Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management
Abstract
:1. Introduction
2. Bioherbicides
2.1. Advantages and Disadvantages of Bioherbicides
2.2. Types of Bioherbicides and Currently Marketed Products
2.3. Plant-Based Bioherbicides
2.3.1. Bioherbicides from Plant Extracts
2.3.2. Bioherbicides from Allelochemicals
2.4. Bioherbicides from Natural Byproducts
3. Effects of Plant-Based Bioherbicides on Weed Growth
3.1. Seed Germination
3.2. Shoot and Root
3.3. Leaf Area
3.4. Stomatal Conductance
3.5. Chlorophyll Pigment
3.6. Photosynthesis
3.7. Plant Hormones
4. Effects of Plant-Based Bioherbicides on Weed Biochemistry
Proline Content
5. Factors That Influence Bioherbicide Efficacy
5.1. Bioactive Compounds/Allelochemicals
5.2. Plant Growth Stage
5.3. Formulation
5.4. Spray Preparation
5.5. Application Methods
5.6. Type of Soil
5.7. Environmental Factors
6. Future Direction of Plant-Based Bioherbicides
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somasundram, C.; Razali, Z.; Santhirasegaram, V. A review on organic food production in Malaysia. Horticulturae 2016, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Willer, H.; Yussefi, M. The World of Organic Agriculture 2005—Statistics and Emerging Trends; International Federation of Organic Agriculture Movements: Bonn, Germany, 2015. [Google Scholar]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable weed management for conservation agriculture: Options for smallholder farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, R.E.; Boyette, C.D.; Weaver, M.A.; Abbas, H.K. Bioherbicides: Research and risks. Toxin Rev. 2007, 26, 313–342. [Google Scholar] [CrossRef]
- Singh, S.; Chhokar, R.S.; Gopal, R.; Ladha, J.K.; Gupta, R.K.; Kumar, V.; Singh, M. Integrated Weed Management: A key to Success for Direct-seeded Rice in the Indo-Gangetic Plains. In Integrated Crop and Resource Management in the Rice—Wheat System of South Asia; International Rice Research Institute: Los Banos, The Philippines, 2009; pp. 261–278. [Google Scholar]
- Bailey, K.L. The bioherbicide approach to weed control using plant pathogens. In Integrated Pest Management; Academic Press: Cambridge, MA, USA, 2014; pp. 245–266. [Google Scholar]
- Sekhar, J.C.; Sandhya, S.; Vinod, K.R.; Banji, D.; Sudhakar, K.; Chaitanya, R.S.N.A.K.K. Plant toxins-useful and harmful effects. Hygeia. J. D. Med. 2012, 4, 79–90. [Google Scholar]
- Duke, S.; Dayan, F.; Romagni, J.; Rimando, A. Natural products as sources of herbicides: Current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Zeng, P. Bio-Herbicides: Global Development Status and Product Inventory. 2020. Available online: http://news.agropages.com/News/NewsDetail---34164.htm (accessed on 21 February 2021).
- Pacanoski, Z. Bioherbicides. In Herbicides, Physiology of Action, and Safety; IntechOpen: London, UK, 2015; pp. 253–274. [Google Scholar]
- Inman, R.E. A preliminary evaluation of rumex rust as a biological control agent for curly dock. Phytopathology 1971, 61, 102–107. [Google Scholar] [CrossRef]
- Oehrens, E. Biological control of blackberry through the introduction of the rust, phragmidium violaceum, in Chile. FAO Plant Prot. Bull. 1977, 25, 26–28. [Google Scholar]
- Algandaby, M.M.; Salama, M. Management of the noxious weed; Medicago polymorpha, L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Aliki, H.M.; Reade, J.P.; Back, M.A. Effects of concentrations of Brassica napus (L.) water extracts on the germination and growth of weed species. Allelopath. J. 2014, 34, 287–298. [Google Scholar]
- Synowiec, A.; Możdżeń, K.; Krajewska, A.; Landi, M.; Araniti, F. Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. in Maize Cultivation. Ind. Crop. Prod. 2019, 140, 111652. [Google Scholar] [CrossRef]
- Hosni, K.; Hassen, I.; Sebei, H.; Casabianca, H. Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities. Ind. Crop. Prod. 2013, 44, 263–271. [Google Scholar] [CrossRef]
- Kaab, S.B.; Rebey, I.B.; Hanafi, M.; Hammi, K.M.; Smaoui, A.; Fauconnier, M.L.; Ksouri, R. Screening of Tunisian plant extracts for herbicidal activity and formulation of a bioherbicide based on Cynara cardunculus. S. Afr. J. Bot. 2020, 128, 67–76. [Google Scholar] [CrossRef]
- Ootani, M.A.; dos Reis, M.R.; Cangussu, A.S.R.; Capone, A.; Fidelis, R.R.; Oliveira, W.; dos Santos, W.F. Phytotoxic effects of essential oils in controlling weed species Digitaria horizontalis and Cenchrus echinatus. Biocatal. Agric. Biotechnol. 2017, 12, 59–65. [Google Scholar] [CrossRef]
- Koodkaew, I.; Senaphan, C.; Sengseang, N.; Suwanwong, S. Characterization of phytochemical profile and phytotoxic activity of Mimosa pigra L. Agric. Nat. Resour. 2018, 52, 162–168. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.; Asib, N.B.; Islam, A.K.M.; Hasan, M. Bioherbicidal properties of Parthenium hysterophorus, Cleome rutidosperma and Borreria alata extracts on selected crop and weed species. Agronomy 2021, 11, 643. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kimura, F.; Ohno, O.; Suenaga, K. Involvement of allelopathy in inhibition of understory growth in red pine forests. J. Plant Physiol. 2017, 218, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Amri, I.; Hanana, M.; Jamoussi, B.; Hamrouni, L. Essential oils of Pinus nigra JF Arnold Subsp. Laricio Maire: Chemical composition and study of their herbicidal potential. Arab. J. Chem. 2017, 10, S3877–S3882. [Google Scholar] [CrossRef]
