8.729 |
19 | 205 | 22.5 | 0.095 | 10 | 10.00 | 13.18 |
20 | 175 | 22.5 | 0.095 | 10 | 24.27 | 24.20 |
21 | 160 | 15 | 0.11 | 5 | 13.33 | 13.67 |
22 | 145 | 22.5 | 0.095 | 10 | 14.00 | 14.07 |
23 | 190 | 15 | 0.08 | 5 | 12.33 | 10.12 |
24 | 175 | 22.5 | 0.125 | 10 | 23.00 | 23.74 |
25 | 190 | 30 | 0.08 | 15 | 18.00 | 16.20 |
26 | 160 | 30 | 0.11 | 5 | 13.67 | 12.53 |
27 | 160 | 30 | 0.08 | 5 | 12.00 | 9.757 |
28 | 160 | 15 | 0.08 | 15 | 13.33 | 14.95 |
29 | 175 | 22.5 | 0.095 | 10 | 24.33 | 24.20 |
30 | 190 | 30 | 0.11 | 5 | 13.67 | 10.59 |
Source | Sum of Squares | df | Mean Square | F-value | p Value | |
---|---|---|---|---|---|---|
Model | 936.57 | 14 | 66.90 | 12.65 | <0.0001 | significant |
A | 1.19 | 1 | 1.19 | 0.2241 | 0.6427 | |
B | 1.34 | 1 | 1.34 | 0.2530 | 0.6223 | |
C | 78.24 | 1 | 78.24 | 14.80 | 0.0016 | |
D | 298.69 | 1 | 298.69 | 56.48 | <0.0001 | |
AB | 0.6945 | 1 | 0.6945 | 0.1313 | 0.7221 | |
AC | 6.25 | 1 | 6.25 | 1.18 | 0.2941 | |
AD | 0.1111 | 1 | 0.1111 | 0.0210 | 0.8867 | |
BC | 4.69 | 1 | 4.69 | 0.8878 | 0.3610 | |
BD | 1.806 × 10−9 | 1 | 1.806 × 10−9 | 3.416 × 10−10 | 1.0000 | |
CD | 4.00 | 1 | 4.00 | 0.7576 | 0.3981 | |
A2 | 191.69 | 1 | 191.69 | 36.25 | <0.0001 | |
B2 | 182.73 | 1 | 182.73 | 34.56 | <0.0001 | |
C2 | 28.46 | 1 | 28.46 | 5.38 | 0.0349 | |
D2 | 315.88 | 1 | 315.88 | 59.74 | <0.0001 | |
Residual | 79.32 | 15 | 5.29 | |||
Lack of Fit | 79.20 | 10 | 7.92 | 326.32 | <0.0001 | Significant |
Pure Error | 0.1213 | 5 | 0.0243 | |||
Cor Total | 1015.89 | 29 | ||||
R2 | 0.9219 | |||||
Std. Dev. | 2.30 | Adjusted R2 | 0.8491 | |||
Mean | 16.49 | Predicted R2 | 0.5508 | |||
C.V.% | 13.95 | Adequate Precision | 12.6874 |
Optimised Parameters | Predicted OFAT | Predicted RSM | Experimental RSM |
---|---|---|---|
Temperature (°C) | 170 | 175 | 175 |
Time (min) | 20 | 22.5 | 22.5 |
Packing density (g/cm3) | 0.1 | 0.095 | 0.095 |
Oil concentration (%) | 10% | 10 | 10 |
Oil absorbed (mL) | 23 | 24 | 24.33 |
p value | <0.0001 (significant) | <0.0001 (significant) | <0.0001 (significant) |
Water absorbed (mL) | 5 | 8.178 | 8.333 |
p value | <0.0001 (significant) | 0.0012 (significant) | 0.0398 (significant) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puasa, N.A.; Ahmad, S.A.; Zakaria, N.N.; Khalil, K.A.; Taufik, S.H.; Zulkharnain, A.; Azmi, A.A.; Gomez-Fuentes, C.; Wong, C.-Y.; Shaharuddin, N.A. Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up. Plants 2022, 11, 127. https://doi.org/10.3390/plants11010127
Puasa NA, Ahmad SA, Zakaria NN, Khalil KA, Taufik SH, Zulkharnain A, Azmi AA, Gomez-Fuentes C, Wong C-Y, Shaharuddin NA. Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up. Plants. 2022; 11(1):127. https://doi.org/10.3390/plants11010127
Chicago/Turabian StylePuasa, Nurul Aini, Siti Aqlima Ahmad, Nur Nadhirah Zakaria, Khalilah Abdul Khalil, Siti Hajar Taufik, Azham Zulkharnain, Alyza Azzura Azmi, Claudio Gomez-Fuentes, Chiew-Yen Wong, and Noor Azmi Shaharuddin. 2022. "Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up" Plants 11, no. 1: 127. https://doi.org/10.3390/plants11010127
APA StylePuasa, N. A., Ahmad, S. A., Zakaria, N. N., Khalil, K. A., Taufik, S. H., Zulkharnain, A., Azmi, A. A., Gomez-Fuentes, C., Wong, C.-Y., & Shaharuddin, N. A. (2022). Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up. Plants, 11(1), 127. https://doi.org/10.3390/plants11010127