Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Oiliness of Rapeseed and N Content in Plant Biomass
2.2. Mineral Nitrogen Content in the Soil
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Experimental Design
3.3. Plants and Soil Sampling
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerbens-Leenes, P.; Nonhebel, S.; Ivens, W. A method to determine land requirements relating to food consumption patterns. Agric. Ecosyst. Environ. 2002, 90, 47–58. [Google Scholar] [CrossRef]
- Jie, C.; Jing-Zhang, C.; Man-Zhi, T. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Brown, M.E.; Hintermann, B.; Higgins, N. Markets, climate change, and food security in West Africa. Environ. Sci. Technol. 2009, 43, 8016–8020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012; p. 147. [Google Scholar]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christe, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar]
- Glass, A.D.M. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant. Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Flexas, J.; Medrano, H. Prospects forcrop production under drought: Research priorities and future directions. Ann. Appl. Biol. 2005, 147, 211–226. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant. Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Huang, J.; Zhong, X.; Yang, J.; Wang, G.; Zou, Y.; Zhang, F.; Zhu, Q.; Buresh, R.; Witt, C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 2002, 1, 776–785. [Google Scholar]
- Spinelli, D.; Bardi, L.; Jez, S.; Basosi, R. Environmental analysis of sunflower production with different forms of mineral nitrogen fertilizers. J. Environ. Manag. 2013, 129, 302–308. [Google Scholar] [CrossRef]
- World Fertilizer Trends and Outlook to 2020. Available online: http://www.fao.org/3/i6895e/i6895e.pdf (accessed on 2 May 2021).
- World Fertilizer Trends and Outlook to 2022. Available online: http://www.fao.org/3/ca6746en/ca6746en.pdf (accessed on 2 May 2021).
- Zhang, X.; Davidson, E.; Mauzerall, D.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2017, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Grizzetti, B.; Bouraoui, F.; Billen, G.; van Grinsven, H.; Cardoso, A.C.; Thieu, V.; Garnier, J.; Curtis, C.; Howarth, R.W.; Johnes, P. Nitrogen as a threat to European water quality. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 379–404. [Google Scholar]
- Water for People, Water for Life. Available online: https://www.un.org/esa/sustdev/publications/WWDR_english_129556e.pdf (accessed on 15 May 2021).
- The United Nations World Water Development Report 2015: Water for a Sustainable World. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000231823 (accessed on 15 May 2021).
- Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Atares, S.; García, C.; Zotarelli, L.; San Bautista, A.; Vicente, O. Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants 2020, 9, 1183. [Google Scholar] [CrossRef]
- Liu, C.; Chen, F.; Li, Z.; Cocq, K.L.; Liu, Y.; Wu, L. Impact of nitrogen practices on yield, grain quality, and nitrogen-use efficiency of crops and soil fertility in three paddy-upland cropping systems. J. Sci. Food Agric. 2021, 101, 2218–2226. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, L.; Yang, Y.; Shi, R. Application of controlled release urea improved grain yield and nitrogen use efficiency: A meta-analysis. PLoS ONE 2020, 15, 1–15. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture, 2nd ed.; IFA: Paris, France, 2010; p. 160. [Google Scholar]
- Shaviv, A. Controlled release fertilizers. In Proceedings of the IFA International Workshop: Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005. [Google Scholar]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controll release micronutrient fertilizers for precision agriculture—A review. STOTEN 2020, 712, 1–9. [Google Scholar]