- Morra, M.J.; Popova, I.E.; Boydston, R.A. Bioherbicidal activity of Sinapis alba seed meal extracts. Ind. Crop. Prod. 2018, 115, 174–181. [Google Scholar] [CrossRef]
- Cimmino, A.; Zonno, M.C.; Andolfi, A.; Troise, C.; Motta, A.; Vurro, M.; Evidente, A. Agropyrenol, a phytotoxic fungal metabolite, and its derivatives: A structure–activity relationship study. J. Agric. Food Chem. 2013, 61, 1779–1783. [Google Scholar] [CrossRef] [Green Version]
- Andolfi, A.; Boari, A.; Evidente, M.; Cimmino, A.; Vurro, M.; Ash, G.; Evidente, A. Gulypyrones A and B and Phomentrioloxins B and C produced by diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus). J. Nat. Prod. 2015, 78, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.J., Jr.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A. Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatal. Agric. Biotechnol. 2018, 14, 314–320. [Google Scholar] [CrossRef]
- Kalam, S.; Khan, N.A.; Singh, J. A novel phytotoxic phenolic compound from phoma herbarum FGCC# 54 with herbicidal potential. Chem. Nat. Compd. 2014, 50, 644–647. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Oloke, J.K.; Osemwegie, O.O. Environmental fate and effects of granular pesta formulation from strains of Pseudomonas aeruginosa C1501 and Lasiodiplodia pseudotheobromae C1136 on soil activity and weeds. Chemosphere 2018, 195, 98–107. [Google Scholar] [CrossRef]
- Piyaboon, O.; Pawongrat, R.; Unartngam, J.; Chinawong, S.; Unartngam, A. Pathogenicity, host range and activities of a secondary metabolite and enzyme from Myrothecium roridum on water hyacinth from Thailand. Weed Biol. Manag. 2016, 16, 132–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, Y.; Li, L.; Zhang, Y.; Li, J.; Qiang, S. Biological control of Solidago canadensis using a bioherbicide isolate of Sclerotium rolfsii SC64 increased the biodiversity in invaded habitats. Biol. Control. 2019, 139, 104093. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Oloke, J.K.; Bello, O.M.; Pradeep, M.; Jolly, R.S. Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(Hydroxymethyl) Phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ. Technol. Innov. 2019, 13, 304–317. [Google Scholar] [CrossRef]
- Kennedy, A.C. Selective soil bacteria to manage downy brome, jointed goatgrass, and medusahead and do no harm to other biota. Biol. Control. 2018, 123, 18–27. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Carlson, C.H.; Feris, K.P.; Germino, M.J.; Jandreau, C.J.; Lazarus, B.E.; Valliant, M. Weed-suppressive bacteria fail to control Bromus tectorum under field conditions. Rangel. Ecol. Manag. 2020, 73, 760–765. [Google Scholar] [CrossRef]
- Lamberth, C. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids 2016, 48, 929–940. [Google Scholar] [CrossRef]
- Cai, X.; Gu, M. Bioherbicides in organic horticulture. Horticulturae 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Boyetchko, S.; Peng, G. Challenges and strategies for development of mycoherbicides. Fungal Biotechnol. Agric. Food Environ. Appl. 2004, 21, 111–121. [Google Scholar]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdow, A. Allelochemicals as bio-herbicides -present and perspectives. In Herbicides—Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; InTech: Rijeka, Croatia, 2013; pp. 517–542. [Google Scholar]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Manahan, S.E. Environmental Chemistry; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cheema, Z.A.; Farooq, M.; Khaliq, A. Application of allelopathy in crop production: Success story from Pakistan. In Allelopathy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 113–143. [Google Scholar]
- Imatomi, M.; Novaes, P.; Gualtieri, S.C.J. Inter specific variation in the allelopathic potential of the family myrtaceae. Acta Bot. Bras. 2013, 27, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. Selective Toxicity: The Physico-Chemical Basis of Therapy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zimdahl, R.L. Fundamentals of Weed Science; Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Charudattan, R. Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agroecology. Biocontrol 2001, 46, 229–260. [Google Scholar] [CrossRef]
- Hintz, W. Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. In Biological Control: A Global Perspective; CAB International: Wallingford, UK, 2007; pp. 284–290. [Google Scholar]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Julien, M.H.; Griffiths, M.W. Biological Control of Weeds. A World Catalogue of Agents and Their Target Weeds; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Tateno, A. Herbicidal Composition for the Control of Annual Bluegrass. U.S. Patent No. 6,162,763, 19 December 2000. [Google Scholar]
- Boyetchko, S.; Bailey, K.; Hynes, R.; Peng, G.; Vincent, C.; Goettel, M.; Lazarovits, G. Development of the mycoherbicide, BioMal®. In Biological Control, a Global Perspective; Vincent, C., Goettel, M.S., Lazarovits, G., Eds.; CAB International: Wallingford, UK, 2007; pp. 274–283. [Google Scholar]
