Herbicide-Resistant Invasive Plant Species Ludwigia decurrens Walter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Penoxsulam Dose–Response Experiment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasena, J.P.N.R. Ludwigia decurrens Walt. A new rice-field weed in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 1988, 16, 97–103. [Google Scholar] [CrossRef]
- Barua, I.C. The genus Ludwigia (Onagraceae) in India. Rheedea 2010, 20, 59–70. [Google Scholar]
- USDA; NCRS. Plant Guide. Willow Primrose. Available online: https://plants.sc.egov.usda.gov/home/plantProfile?symbol=LUDE4 (accessed on 2 May 2021).
- Tag Archives; Ludwigia Decurrens (Winged Water-Primrose). Available online: https://blogs.cdfa.ca.gov/Section3162/?tag=ludwigia-decurrens (accessed on 2 May 2021).
- Bedoya, A.M.; Madriñán, S. Evolution of the aquatic habit in Ludwigia (Onagraceae): Morpho-anatomical adaptive strategies in the Neotropics. Aquat. Bot. 2015, 120 Pt B, 352–362. [Google Scholar] [CrossRef]
- Oyedeji, O.; Oziegbe, M.; Taiwo, F.O. Antibacterial, antifungal and phytochemical analysis of crude extracts from the leaves of Ludwigia abyssinica A. Rich. and Ludwigia decurrens Walter. J. Med. Plants Res. 2011, 5, 1192–1199. [Google Scholar]
- Kong, L.P.; Peng, Y.F.; You, K.; Peng, H.H.; Wang, G.H. Ludwigia decurrens Walt., a naturalized hydrophyte in mainland China. J. Trop. Subtrop. Bot. 2019, 27, 338–342. [Google Scholar]
- Cronk, Q.C.B.; Fuller, J.L. Plant Invaders: The Threat to Natural Ecosystems; Earthscan Publications: London, UK, 2001; pp. 1–241. [Google Scholar]
- Sakpere, A.M.; Oziegbe, M.; Bilesanmi, I.A. Allelopathic effects of Ludwigia decurrens and L. adscendens subsp. diffusa on germination, seedling growth and yield of Corchorus olitorius L. Not. Sci. Biol. 2010, 2, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, J.L.; Simberloff, D.; McKinney, M.L.; Von Holle, B. How many, and which, plants will invade natural areas. Biol. Invasions 2001, 3, 1–8. [Google Scholar] [CrossRef]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Chengxu, W.; Mingxing, Z.; Xuhui, C.; Bo, Q. Review on allelopathy of exotic invasive plants. Procedia Eng. 2011, 18, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Langmaier, M.; Lapin, K. Systematic review of the impact of invasive alien plants on forest regeneration in European temperate forests. Front. Plant Sci. 2020, 113, 524969. [Google Scholar] [CrossRef]
- Dharmaratne, P.G.; Ranamukaarachchi, S.L. Sensitivity of rice to Ludwigia decurrens (L.). Trop. Agric. Res. 1991, 3, 180–194. [Google Scholar]
- Larelle, D.; Mann, R.; Cavanna, S.; Bernes, R.; Duriatti, A.; Mavrotas, C. Penoxsulam, a new broad spectrum rice herbicide for weed control in European Union paddies. In Proceedings of the International Congress Crop Science and Technology, Glasgow, Scotland, UK, 10–12 November 2003; British Crop Protection Council: Farnham, UK, 2003; pp. 75–80. [Google Scholar]
- Johnson, T.C.; Martin, T.P.; Mann, R.K.; Pobanz, M.A. Penoxsulam-structure-activity relationships of triazolopyrimidine sulfonamides. Bioorg. Med. Chem. 2009, 17, 4230–4240. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Baucom, R.S. Evolutionary and ecological insights from herbicide-resistant weeds: What have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019, 223, 68–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, S.; Ulber, L.; Hoed, I.D. A herbicide resistance risk matrix. Crop Prot. 2019, 115, 13–19. [Google Scholar] [CrossRef]
- Harper, J.L. The evolution of weeds in relation to resistance to herbicides. In Proceedings of the 3rd British Weed Control Conference, British Weed Control Council, Farnham, UK, 5–8 November 1956; pp. 179–188. [Google Scholar]
- Hilton, H.W. Herbicide tolerant strains of weeds. In Hawaiian Sugar Planters Assocociation Annual Repport; University Press of Hawaii: Honolulu, HI, USA, 1957; pp. 69–72. [Google Scholar]
- Ryan, G.F. Resistance of common groundsel to simazine and Atrazine. Weed Sci. 1970, 18, 614–616. [Google Scholar] [CrossRef]
- Schweizer, E.E.; Swink, J.F. Field bindweed control with dicamba and 2,4-D, and crop response to chemical residues. Weed Sci. 1971, 19, 717–721. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: http://www.weedscience.org (accessed on 2 May 2021).