- Lligadas, G.; Ronda, J.C.; Galia, M.; Cádiz, V. Development of novel phosphorus-containing epoxy resins from renewable resources. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 6717–6727. [Google Scholar] [CrossRef]
- Shavit, U.; Shaviv, A.; Shalit, G.; Zaslavsky, D. Release characteristics of a new controlled release fertilizer. J. Control Release 1997, 43, 131–138. [Google Scholar] [CrossRef]
- Briassoulis, D.; Dejean, C. Critical review of norms and standards for biodegradable agricultural plastics part Ι. Biodegradation in soil. J. Polym. Environ. 2010, 18, 384–400. [Google Scholar] [CrossRef]
- Tian, H.; Li, Z.; Lu, P.; Wang, Y.; Jia, C.; Liu, H.W.Z.; Zhang, M. Starch and castor oil mutually modified, cross-linked polyurethane for improving the controlled release of urea. Carbohydr. Polym. 2021, 251, 117060. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Chen, R.; Kessler, M.R. Polyurethanes from solvent-free vegetable oil-based polyols. ACS Sustain. Chem. Eng. 2014, 2, 2465–2476. [Google Scholar] [CrossRef]
- Feng, G.; Ma, Y.; Zhang, M.; Jia, P.; Hu, L.; Liu, C.; Zhou, Y. Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Prog. Org. Coat. 2019, 133, 267–275. [Google Scholar] [CrossRef]
- Bortoletto-Santos, R.; Ribeiro, C.; Polito, W.L. Controlled release of nitrogen-source fertilizers by natural-oil-based poly (urethane) coatings: The kinetic aspects of urea release. J. Appl. Polym. Sci. 2016, 133, 43790. [Google Scholar] [CrossRef]
- Abbasi, A.; Nasef, M.M.; Yahya, W.Z.N. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers. Sustain. Chem. Pharm. 2019, 13, 100158. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Yu, Q.; Liu, B.; Duan, M.; Wang, L. Effect of controlled-release urea fertilizers for oilseed rape (Brassica napus L.) on soil carbon storage and CO2 emission. Environ. Sci. Pollut. Res. 2020, 27, 31983–31994. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Fan, L.; Huang, X.; Hui, R.; Zhu, F. Application of Special Controlled Release Fertilizers in Direct-seeding of Rapeseeds. J. Agric. Sci. Technol. 2015, 16, 745–749. [Google Scholar]
- Wang, S.; Li, X.; Lu, J.; Li, H.; Liu, B.; Wu, Q.; Wang, H.; Xiao, G.; Xue, X.; Xu, Z. Effects of combined application of urea and controlled-release urea on yield, profits of rapeseed and soil inorganic nitrogen. Chin. J. Oil Crop. Sci. 2013, 35, 295–300. [Google Scholar]
- Tian, C.; Zhou, X.; Liu, O.; Peng, J.; Wang, W.; Zhang, Z.; Yang, Y.; Song, H.; Guan, C. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). J. Zhejiang Univ. Sci. B 2016, 17, 775–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Chen, Z.; Xing, Z.; Zhou, L.; Liu, Q.; Zhang, Z.; Jiang, Y.; Hu, Y.; Zhu, J.; Cui, P.; et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.; Zheng, G.; Yao, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; Zhu, X. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Res. 2021, 267, 108163. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Tang, S.; Yang, S.; Chen, J.; Xu, P.; Zhang, F.; Al, S.; Huang, X. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Agric. Sci. China 2007, 6, 586–596. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, Y.; Liao, Y.; Nie, J.; Yie, J.; Yang, Z.; Zhoiu, X. Effects of the application of controlled release nitrogen fertilizer on rapeseed yield, agronomic characters and soil fertility. Agric. Sci. Technol. 2015, 16, 1226. [Google Scholar]
- Remya, V.R.; George, S.J.; Sabu, T. Polymer formulations for controlled release of fertilizers. In Controlled Release Fertilizers for Sustainable Agriculture, 1st ed.; Lewu, F.B., Volova, T., Sabu, T., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 183–194. [Google Scholar]
- Gu, X.B.; Li, Y.N.; Du, Y.D. Optimized nitrogen fertilizer application improves yield, water and nitrogen use efficiencies of winter rapeseed cultivated under continuous ridges with film mulching. Ind. Crops Prod. 2017, 109, 233–240. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Tafteh, A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric. Water Manag. 2012, 112, 55–62. [Google Scholar] [CrossRef]