- Bailey, K.L.; Falk, S. Turning research on microbial bioherbicides into commercial products—A phoma story. Pestic. Technol. 2011, 5, 73–79. [Google Scholar]
- Stewart-Wade, S.M.; Green, S.; Boland, G.J.; Teshler, M.P.; Teshler, I.B.; Watson, A.K.; Dupont, S. Taraxacum officinale (Weber), Dandelion (Asteraceae). Biol. Control Programmes Can. 2002, 1981–2000, 427–430. [Google Scholar]
- Pest Management Regulatory Agency. Registration Decision for Streptomyces Acidiscabies Strain RL-110 T and Thaxtomin a. RD; Pest Management Regulatory Agency: Ottawa, ON, Canada, 2013; p. 7. [Google Scholar]
- Mendes, I.D.S.; Rezende, M.O.O. Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as post emergent bioherbicides: A green alternative for sustainable agriculture. J. Environ. Sci. Health Part B 2014, 49, 374–380. [Google Scholar] [CrossRef]
- Kawuma, S.E. Assessing the Germination Inhibition Potential of Compounds in Pine (Pinus halepensis) Needles Using Bidens Pilosa Seeds. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2019. [Google Scholar]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Muñoz, M.; Torres-Pagán, N.; Peiró, R.; Guijarro, R.; Sánchez-Moreiras, A.M.; Verdeguer, M. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy 2020, 10, 791. [Google Scholar] [CrossRef]
- Avila-Adame, C.; Fernandez, L.; Campbell, B.; Tan, E.; Koivunen, M.; Marrone, P. Field evaluation of GreenMatch EX: A new broadspectrum organic herbicide. Proc. Calif. Weed Sci. Soc. 2008, 216, 127. [Google Scholar]
- El-Darier, S.M.; Abdelaziz, H.A.; ZeinEl-Dien, M.H. Effect of soil type on the allelotoxic activity of Medicago sativa L. residues in Vicia faba L. agroecosystems. J. Taibah Univ. Sci. 2014, 8, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Ben Kaab, S.; Lins, L.; Hanafi, M.; BettaiebRebey, I.; Deleu, M.; Fauconnier, M.L.; Clerck, C.D. Cynara cardunculus crude extract as a powerful natural herbicide and insight into the mode of action of its bioactive molecules. Biomolecules 2020, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Weston, L.A.; Alsaadawi, I.S.; Baerson, S.R. Sorghum allelopathy-from ecosystem to molecule. J. Chem. Ecol. 2013, 39, 142–153. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Cover crop residue management for optimizing weed control. Plant Soil 2009, 318, 169–184. [Google Scholar] [CrossRef]
- Tsiamis, K.; Gervasini, E.; D’Amico, F.; Backeljau, T. The EASIN editorial board: Quality assurance, exchange and sharing of alien species information in Europe. Manag. Biol. Invasions 2016, 7, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.A.; Khan, Z.; Khan, A. Weed diversity in wheat fields of upper Indus plains in Punjab. Pak. J. Weed Sci. Res. 2012, 18, 413–421. [Google Scholar]
- Travaini, M.L.; Sosa, G.M.; Ceccarelli, E.A.; Walter, H.; Cantrell, C.L.; Carrillo, N.J.; Dayan, F.E.; Meepagala, K.M.; Duke, S.O. Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) lam., as potential bioherbicides. J. Agric. Food Chem. 2016, 64, 9475–9487. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.-L. Essential oils: What they are and how the terms are used and defined. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–10. [Google Scholar]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat. Prod. Res. 2012, 26, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A. Potential of a Black Walnut (Juglans nigra) Extract Product (NatureCur®) as a pre-and post-emergence bioherbicide. J. Sustain. Agric. 2009, 33, 810–822. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Suzuki, M.; Noguchi, K.; Ohno, O.; Suenaga, K.; Laosinwattana, C. A potent phytotoxic substance in Aglaia odorata Lour. Chem. Biodivers. 2016, 13, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R.; Romanchuk, F.E.; Peterson, C.J.; Coats, J.R. Plant growth regulatory effect and insecticidal activity of the extracts of the tree of heaven (Ailanthus altissima L.). BMC Ecol. 2002, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Onen, H.; Ozer, Z.; Telci, I. Bioherbicidal effects of some plant essential oils on different weed species. J. Plant Dis. Prot. 2002, 18, 597–606. [Google Scholar]
- Ramezani, S.; Saharkhiz, M.J.; Ramezani, F.; Fotokian, M.H. Use of essential oils as bioherbicides. J. Essent. Oil Bear. 2008, 11, 319–327. [Google Scholar] [CrossRef]
- Dayan, F.E.; Howell, J.L.; Marais, J.P.; Ferreira, D.; Koivunen, M. Manuka Oil, a natural herbicide with preemergence activity. Weed Sci. 2011, 59, 464–469. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Setia, N.; Kohli, R.K. Herbicidal activity of volatile oils from Eucalyptus citriodora Against Parthenium hysterophorus. Ann. Appl. Biol. 2005, 146, 89–94. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chung, I.M. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agron. J. 2000, 92, 1162–1167. [Google Scholar] [CrossRef]
- Dayan, F.E.; Duke, S.O. Natural compounds as next generation herbicides. Plant Physiol. 2014, 166, 1090–1105. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Le, C.; Xu, Z.; Gu, Z.; Lv, J.; Shamsi, I.H. Vertical leaching of allelochemicals affecting their bioactivity and the microbial community of soil. J. Agric. Food Chem. 2017, 65, 7847–7853. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Caldera, F.; Dhakar, N.K.; Trotta, F.; Scariot, V. Activity of Ailanthus altissima (Mill.) swingle extract as a potential bioherbicide for sustainable weed management in horticulture. Agronomy 2020, 10, 965. [Google Scholar] [CrossRef]
