Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of TaHDAC (Histone Deacetylase) Genes in Triticum aestivum
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Chromosomal Locations and Synteny Analysis
2.4. Protein Structure Prediction
2.5. Presumptive Promoter Cis-Acting Elements
2.6. Analysis of the Expression Patterns of TaHDAC Genes by RNA-Seq Datasets
2.7. Plant Growth and Treatments
2.8. Foxtail Mosaic Virus (FoMV)-Based Virus-Induced Gene Silencing (VIGS) in Wheat
2.9. Viral Inoculation
2.10. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
3. Results
3.1. Genome-Wide Identification and Characterization of TaHDAC Genes
3.2. Chromosomal Location and Synteny Analysis of TaHDAC Genes in Wheat Chromosomes
3.3. Protein Structure Prediction of 10 TaHDACs
3.4. Prediction of Cis-Acting Elements in the 49 TaHDACs
3.5. Tissue-Specific Expression of TaHDACs
3.6. Expression Patterns of TaHDAC Genes in Response to Abiotic and Biotic Stresses
3.7. Expression Patterns of TaHDACs under Temperature Gradients
3.8. Expression Patterns of TaHDACs under Viral Infection
3.9. Silencing TaSRT1 Attenuates Chinese Wheat Mosaic Virus (CWMV) Infection in Wheat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Hildmann, C.; Riester, D.; Schwienhorst, A. Histone deacetylases--an important class of cellular regulators with a variety of functions. Appl. Microbiol. Biotechnol. 2007, 75, 487–497. [Google Scholar] [CrossRef]
- Chen, X.; Ding, A.B.; Zhong, X. Functions and mechanisms of plant histone deacetylases. Sci. China Life Sci. 2020, 63, 206–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Ding, A.B.; Liu, F.; Zhong, X. Linking signaling pathways to histone acetylation dynamics in plants. J. Exp. Bot. 2020, 71, 5179–5190. [Google Scholar] [CrossRef] [PubMed]
- Kadonaga, J.T. Eukaryotic transcription: An interlaced network of transcription factors and chromatin-modifying machines. Cell 1998, 92, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Waterborg, J.H. Plant histone acetylation: In the beginning. Biochim. Biophys. Acta 2011, 1809, 353–359. [Google Scholar] [CrossRef]
- Waterborg, J.H. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell Biol. 2002, 80, 363–378. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Zhao, M.; Luo, M.; Yu, C.W.; Chen, C.Y.; Tai, R.; Wu, K. Transcriptional repression by histone deacetylases in plants. Mol. Plant. 2014, 7, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Taunton, J.; Hassig, C.A.; Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996, 272, 408–411. [Google Scholar] [CrossRef]
- Thiagalingam, S.; Cheng, K.H.; Lee, H.J.; Mineva, N.; Thiagalingam, A.; Ponte, J.F. Histone deacetylases: Unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci. 2003, 983, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Hollender, C.; Liu, Z. Histone deacetylase genes in Arabidopsis development. J. Integr. Plant Biol. 2008, 50, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Alinsug, M.V.; Yu, C.W.; Wu, K. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 2009, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetriou, K.; Kapazoglou, A.; Tondelli, A.; Francia, E.; Stanca, M.A.; Bladenopoulos, K.; Tsaftaris, A.S. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiol. Plant. 2009, 136, 358–368. [Google Scholar] [CrossRef]
- Pandey, R.; Muller, A.; Napoli, C.A.; Selinger, D.A.; Pikaard, C.S.; Richards, E.J.; Bender, J.; Mount, D.W.; Jorgensen, R.A. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002, 30, 5036–5055. [Google Scholar] [CrossRef] [Green Version]