- Burgos, N.R. Whole-plant and seed bioassays for resistance confirmation. Weed Sci. 2015, 63, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Juraimi, A.S.; Begum, M.; Parvez, A.M.; Shari, E.S.; Sahid, I.; Man, A. Controlling resistant Limnocharis flava (L.) Buchenau biotype through herbicide mixture. J. Food Agric. Environ. 2012, 10, 1344–1348. [Google Scholar]
- Seefeldt, S.S.; Jensen, J.E.; Feurst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Ahmad-Hamdani, M.S.; Owen, M.J.; Yu, Q.; Powles, S.B. ACCase-inhibiting herbicide-resistant Avena spp. Populations from the Western Australian grain belt. Weed Techn. 2012, 26, 130–136. [Google Scholar] [CrossRef]
- Thouvenot, L.; Haury, J.; Thiébaut, G. A success story: Water primroses, aquatic plant pests. Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 790–803. [Google Scholar] [CrossRef]
- Statistical Bureau of Sukoharjo Regency. Available online: https://sukoharjokab.bps.go.id/indicator/153/80/1/luas-penggunaan-lahan.html (accessed on 24 June 2021).
- Grewell, B.J.; Netherland, M.D.; Thomason, M.J.S. Establishing Research and Management Priorities for Invasive Water Primroses (Ludwigia spp.); U.S. Army Crops of Engineers: Washington, DC, USA, 2016; pp. 1–42.
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds, Distribution and Biology; University Press of Hawaii: Honolulu, HI, USA, 1977; pp. 1–609. [Google Scholar]
- Chen, G.; Wang, Q.; Yao, Z.; Zhu, L.; Dong, L. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biol. Manag. 2016, 16, 16–23. [Google Scholar] [CrossRef]
- Riar, D.S.; Norsworthy, J.K.; Srivastava, V.; Nandula, V.; Bond, J.A.; Scott, R.C. Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J. Agric. Food Chem. 2013, 61, 278–289. [Google Scholar] [CrossRef]
- Matzenbacher, F.O.; Bortoly, E.D.; Kalsing, A.; Merotto, A. Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. J. Agric. Sci. 2015, 153, 1044–1058. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Liu, T.; Yan, B.; Li, J.; Dong, L. Target-site and metabolic resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). J. Agric. Food Chem. 2019, 67, 8085–8095. [Google Scholar] [CrossRef]
- Shimizu, T.; Nakayama, I.; Nagayama, K.; Miyazawa, T.; Nezu, Y. Acetolactate synthase inhibitors. In Herbicide Classes in Development; Böger, P., Wakabayashi, K., Hirai, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–41. [Google Scholar]
- LaRossa, R.A.; Van Dyk, T.K.; Smulski, D.R. Toxic accumulation of 2-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J. Bacteriol. 1987, 169, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Ray, T.B. Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 1984, 75, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Shaner, D.L.; Anderson, P.C.; Stidham, M.A. Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 1984, 76, 545–546. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.V.; Gerwick, B.C. Inhibition of Acetolactate Synthase by Triazolopyrimidines; ACS Symposium Series 389; ACS Publications: Washington, DC, USA, 1989; pp. 277–288. [Google Scholar]