- Lovett, J.V.; Potts, W.C. Primary effects of allelochemicals of Datura stramonium L. Plant Soil 1987, 98, 137–144. [Google Scholar] [CrossRef]
- El Bazaoui, A.; Bellimam, M.A.; Soulaymani, A. Nine new tropane alkaloids from Datura stramonium L. Identified by GC/MS. Fitoterapia 2011, 82, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Kaushik, S. Catechin secretion & phytotoxicity: Fact not fiction. Commun. Integr. Biol. 2010, 3, 468–470. [Google Scholar] [CrossRef] [Green Version]
- Topal, S.; Kocacaliskan, I.; Arslan, O.; Tel, A.Z. Herbicidal effects of juglone as an allelochemical. Phyton 2007, 46, 259–269. [Google Scholar]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.; Hasan, M. Assessment of allelopathic compounds to develop new natural herbicides: A review. Allelopathy J. 2021, 52, 21–40. [Google Scholar] [CrossRef]
- Webber, C.L.; Taylor, M.J.; Shrefler, J.W. Weed control in yellow squash using sequential postdirected applications of pelargonic acid. Horttechnology 2014, 24, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Minto, R.E.; Blacklock, B.J. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 2008, 47, 233–306. [Google Scholar] [CrossRef] [Green Version]
- El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev. 2011, 10, 353–370. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Watson, S.B.; Asolkar, R.N.; Boddy, L.G. Sarmentine, a natural herbicide from piper species with multiple herbicide mechanisms of action. Front. Plant Sci. 2015, 6, 222. [Google Scholar] [CrossRef] [Green Version]
- Thi, H.L.; Hyuk, P.; Ji, P.Y. Allelopathy in Sorghum bicolor: A review on environmentally friendly solution for weed control. Res. Crop. 2015, 16, 657–662. [Google Scholar]
- Boydston, R.A.; Anderson, T.; Vaughn, S.F. Mustard (Sinapis alba) seed meal suppresses weeds in container-grown ornamentals. Hort. Sci. 2008, 43, 800–803. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.L.; Christians, N.E. The use of hydrolyzed corn gluten meal as a natural preemergence weed control in turf. Int. Turfgrass Soc. Res. J. 1997, 8, 1043–1050. [Google Scholar]
- Boydston, R.A.; Morra, M.J.; Borek, V.; Clayton, L.; Vaughn, S.F. Onion and weed response to mustard (Sinapis alba) seed meal. Weed Sci. 2011, 59, 546–552. [Google Scholar] [CrossRef]
- Snyder, A.; Morra, M.J.; Johnson-Maynard, J.; Thill, D.C. Seed meals from brassicaceae oilseed crops as soil amendments: Influence on carrot growth, microbial biomass nitrogen, and nitrogen mineralization. Hort. Sci. 2009, 44, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Intanon, S.; Hulting, A.G.; Mallory-Smith, C.A. Field evaluation of meadowfoam (Limnanthes alba) seed meal for weed management. Weed Sci. 2015, 63, 302–311. [Google Scholar] [CrossRef]
- Irshad, A.; Cheema, Z.A. Influence of some plant water extracts on the germination and seedling growth of barnyard grass (E. crus-galli (L) Beauv). Pak. J. Sci. Ind. Res 2004, 43, 222–226. [Google Scholar]
- El-Mergawi, R.A.; Al-Humaid, A.I. Searching for natural herbicides in methanol extracts of eight plant species. Bull. Natl. Res. Cent. 2019, 43, 22. [Google Scholar] [CrossRef]
- Aslani, F.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Omar, D.; Alam, M.A.; Hashemi, F.S.G.; Uddin, M.K. Allelopathic effect of methanol extracts from Tinospora tuberculata on selected crops and rice weeds. Acta. Agric. Scand. B Soil Plant Sci. 2014, 64, 165–177. [Google Scholar] [CrossRef]
- Kadioglu, I.; Yanar, Y.; Asav, U. Allelopathic effects of weeds extracts against seed germination of some plants. J. Environ. Biol. 2005, 26, 169–173. [Google Scholar]
- Prasad, R.; Tripathi, V.D.; Singh, P.; Handa, A.K.; Alam, B.; Singh, R.; Chaturvedi, O.P. Allelopathic potential of Butea monosperma L.: Effect of aqueous leaf extract on seed germination and seedling growth of winter season (rabi) crops. Indian J. Agrofor. 2016, 18, 63–69. [Google Scholar]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.; Hasan, M. Allelopathic potential of Malaysian invasive weed species on Weedy rice (Oryza sativa f. spontanea Roshev). Allelopathy J 2021, 53, 53–68. [Google Scholar] [CrossRef]
- Elisante, F.; Tarimo, M.T.; Ndakidemi, P.A. Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. Am. J. Plant Sci. 2013, 4, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Rab, A.; Khalil, S.K.; Asim, M.; Mehmood, N.; Fayyaz, H.; Khan, I.; Nawaz, H. Response of sorghum (Sorghum bicolor L.) extract type, concentration and application time to weeds weight, grain and biomass yield of wheat. Pure Appl. Biol. 2016, 5, 1. [Google Scholar] [CrossRef]
- Ewers, B.E. Understanding stomatal conductance responses to long-term environmental changes: A bayesian framework that combines patterns and processes. Tree Physiol. 2013, 33, 119–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tardieu, F. Plant Response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit. Front. Physiol. 2013, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Abraham, E.; John, J.; Pillai, P.S. Allelopathic effect of leaf loppings of homestead trees on ginger (Zingiber officinale Roscoe). J. Trop. Agric. 2016, 54, 60. [Google Scholar]