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Ueda, M.; Seki, M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. Plant Physiol. 2020, 182, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Long, J.A.; Ohno, C.; Smith, Z.R.; Meyerowitz, E.M. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006, 312, 1520–1523. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, L.; Zhao, L.; Li, J.; He, S.; Zhou, K.; Yang, F.; Huang, M.; Jiang, L.; Li, L. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS ONE 2011, 6, e22132. [Google Scholar] [CrossRef]
- To, T.K.; Nakaminami, K.; Kim, J.M.; Morosawa, T.; Ishida, J.; Tanaka, M.; Yokoyama, S.; Shinozaki, K.; Seki, M. Arabidopsis HDA6 is required for freezing tolerance. Biochem. Biophys. Res. Commun. 2011, 406, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qin, F.; Huang, L.; Sun, Q.; Li, C.; Zhao, Y.; Zhou, D.X. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem. Biophys. Res. Commun. 2009, 388, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, L.; Duan, J.; Miki, B.; Wu, K. Histone deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 2005, 17, 1196–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.C.; Lai, Z.; Fan, B.; Chen, Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 2008, 20, 2357–2371. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gao, F.; Wu, J.; Dai, J.; Wei, C.; Li, Y. Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol. 2010, 51, 1291–1299. [Google Scholar] [CrossRef]
- Ma, X.; Lv, S.; Zhang, C.; Yang, C. Histone deacetylases and their functions in plants. Plant Cell Rep. 2013, 32, 465–478. [Google Scholar] [CrossRef]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrill, P.; Ramirez-Gonzalez, R.; Uauy, C. expVIP: A Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiol. 2016, 170, 2172–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Gonzalez, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.; et al. The transcriptional landscape of polyploid wheat. Science 2018, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Xie, K.; Jia, Q.; Zhao, J.; Chen, T.; Li, H.; Wei, X.; Diao, X.; Hong, Y.; Liu, Y. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants. Plant Physiol. 2016, 171, 1801–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Liu, P.; Zhong, K.; Zhang, F.; Xu, M.; He, L.; Jin, P.; Chen, J.; Yang, J. Wheat Yellow Mosaic Virus NIb Interacting with Host Light Induced Protein (LIP) Facilitates Its Infection through Perturbing the Abscisic Acid Pathway in Wheat. Biology 2019, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, T.; Li, J.; Wu, N.; Wu, G.; Yang, J.; Chen, X.; He, L.; Chen, J. Chinese wheat mosaic virus-derived vsiRNA-20 can regulate virus infection in wheat through inhibition of vacuolar- (H(+) )-PPase induced cell death. New Phytol. 2020, 226, 205–220. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Chen, X.; Yang, J.; Zhang, T.; Li, J.; Zhang, S.; Zhong, K.; Zhang, H.; Chen, J.; Yang, J. Rice black-streaked dwarf virus-encoded P5-1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol. 2020, 225, 896–912. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Luo, M.; Liu, X.; Singh, P.; Cui, Y.; Zimmerli, L.; Wu, K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta. 2012, 1819, 129–136. [Google Scholar] [CrossRef]
- Maeda, K.; Izawa, M.; Nakajima, Y.; Jin, Q.; Hirose, T.; Nakamura, T.; Koshino, H.; Kanamaru, K.; Ohsato, S.; Kamakura, T.; et al. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum. Lett. Appl. Microbiol. 2017, 65, 446–452. [Google Scholar] [CrossRef]