- Zhu, Z.L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ. Sci. 2000, 9, 1–6. [Google Scholar]
- Xiao, Y.; Peng, F.; Zhang, Y.; Wang, J.; Zhuge, Y.; Zhang, S.; Gao, H. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. J. Clean. Prod. 2019, 234, 258–274. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, M.; Liu, Z.; Zhou, H.; Lu, H.; Zhang, W.; Yang, Y.; Li, C.; Chen, B. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 2016, 197, 52–62. [Google Scholar] [CrossRef]
- Dari, B.; Rodgers, C.W.; Walsh, O.S. Understanding factors controlling ammonia volatilization from fertilizers nitrogen applications. Univ. Ida. Ext. Bul 2019, 926, 1–4. [Google Scholar]
- Yerokun, O.A. Ammonia volatilization from ammonium nitrate, urea and urea phosphate fertilizers applied to alkaline soils. S. Afr. J. Plant. Soil 1997, 14, 67–70. [Google Scholar] [CrossRef]
- Bandibas, J.; Vermoesen, A.; De Groot, C.J.; Cleemput, O.V. The effect of different moisture regimes and soil characteristics on nitrous oxide emission and consumption by different soils. Soil Sci. 1994, 158, 106–114. [Google Scholar] [CrossRef]
- Liegel, E.A.; Walsh, L.M. Evaluation of sulfur coated urea (SCU) applied to irrigated corn and potatoes. Agron. J. 1976, 68, 457–463. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, T.; Yang, Y.; Li, Y.C.; Wan, Y.; Zhang, M.; Tang, Y.; Allen, S.C. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J. Environ. Manag. 2018, 220, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Zvomuya, F.; Rosen, C.J.; Russelle, M.P.; Gupta, S.C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 2003, 32, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, R.L.; Williams, H.M.; Behel Jr, A.D. Nitrogen leaching and plant uptake from controlled-release fertilizers. Fertil. Res. 1994, 37, 43–50. [Google Scholar] [CrossRef]
- Cabrera, R.I. Comparative evaluation of nitrogen release patterns from controlled-release fertilizers by nitrogen leaching analysis. HortScience 1997, 32, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wan, Y.; Li, Y.; Liu, Z.; Chen, J.; Zhou, H.; Gao, Y.; Chen, B.; Zhang, M. Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeter: Effects of blended application of controlled-release an un-coated urea. Environ. Pollut. 2020, 263, 114383. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends from Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Zbíral, J.; Malý, S.; Váňa, M. (Eds.) Soil Analysis III, 3rd ed.; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2011; pp. 18–52. (In Czech) [Google Scholar]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; United States Environmental Protection Agency, Environmental Sciences Division National, Exposure Research Laboratory: Las Vegas, NV, USA, 2002.
- Šenkýř, J.; Petr, J. Nitrate ion selective electrode. Chem. Listy 1979, 73, 1097–1105. (In Czech) [Google Scholar]
- Zbíral, J.; Čižmárová, E.; Dočkalová, R.; Fojtlová, E.; Hájková, H.; Holcová, H.; Kabátová, N.; Niedobová, E.; Rychlý, M.; Staňková, K.; et al. Analysis of Plant Material, 3rd ed.; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2014; pp. 18–38. (In Czech) [Google Scholar]
- Determination of Fat Content in Oilseeds. Available online: http://eagri.cz/public/web/file/246173/_10060._1_Stanoveni_obsahu_tuku_v_olej_semenech.pdf (accessed on 25 May 2021). (In Czech).
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2013. Available online: www.statsoft.com (accessed on 13 May 2021).
Treatment | Oil Production (g/pot) | TSW (g) |
---|---|---|
D | 8.4 a ± 0.8 | 30.2 a ± 2.2 |
D-opu | 7.8 a ± 0.6 | 30.1 a ± 1.5 |
D-o | 8.4 a ± 0.5 | 30.9 a ± 1.6 |
S | 7.0 b ± 0.5 | 25.9 b ± 0.8 |
S-opu | 8.7 a ± 0.5 | 30.6 a ± 1.4 |
S-o | 8.8 a ± 0.6 | 30.5 a ± 1.6 |
S | 7.0 a ± 0.5 | 25.9 a ± 0.8 |