- Najafpour, M.M. Oxygen evolving complex in photosystem II: Better than excellent. Dalton Trans. 2011, 40, 9076–9084. [Google Scholar] [CrossRef]
- Lee, S.M.; Radhakrishnan, R.; Kang, S.M.; Kim, J.H.; Lee, I.Y.; Moon, B.Y.; Yoon, B.W.; Lee, I.J. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements. Ecotoxicol. Environ. Saf. 2015, 122, 230–237. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar] [CrossRef]
- Sousa, C.P.D.; Farias, M.E.D.; Shock, A.A.; Bacarin, M.A. Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide. Acta Plant Physiol. 2014, 36, 3051–3062. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Khan, A.L.; Lee, I.J. Endophytic fungal pre-treatments to seeds alleviate salinity stress effects in soybean plants. J. Microbiol. 2013, 51, 850–857. [Google Scholar] [CrossRef]
- Grossmann, K. Mediation of herbicide effects by hormone interactions. J. Plant Growth Regul. 2003, 2, 109–122. [Google Scholar] [CrossRef]
- Janda, K.; Hidega, E.; Szalai, G.; Kovacs, L.; Janda, T. Salicylic acid may in-directly influences the photosynthetic electron transport. J. Plant Physiol. 2012, 169, 971–978. [Google Scholar] [CrossRef]
- Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.; Nayyar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 163, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grene, R. Oxidative stress and acclimation mechanisms in plants. Arab. Book Am. Soc. Plant Biol. 2002, 1, e0036. [Google Scholar] [CrossRef] [Green Version]
- Gara, L.D.; de Pinto, M.C.; Tommasi, F. The antioxidant systems vis-à-vis reactive oxygen species during plant—Pathogen interaction. Plant Physiol. Biochem. 2003, 41, 863–870. [Google Scholar] [CrossRef]
- Esfandiari, E.; Shekari, F.; Shekari, F.; Esfandiari, M. The Effect of salt stress on antioxidant enzymes’ activity and lipid peroxidation on the wheat seedling. Not. Bot. Hortiagrobot. Cluj. 2007, 35, 48–56. [Google Scholar] [CrossRef]
- Quiles, M.J.; López, N.I. Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth: Effects on the chloroplast nadh dehydrogenase complex. Plant Sci. 2004, 166, 815–823. [Google Scholar] [CrossRef]
- Candan, N.; Tarhan, L. The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci. 2003, 165, 769–776. [Google Scholar] [CrossRef]
- Dietz, K.J.; Mittler, R.; Noctor, G. Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol. 2016, 171, 1535–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Van Aken, O.; Schwarzländer, M.; Belt, K.; Millar, A.H. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 2016, 171, 1551–1559. [Google Scholar] [CrossRef] [Green Version]
- Khurana, N.; Sharma, N.; Patil, S.; Asmita, G. Phytopharmacological properties of Sida cordifolia: A review of folklore use and pharmacological activities. Asian J. Pharm. Clin. Res. 2016, 2, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Zhiqun, T.; Jian, Z.; Junli, Y.; Chunzi, W.; Danju, Z. Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays. Chemosphere 2017, 173, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Cheema, Z.A.; Farooq, M.; Wahid, A. (Eds.) Allelopathy: Current Trends and Future Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chen, F.; Meng, Y.; Shuai, H.; Luo, X.; Zhou, W.; Liu, J.; Shu, K. Effect of plant allelochemicals on seed germination and its ecological significance. Chin. J. Eco Agric. 2017, 25, 36–46. [Google Scholar]
- Nunes, P.M.P.; Silva, C.B.D.; Paula, C.D.S.; Smolarek, F.F.; Zeviani, W.M.; Chaves, S.C.; Miguel, M.D. Residues of Citrus sinensis (L.) osbeck as agents that cause a change in antioxidant defense in plants. Braz. J. Pharm. Sci. 2015, 51, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Haddadchi, G.R.; Gerivani, Z. Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. Int. J. Plant Prod. 2009, 3, 63–74. [Google Scholar] [CrossRef]
- Ullah, N.; Haq, I.U.; Safdar, N.; Mirza, B. Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter. Toxicol. Ind. Health 2015, 31, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Wang, G.; Cha, J.Y.; Li, G.; Chen, S.; Kim, W.Y. A chaperone function of no catalase activity1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 2015, 27, 908–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhamdi, A.; Noctor, G.; Baker, A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012, 525, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J.; Karami, A. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Sci. Hortic. 2017, 214, 133–140. [Google Scholar] [CrossRef]
- El-Shora, H.M.; Abd El-Gawad, A.M. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environ. Bull. J. 2015, 24, 386–393. [Google Scholar]
- Cecchini, N.M.; Monteoliva, M.I.; Alvarez, M.E. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. Plant Signal. Behav. 2011, 6, 1195–1197. [Google Scholar] [CrossRef] [Green Version]