- Johnson, C.A.; Turner, B.M. Histone deacetylases: Complex transducers of nuclear signals. Semin. Cell Dev. Biol. 1999, 10, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Gregoretti, I.V.; Lee, Y.M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J. Mol. Biol. 2004, 338, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Sendra, R.; Rodrigo, I.; Salvador, M.L.; Franco, L. Characterization of pea histone deacetylases. Plant Mol. Biol. 1988, 11, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Lagace, M.; Chantha, S.C.; Major, G.; Matton, D.P. Fertilization induces strong accumulation of a histone deacetylase (HD2) and of other chromatin-remodeling proteins in restricted areas of the ovules. Plant Mol. Biol. 2003, 53, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Busconi, M.; Reggi, S.; Fogher, C.; Bavaresco, L. Evidence of a sirtuin gene family in grapevine (Vitis vinifera L.). Plant Physiol. Biochem. 2009, 47, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Bourque, S.; Dutartre, A.; Hammoudi, V.; Blanc, S.; Dahan, J.; Jeandroz, S.; Pichereaux, C.; Rossignol, M.; Wendehenne, D. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol. 2011, 192, 127–139. [Google Scholar] [CrossRef]
- Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.; D’Amore, R.; Allen, A.M.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Clavijo, B.J.; Venturini, L.; Schudoma, C.; Accinelli, G.G.; Kaithakottil, G.; Wright, J.; Borrill, P.; Kettleborough, G.; Heavens, D.; Chapman, H.; et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017, 27, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Evolution by gene duplication: An update. Trends Ecol. Evol. 2003, 18, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.C.; Purugganan, M.D. The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Biol. 2005, 8, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, T.; Lusser, A.; Pipal, A.; Brosch, G.; Loidl, A.; Goralik-Schramel, M.; Sendra, R.; Wegener, S.; Walton, J.D.; Loidl, P. RPD3-type histone deacetylases in maize embryos. Biochemistry 2000, 39, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, X.; Luo, M.; Yang, S.; Wu, K. Involvement of histone modifications in plant abiotic stress responses. J. Integr. Plant Biol. 2013, 55, 892–901. [Google Scholar] [CrossRef]
- Sridha, S.; Wu, K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 2006, 46, 124–133. [Google Scholar] [CrossRef]
- Song, C.P.; Agarwal, M.; Ohta, M.; Guo, Y.; Halfter, U.; Wang, P.; Zhu, J.K. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 2005, 17, 2384–2396. [Google Scholar] [CrossRef]
- Song, C.P.; Galbraith, D.W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol. Biol. 2006, 60, 241–257. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, L.; Zhou, C.; Yu, C.W.; Chaikam, V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 2008, 59, 225–234. [Google Scholar] [CrossRef]
- Choi, S.M.; Song, H.R.; Han, S.K.; Han, M.; Kim, C.Y.; Park, J.; Lee, Y.H.; Jeon, J.S.; Noh, Y.S.; Noh, B. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 2012, 71, 135–146. [Google Scholar] [CrossRef]
- Devoto, A.; Nieto-Rostro, M.; Xie, D.; Ellis, C.; Harmston, R.; Patrick, E.; Davis, J.; Sherratt, L.; Coleman, M.; Turner, J.G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 2002, 32, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Zhi, P.; Kong, L.; Liu, J.; Zhang, X.; Wang, X.; Li, H.; Sun, M.; Li, Y.; Chang, C. Histone Deacetylase TaHDT701 Functions in TaHDA6-TaHOS15 Complex to Regulate Wheat Defense Responses to Blumeria graminis f.sp. tritici. Int. J. Mol. Sci. 2020, 21, 2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhi, P.; Wang, X.; Fan, Q.; Chang, C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. J. Exp. Bot. 2019, 70, 255–268. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Location | CDS Length (bp) | Size (aa) | MW (kDa) | pI | Exons | Predicted Location |
---|---|---|---|---|---|---|---|
TraesCS1A02G275300.1 | 1A:469374580-469377056 | 1176 | 391 | 42.23 | 5.41 | 4 | nucleus |
TraesCS1A02G317100.1 | 1A:508627551-508633273 | 1194 | 397 | 43.38 | 5.87 | 9 | chloroplast |