- Shimizu, T.; Nakayama, I.; Nakano, T.; Nezu, Y.; Abe, H. Inhibition of plant acetolactate synthase by herbicides, pyrimidinylsalicylic acids. J. Pesticide Sci. 1994, 19, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Henckes, J.R.; Cechin, J.; Schmitz, M.F.; Piasecki, C.; Vargas, L.; Agostinetto, D. Fitness cost and competitive ability of ryegrass susceptible and with multiple resistance to glyphosate, iodosulfuron-methyl, and pyroxsulam. Planta Daninha 2019, 37, e019197532. [Google Scholar] [CrossRef]
- Feng, P.C.C.; CaJacob, C.A.; Martino-Catt, S.J.; Cerny, R.E.; Elmore, G.A.; Heck, G.R.; Haung, J.; Kruger, W.M.; Malven, M.; Miklos, J.A.; et al. Glyphosate-resistant crops: Developing the next generation products. In Glyphosate Resistance in Crops and Weeds, History, Development, and Management; Nandula, V.K., Ed.; Wiley: New York, NY, USA, 2010; pp. 45–65. [Google Scholar]
- Green, J.M.; Castle, L.A. Transitioning from single tomultipleherbicide resistant crops. In Glyphosate Resistance in Crops and Weeds, History, Development, and Management; Nandula, V.K., Ed.; Wiley: New York, NY, USA, 2010; pp. 67–91. [Google Scholar]
Penoxsulam Dosage (g a.i. ha−1) | |||||||
---|---|---|---|---|---|---|---|
Population | 0 | 2.5 | 5 | 10 | 10 | 40 | 80 |
Hegarmanah | 0 a,A | 89.18 a,B | 92.22 a,B | 100 a,B | 100 a,B | 100 a,B | 100 a,B |
Jatisari | 0 a,A | 87.22 a,B | 92.17 a,B | 100 a,B | 100 a,B | 100 a,B | 100 a,B |
Joho | 0 a,A | 82.53 b,B | 92.23 a,C | 100 a,C | 100 a,C | 100 a,C | 100 a,C |
Demakan | 0 a,A | 20.11 c,B | 37.57 b,C | 38.24 b,C | 51.2 b,D | 72.85 b,E | 100 a,F |
Population | c | d | b | r2 | GR50 (g a.i. ha−1) | Resistance Index | Level of Resistance |
---|---|---|---|---|---|---|---|
Hegarmanah | 20.11 | 100 | 1.29 | 0.86 | 0.63 | - | - |
Jatisari | 20.11 | 100 | 1.42 | 0.91 | 0.81 | 1.28 | Susceptible |
Joho | 20.11 | 100 | 1.75 | 0.97 | 1.23 | 1.95 | Susceptible |
Demakan | 20.11 | 100 | 1.53 | 0.92 | 22.72 | 36.06 | Resistance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurniadie, D.; Widianto, R.; Widayat, D.; Umiyati, U.; Nasahi, C.; Kato-Noguchi, H. Herbicide-Resistant Invasive Plant Species Ludwigia decurrens Walter. Plants 2021, 10, 1973. https://doi.org/10.3390/plants10091973
Kurniadie D, Widianto R, Widayat D, Umiyati U, Nasahi C, Kato-Noguchi H. Herbicide-Resistant Invasive Plant Species Ludwigia decurrens Walter. Plants. 2021; 10(9):1973. https://doi.org/10.3390/plants10091973
Chicago/Turabian StyleKurniadie, Denny, Ryan Widianto, Dedi Widayat, Uum Umiyati, Ceppy Nasahi, and Hisashi Kato-Noguchi. 2021. "Herbicide-Resistant Invasive Plant Species Ludwigia decurrens Walter" Plants 10, no. 9: 1973. https://doi.org/10.3390/plants10091973
APA StyleKurniadie, D., Widianto, R., Widayat, D., Umiyati, U., Nasahi, C., & Kato-Noguchi, H. (2021). Herbicide-Resistant Invasive Plant Species Ludwigia decurrens Walter. Plants, 10(9), 1973. https://doi.org/10.3390/plants10091973