- Zarse, K.; Schmeisser, S.; Groth, M.; Priebe, S.; Beuster, G.; Kuhlow, D.; Ristow, M. impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab. 2012, 15, 451–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal. 2013, 19, 998–1011. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hakim, M.A. Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biol. Res. 2016, 49, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Abbas, W.; Ashraf, M.; Akram, N.A. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by Glycinebetaine and sugarbeet extracts. Sci. Hortic. 2010, 125, 188–195. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Barakat, N.A.; Nazeir, H. Growth and physiological response of some cultivated species under allelopathic stress of Calotropis procera (Aiton) WT. Appl. Sci. Report. 2016, 14, 237–246. [Google Scholar] [CrossRef]
- Bharti, N.; Barnawal, D.; Awasthi, A.; Yadav, A.; Kalra, A. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in mentha arvensis. Acta Physiol. Plant. 2014, 36, 45–60. [Google Scholar] [CrossRef]
- Saidi, I.; Ayouni, M.; Dhieb, A.; Chtourou, Y.; Chaïbi, W.; Djebali, W. Oxidative damages induced by short-term exposure to cadmium in bean plants: Protective role of salicylic acid. S. Afr. J. Bot. 2013, 85, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, D.; Tiwari, A.; Sehgal, A.; Landi, M.; Brestic, M.; Sharma, A. Exploiting the allelopathic potential of aqueous leaf extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a widespread weed in India. Plants 2019, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Cotruţ, R. Allelopathy and allelochemical interactions among plants. Sci. Pap. 2018, 1, 188–193. [Google Scholar]
- Subtain, M.U.; Hussain, M.; Tabassam, M.A.R.; Ali, M.A.; Ali, M.; Mohsin, M.; Mubushar, M. Role of allelopathy in the growth promotion of plants. Sci. Agric. 2014, 2, 141–145. [Google Scholar] [CrossRef]
- Egbuna, C.; Sawicka, B. (Eds.) Natural Remedies for Pest, Disease and Weed Control; Academic Press: Cambridge, MA, USA, 2019; pp. 17–28. [Google Scholar]
- Pilgeram, A.L.; Sands, D.C. Molecular biology of the biological control of plant bacterial diseases. Molecular Biology of the Biological Control of Pests and Diseases of Plants; CRC Press: Boca Raton, FL, USA, 2020; pp. 39–56. [Google Scholar]
- Morin, L.; Gianotti, S.F.; Lauren, D.R. Trichothecene production and pathogenicity of Fusarium tumidum, a candidate bioherbicide for gorse and broom in New Zealand. Mycol. Res. 2000, 104, 993–999. [Google Scholar] [CrossRef]
- Karim Dagno, R.L.; Diourté, M.; Jijakli, M.H. Present status of the development of mycoherbicides against water hyacinth: Successes and challenges. A review. Biotechnol. Agron. Soc. Environ. 2012, 16, 360–368. [Google Scholar]
- Boyette, C.D.; Hoagland, R.E.; Stetina, K.C. Efficacy Improvement of a bioherbicidal fungus using a formulation-based approach. Am. J. Plant Sci. 2016, 7, 2349–2358. [Google Scholar] [CrossRef] [Green Version]
- Deveau, A.; Bonito, G.; Uehling, J.; Paoletti, M.; Becker, M.; Bindschedler, S.; Mieszkin, S. Bacterial–fungal interactions: Ecology, mechanisms and challenges. FEMS Microb. Rev. 2018, 42, 335–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, M.J.; Ojeda, C.; Cirelli, A.F. Surfactants in agriculture. In Green Materials for Energy, Products and Depollution; Springer: Dordrecht, Germany, 2013; pp. 287–334. [Google Scholar]
- Kremer, R.J. The role of bioherbicides in weed management. Biopestic. Int. 2005, 1, 127–141. [Google Scholar] [CrossRef]
- Scavo, A.; Rial, C.; Molinillo, J.M.; Varela, R.M.; Mauromicale, G.; Macias, F.A. The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind. Crop. Prod. 2019, 128, 479–487. [Google Scholar] [CrossRef]
- Rial, C.; García, B.F.; Varela, R.M.; Torres, A.; Molinillo, J.M.; Macías, F.A. The joint action of sesquiterpene lactones from leaves as an explanation for the activity of Cynara cardunculus. J. Agric. Food Chem. 2016, 64, 6416–6424. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef]
- Schilder, A. Effect of Water pH on the Stability of Pesticides; Michigan State University Extension: East Lansing, MI, USA, 2008. [Google Scholar]
- Peng, G.; Wolf, T.M. Spray retention and its potential impact on bioherbicide efficacy. Pest Technol. 2008, 2, 70–80. [Google Scholar]
- Harding, D.P.; Raizada, M.N. Controlling weeds with fungi, bacteria and viruses: A review. Front. Plant Sci. 2015, 6, 659–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byer, K.N.; Peng, G.; Wolf, T.M.; Caldwell, B.C. Spray retention and its effect on weed control by mycoherbicides. Biol. Control 2006, 37, 307–313. [Google Scholar] [CrossRef]
- Doll, D.A.; Sojka, P.E.; Hallett, S.G. Effect of nozzle type and pressure on the efficacy of spray applications of the bioherbicidal fungus Microsphaeropsis amaranthi. Weed Technol. 2005, 19, 918–923. [Google Scholar] [CrossRef]
- Yandoc-Ables, C.B.; Rosskopf, E.N.; Charudattan, R. Plant pathogens at work: Improving weed control efficacy. Plant Health Prog. 2007, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Chandramohan, S.; Charudattan, R. A Multiple-pathogen system for bioherbicidal control of several weeds. Biocontrol Sci. Technol. 2003, 13, 199–205. [Google Scholar] [CrossRef]
- Abu-Dieyeh, M.H.; Watson, A.K. Increasing the efficacy and extending the effective application period of a granular turf bioherbicide by covering with jute fabric. Weed Technol. 2009, 23, 524–530. [Google Scholar] [CrossRef]