Bl-opu | 7.7 a ± 0.5 | 28.1 a ± 1.3 |
Bl-o | 8.0 a ± 0.4 | 28.7 a ± 1.2 |
Treatment | Nitrogen Content (mg/plant) | |
---|---|---|
t1 | t2 | |
D | 68.3 a ± 0.9 | 187.4 a ± 29.2 |
D-opu | 69.6 a ± 1.4 | 155.0 ab ± 2.2 |
D-o | 64.1 b ± 2.8 | 123.5 b ± 8.0 |
S | 135.0 a ± 1.3 | 215.6 a ± 23.9 |
S-opu | 36.9 c ± 0.2 | 112.0 c ± 15.8 |
S-o | 68.6 b ± 1.6 | 174.6 b ± 0.3 |
S | 135.0 a ± 1.3 | 215.6 a ± 23.9 |
Bl-opu | 86.3 c ± 1.2 | 135.6 b ± 3.8 |
Bl-o | 97.4 b ± 2.8 | 183.6 a ± 16.1 |
Treatment | t1 | t2 | t3 |
---|---|---|---|
D | 18.64 b ± 1.34 | 62.84 b ± 1.27 | 10.69 a ± 1.04 |
D-opu | 15.31 a ± 1.22 | 20.34 a ± 3.53 | 10.51 a ± 0.03 |
D-o | 14.23 a ± 1.72 | 23.33 a ± 1.25 | 18.21 b ± 3.09 |
S | 108.42 c ± 3.37 | 37.54 c ± 6.44 | 8.54 a ± 0.60 |
S-opu | 20.07 a ± 0.56 | 11.62 a ± 0.56 | 13.27 b ± 2.34 |
S-o | 35.33 b ± 2.89 | 19.42 b ± 1.22 | 19.17 c ± 2.90 |
S | 108.42 c ± 3.37 | 37.54 b ± 6.44 | 8.54 a ± 0.60 |
Bl-opu | 37.51 a ± 6.01 | 18.05 a ± 3.02 | 11.31 b ± 1.17 |
Bl-o | 50.73 b ± 2.22 | 24.34 ab ± 5.09 | 11.99 b ± 0.99 |
Soil Parameter | Value | Devices | Ref. |
---|---|---|---|
Soil type | Stagnic Fluvisols (FL-st) | [59] | |
Clay | 53% | Pipette apparatus (NEN 5753:2018) | [60] |
pH (CaCl2) | 6.6 | pH meter, inoLab pH/ION Level 2 with SenTix 62 pH electrode | [61] |
Soil electrical conductivity (EC) | 0.05 mS/cm | EC meter, inolab pH/ION Level 2 with WTW TetraCon 325 | [61] |
Soil oxidizable carbon (Cox) | 1.28% | Walkley-Black method | [62] |
NH4+ (K2SO4) | 1.48 mg/kg | UV/VIS Spectrometer, Unicam 8625 | [61] |
NO3− (K2SO4) | 17.2 mg/kg | NO3−-ISE | [61] |
P (Mehlich III) | 201 mg/kg | UV/VIS Spectrometer, Unicam 8625 | [61] |
K (Mehlich III) | 367 mg/kg | AAS, ContrAA 700 | [61] |
Ca (Mehlich III) | 3015 mg/kg | AAS, ContrAA 700 | [61] |
Mg (Mehlich III) | 294 mg/kg | AAS, ContrAA 700 | [61] |
S (water-soluble) | 13.8 mg/kg | ICP-MS, Agilent 7900 | [61] |
Treatment | Fertilizer | Application/Ratio | Dose of N in g per Pot (mg/kg Soil) | ||
---|---|---|---|---|---|
1st Fertilization | 2nd Fertilization | Total Dose of N | |||
D | CAN + CAN | divided (1:2) | 0.408 (68) | 0.848 (141) | 1.256 (209) |
D-opu | CAN + opu-CAN | divided (1:2) | 0.408 (68) | 0.848 (141) | 1.256 (209) |
D-o | CAN + o-CAN | divided (1:2) | 0.408 (68) | 0.848 (141) | 1.256 (209) |
S | CAN | single | 1.256 (209) | - | 1.256 (209) |
S-opu | opu-CAN | single | 1.256 (209) | - | 1.256 (209) |
S-o | o-CAN | single | 1.256 (209) | - | 1.256 (209) |
Bl-opu | CAN + opu-CAN | single (blend 1:2) | 0.408 + 0.848 (68 + 141) | - | 1.256 (209) |
Bl-o | CAN + o-CAN | single (blend 1:2) | 0.408 + 0.848 (68 + 141) | - | 1.256 (209) |
Experimental Phases | Date | Rape Growth Stages | Term |
---|---|---|---|
Start of the experiment (sowing) | 1 November 2018 | seed Dry | |
1st Fertilization | 11 March 2019 | nine or more leaves unfolded | |
1st Plant and soil sampling 2nd Fertilization | 2 April 2019 | stem elongation | t1 |
2nd Plant and soil sampling | 16 April 2019 | flower bud emergence | t2 |
3rd Soil sampling; harvest | 16 July 2019 | harvested product | t3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škarpa, P.; Mikušová, D.; Antošovský, J.; Kučera, M.; Ryant, P. Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition. Plants 2021, 10, 1605. https://doi.org/10.3390/plants10081605
Škarpa P, Mikušová D, Antošovský J, Kučera M, Ryant P. Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition. Plants. 2021; 10(8):1605. https://doi.org/10.3390/plants10081605
Chicago/Turabian StyleŠkarpa, Petr, Dominika Mikušová, Jiří Antošovský, Milan Kučera, and Pavel Ryant. 2021. "Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition" Plants 10, no. 8: 1605. https://doi.org/10.3390/plants10081605
APA StyleŠkarpa, P., Mikušová, D., Antošovský, J., Kučera, M., & Ryant, P. (2021). Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition. Plants, 10(8), 1605. https://doi.org/10.3390/plants10081605