- Boyette, C.D.; Abbas, H.K.; Johnson, B.; Hoagland, R.E.; Weaver, M.A. Biological control of the weed Sesbania exaltata using a microsclerotia formulation of the bioherbicide Colletotrichum truncatum. Am. J. Plant Sci. 2014, 5, 2672–2685. [Google Scholar] [CrossRef] [Green Version]
- Bailey, K.L.; Falk, S.; Derby, J.; Melzer, M.; Boland, G.J. The effect of fertilizers on the efficacy of the bioherbicide, Phomamacrostoma, to control dandelions in turfgrass. Biol. Control 2013, 65, 147–151. [Google Scholar] [CrossRef]
- Blanco, F.M.G.; Ramos, Y.G.; Scarso, M.F.; Jorge, L.A.C. Determining the Selectivity of Herbicides and Assessing Their Effect on Plant Roots—A Case Study with Indaziflam and Glyphosate Herbicides; InTech: London, UK, 2015; pp. 275–297. [Google Scholar]
- Cobb, A.H.; Reade, J.P. Herbicides and Plant Physiology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Source | Phytotoxic Effects | Target Weeds | References |
---|---|---|---|
Plants | |||
Achillea santolina L. | Inhibit growth and changes in the metabolic process | Medicago polymorpha L. | [17] |
Brassica napus L. | Suppress germination and root length | Phalaris minor Retz., Convolvulus arvensis L., Sorghum halepense (L.) Pers. | [18] |
Carum carvi L. | Leaf lesions and biochemical changes in plant tissues | Echinochloa crus-galli (L.) P.Beauv. | [19] |
Chrysanthemum coronarium L. | Inhibit germination and Growth | Sinapis arvensis L., Phalaris canariensis L. | [20] |
Cynara cardunculus L. | Suppress germination and growth and cause necrosis or chlorosis | Trifolium incarnatum L., Silybum marianum (L.) Gaertn., P. minor | [21] |
Cymbopogon nardus (L.) Rendle. | Inhibit germination and plant development and reduce chlorophyll and protein content | Digitaria horizontalis Willd., Cenchrus echinatus L. | [22] |
Mimosa pigra L. | Root growth retardation | Lactuca sativa L., Ruellia tuberosa L. | [23] |
Parthenium hysterophorus L. | Seed germination, growth, and development | Oryza sativa f. Spontanea Roshev., Echinochloa colona (L.) Link., Euphorbia hirta L., Ageratum conyzoides L. | [24] |
Pinus densiflora Siebold & Zucc. | Suppressed shoot and root growth | Lolium multiflorum Lam., Digitaria sanguinalis (L.) Scop. | [25] |
Pinus nigra J.F.Arnold | Inhibited germination and growth | P. canariensis, Trifolium campestre Schreb., S. arvensis | [26] |
Sinapis alba L. | Reduced dry biomass | Amaranthus powellii S.Watson, Setaria viridis (L.) P.Beauv. | [27] |
Fungi | |||
Ascochyta agropyrina | Reduced root growth | Chenopodium album L., Cirsium arvense (L.) Scop., Mercurialis annua L., Sonchus oleraceus L., Setariavirdis (L.) P.Beauv. | [28] |
Diaporthe gulyae | Necrosis | Papaver rhoes L., Ecballium elaterium (L.) A.Rich., Urtica dioica L., Hedysarum coronarium L. | [29] |
Fusarium fujikuroi | Chlorosis, necrosis, and decrease in plant height and root length | Cucumis sativus L., Sorghum bicolor (L.) Moench. | [30] |
Phoma herbarum | Maximum toxicity | P. hysterophorus, Lantana camara L., Hyptis suaveolens (L.) Piot., Sida acuta Burm.f. | [31] |
Lasiodiplodiapseudotheobromae | Inhibited germ activity | Solanum lycopersicum L., Amaranthus hybridus L., E. crus-galli | [32] |
Myrothecium roridum | Necrosis | Eichhornia crassipes (Mart.) Solms | [33] |
Sclerotium rolfsii | Decrease in population density | Solidago canadensis L. | [34] |
Bacteria | |||
Pseudomonas aeruginosa | Inhibited seed germination, growth, and germ activity | A. hybridus, S. lycopersicum, E. crus-galli, Pennisetum purpureum Schumach. | [30,35] |
Pseudomonas fluorescens | Suppress germination and root growth | Bromus tectorum L., Aegilops cylindrical Host, Taeniatherum caput-medusae (L.) Nevski | [36,37] |
Source | Target Weeds | Ecosystem | Registered Name | References |
---|---|---|---|---|
Cephalospprium diospyri | Diospyras virginiana L. | Pastures, rangelands | Oklahoma | [53] |
Colletotrichum gloeosporioidesaeschynomene | Aeschynomene virginica L. | Rice, soybean | Commercialized- Collego™ | [54] |
Alternaria cassiae | Cassia obtusifolia L. | Soybean | Formulation development- ‘CASST’ | [54] |
Phytophthora palmivora | Morrenia odorata (Hook. &Arn.) Lindl. | Citrus groves | Commercialized- Devine™ | [54] |
Xanthomonas campestris | Poa annua L. | Turf, athletic fields | Commercialized- Camperico® | [55] |
Cylindrobasidiumleave | Acacia spp. | Forest, rangelands | Commercialized- Stump-Out™ | [50] |
Colletotrichum gloeosporioides | Hakea sericea Schrad. &J.C.Wendl. | Mountain meadows | Commercialized- Hakak | [50] |
Colletotrichum gloeosporioidesmalvae | Malva pusilla Sm. | Flex, lentil, horticultural crops | Commercialized- BioMal® | [56] |
C. purpureum | P. serotina | Forest | Commercialized- Biochon™ | [57] |
Phoma macrostoma | Reynoutria japonica Houtt. | Golf courses, agriculture, and agro-forestry | Commercialized- Phoma | [58] |
Streptomyces acidiscabies | Taraxacum officinale L. | Turf | Commercialized- Opportune® | [59] |
Alternaria destruens | Cuscuta spp. | Cranberry | Field evaluation- Smolder | [10] |
Chondrostereum purpureum (Fr.) Pouz | Prunus serotina Ehrh. | Forest, mountains | Commercialized- Mycotech™ | [57] |
C. purpureum | Populus euramericana Guinier | Forest | Commercialized- Chontrol® | [57] |
Sclerotinia minor Jagger. | Taraxacum spp. | Turf | Commercialized- Sarritor® | [60] |
Puccinia thlaspeos C. Shub. | Isatis tinctoria L. | Forest, rangelands, pastures | Commercialized- Woad Warrior® | [51] |
Pinus radiate D.Don | Ochna serrulata Walp. | Grassland, forest | Commercialized- BioWeed™ | [61] |
B. napus | Amaranthus retroflexus L. | Wastelands, prairies | Commercialized- Beloukha® | [62] |
Citrus sinensis (L.) Osbeck | Solanum nigrum L. | Cultivated lands, roadside | Commercialized- GreenMatch™ | [52] |
Syzygium aromaticum (L.) Merr. & L.M.Perry and Cinnamomum verum J. Presl | E. crus-galli | Rice, cultivated lands | Commercialized- WeedZap® | [52] |
Citrus limon (L.) Osbeck | D. sanguinalis | Cultivated areas | Commercialized- Avenger® Weed Killer | [52] |
S. aromaticum | E. crus-galli | Rice, cultivated lands | Commercialized- Weed Slayer® | [52] |
Cymbopogon citratus (DC.) Stapf | Euphorbia spp. | Agricultural lands | Commercialized- GreenMatch™ EX | [63] |
Plant Species | Bioherbicide Source | Phytotoxic Effects | Target Weed | References |
---|---|---|---|---|
Ammi visnaga (L.) Lam. | Plant extract | Inhibit germination, growth, photosynthesis | L. multiflorum, E. crus-galli, D. sanguinalis, Setaria italic (L.) P.Beauv. | [70] |
Juglans nigra L. | Plant extract | Pre- and post-emergent and inhibit growth | Conyza Canadensis(L.) Cronquist., Conyza bonariensis (L.) Cronquist | [74] |
Aglaia odorata Lour. | Leaf extract | Inhibit growth and development | E. crus-galli, Lolium perenn L. | [75] |
Ailanthus altissima (Mill.) Swingle | Leaf extract | Inhibit germination and growth | M. sativa | [76] |
Origanum syriacum L., Micromeriafruitcosa L. and Cymbopogon citratus DC. | Essential oil | Inhibit seed germination | Triticum asteivum L., Amaranthus palmeri S.Watson, B. nigra | [77] |
A. vulgaris, Mentha spicata L., Ocimum basilicum L., Salvia officinalis L., and Thymbra spicata L. | Essential oil (leaves and flower) | Phytotoxic to germination and plant growth | Agrostemma githago L., Cardaria draba (L.) Desv., C. album, E. crus-galli, Reseda lutea L. | [78] |
Eucalyptus spp., Chamaecyparis lawsoniana (A.Murray bis) Parl., Rosmarinus officinalis L. and Thuja occidentalis L. | Essential oil | Pre-emergent and seed germination inhibitor | A. retroflexus., P. oleracea., Acroptilon repens (L.) DC. | [79] |
Leptospermum scoparium J.R.Forst. & G.Forst. | Essential oil | Post-emergent and control seed emergence | Digitaria spp. | [80] |
Eucalyptus citriodora Hook. | Volatile oils (leaves) | Inhibit germination and seedling growth | P. hysterophorus | [81] |
Oryza sativa L. | Hull extracts | Inhibit germination, seedling growth | E. crus-galli | [82] |
Allelochemicals | Allelopathic Plants | Sensitive Weeds | References |
---|---|---|---|
Ailanthone | A. altissima | Lepidium sativum L., Raphanus sativus L., S. officinalis, S. rosmarinus | [85] |
Alkaloids | Datura stramonium L. | Cenchrus ciliaris L., Notonia wightii wight &Arn. | [86] |
Artemisinin | Artemisia annua L. | A. retroflexus, I. lacunose, P. oleracea, A. annua, Lemna minor L., Pseudokirchneriella subcapitata | [87] |
Catechin | Centaurea stoebe Tausch | Arabidopsis thaliana (L.) Heynh., Festuca idahoensis Elmer | [88] |
Essential oils | Eucalyptus sp. | E. crus-galli, Cassia occidentals L., Lolium rigidum Gaudin, | [89] |
Glucosinolates, Isothiocyanates | Brassica sp. R. sativus | S. aspera L., M. inodora, A. hybridus, E. crus-galli, A. myosuroides, C. bursapastoris, C. arvensis, Cuscuta spp., D. carota, H. incana, S. polyceratium | [41] |
Juglone | J. nigra | S. arvensis, C. arvense, Papaver rhoeas L., Lamium amplexicaule L., Triticum vulgare Vill., Hordeum vulgare L. | [53] |
Leptospermone | Callistemon citrinus (Curtis) Skeels, L. scoparium | E. crus-galli, D. sanguinalis, Setaria glauca L., Avena sativa L., Brassica juncea L., Rumex crispus L. | [41] |
Momilactone | O. sativa, Hypnum plumaeform | E. colona, A. lividus, D. sanguinalis, P. annua | [90] |
Pelargonic acid | Pelargonium roseum Willd. | Digitaria ischaemum (Scherb.) Muhl., Physalis angulata L., Amaranthus spinosus L., Cyperus esculentus L. | [91] |
Polyacetylenes | Centaurea repens L. | T. aestivum, Glycine max (L.) Merr., L. minor | [92] |
Quinones | Nigella sativa L. | S. lycopersicum | [93] |
Sarmentine | Piper longum L. | E. crus-galli, A. retroflexus, D. sanguinalis, Leptochloa filiformis Lam., Taraxacum sp. C. album, P. annua, I. purpurea, S. arvensis, R. crispus | [94] |
Sorgoleone | S. bicolor | P. minor, C. didymus, C. rotundus, S. nigrum, A. retroflexus, A. atrtemisifolia, C. obtusifolia | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. https://doi.org/10.3390/plants10061212
Hasan M, Ahmad-Hamdani MS, Rosli AM, Hamdan H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants. 2021; 10(6):1212. https://doi.org/10.3390/plants10061212
Chicago/Turabian StyleHasan, Mahmudul, Muhammad Saiful Ahmad-Hamdani, Adam Mustafa Rosli, and Hafizuddin Hamdan. 2021. "Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management" Plants 10, no. 6: 1212. https://doi.org/10.3390/plants10061212
APA StyleHasan, M., Ahmad-Hamdani, M. S., Rosli, A. M., & Hamdan, H. (2021). Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants, 10(6), 1212. https://doi.org/10.3390/plants10061212