TraesCS1A02G445700.4 | 1A:593397528-593400047 | 930 | 309 | 33.16 | 4.69 | 9 | nucleus |
TraesCS1B02G284500.1 | 1B:493871055-493873999 | 1182 | 393 | 42.47 | 5.54 | 4 | nucleus |
TraesCS1B02G329500.1 | 1B:555624218-555635513 | 1173 | 390 | 42.83 | 6.50 | 9 | chloroplast |
TraesCS1D02G274900.1 | 1D:370350086-370352713 | 1101 | 366 | 39.48 | 5.29 | 4 | nucleus |
TraesCS1D02G454400.2 | 1D:495110924-495114039 | 936 | 311 | 33.61 | 4.65 | 6 | nucleus |
TraesCS2A02G077800.1 | 2A:35492638-35498995 | 1323 | 440 | 48.72 | 9.02 | 13 | nucleus |
TraesCS2A02G177100.1 | 2A:136335596-136344608 | 2082 | 693 | 74.30 | 5.15 | 13 | extracellular space |
TraesCS2A02G293200.1 | 2A:504284771-504290294 | 1293 | 430 | 49.18 | 4.98 | 14 | cytoplasm |
TraesCS2B02G092700.1 | 2B:53464614-53473185 | 1398 | 465 | 51.53 | 8.93 | 15 | nucleus |
TraesCS2B02G204100.1 | 2B:183653818-183662786 | 2082 | 693 | 74.10 | 5.18 | 13 | extracellular space |
TraesCS2B02G309700.1 | 2B:442785651-442791643 | 1293 | 430 | 49.22 | 4.98 | 14 | cytoplasm |
TraesCS2D02G075800.1 | 2D:32472578-32481962 | 2037 | 678 | 74.54 | 8.79 | 16 | nucleus |
TraesCS2D02G185200.1 | 2D:130425457-130434385 | 2082 | 693 | 73.86 | 5.22 | 13 | extracellular space |
TraesCS2D02G291000.1 | 2D:373215743-373221603 | 1293 | 430 | 49.16 | 4.98 | 14 | cytoplasm |
TraesCS3A02G415200.1 | 3A:658650984-658654457 | 1212 | 403 | 43.60 | 8.78 | 10 | nucleus |
TraesCS3B02G318000.1 | 3B:512513775-512515566 | 1143 | 380 | 41.42 | 5.81 | 7 | cytoplasm |
TraesCS3B02G450300.1 | 3B:690854722-690858308 | 1152 | 383 | 41.59 | 8.60 | 10 | nucleus |
TraesCS3B02G450400.1 | 3B:690859082-690862087 | 1137 | 378 | 40.33 | 4.63 | 10 | nucleus |
TraesCS3D02G410300.2 | 3D:523703723-523707098 | 1095 | 364 | 39.41 | 8.81 | 11 | nucleus |
TraesCS3D02G410400.1 | 3D:523708265-523711340 | 1299 | 432 | 46.11 | 4.60 | 9 | nucleus |
TraesCS3D02G422300.1 | 3D:534235224-534237524 | 984 | 327 | 35.84 | 5.11 | 8 | cytoplasm |
TraesCS4A02G213200.1 | 4A:511187957-511189477 | 1416 | 471 | 51.41 | 5.32 | 2 | nucleus |
TraesCS4B02G102600.1 | 4B:108669975-108671813 | 1416 | 471 | 51.45 | 5.37 | 2 | nucleus |
TraesCS4D02G100000.1 | 4D:77120156-77121980 | 1416 | 471 | 51.56 | 5.58 | 2 | nucleus |
TraesCS5A02G065300.1 | 5A:70489613-70498580 | 1845 | 614 | 66.09 | 6.00 | 17 | nucleus |
TraesCS5A02G114700.3 | 5A:229763694-229772647 | 1245 | 414 | 46.17 | 9.20 | 7 | nucleus |
TraesCS5A02G119300.2 | 5A:248528260-248532633 | 1335 | 444 | 47.94 | 6.31 | 9 | chloroplast |
TraesCS5A02G295000.1 | 5A:503667634-503669320 | 1455 | 484 | 54.55 | 5.90 | 1 | nucleus |
TraesCS5B02G072100.1 | 5B:83785074-83793761 | 1845 | 614 | 66.14 | 5.71 | 17 | nucleus |
TraesCS5B02G121300.1 | 5B:216399368-216404020 | 1362 | 453 | 48.98 | 5.96 | 9 | extracellular space |
TraesCS5D02G076100.1 | 5D:75357410-75367639 | 1839 | 612 | 65.98 | 5.72 | 17 | nucleus |
TraesCS5D02G124700.1 | 5D:190263056-190268180 | 1191 | 396 | 43.78 | 9.42 | 12 | mitochondrion |
TraesCS5D02G126600.1 | 5D:193511197-193521308 | 1335 | 444 | 47.81 | 6.27 | 9 | chloroplast |
TraesCS5D02G302400.1 | 5D:398576928-398578415 | 1488 | 495 | 55.76 | 6.34 | 1 | nucleus |
TraesCS6A02G181100.1 | 6A:206004364-206008422 | 1377 | 458 | 50.97 | 5.26 | 6 | cytoplasm |
TraesCS6A02G184100.2 | 6A:214563801-214569359 | 1560 | 519 | 58.05 | 5.13 | 7 | nucleus |
TraesCS6B02G210200.1 | 6B:277612837-277616723 | 1377 | 458 | 50.99 | 5.36 | 6 | cytoplasm |
TraesCS6B02G212600.3 | 6B:281226434-281231988 | 1563 | 520 | 58.23 | 5.12 | 7 | nucleus |
TraesCS6D02G168400.1 | 6D:153807374-153811200 | 1377 | 458 | 50.97 | 5.26 | 6 | cytoplasm |
TraesCS6D02G171000.1 | 6D:157583544-157589113 | 1725 | 574 | 64.25 | 5.54 | 7 | extracellular space |
TraesCS7A02G362600.1 | 7A:536980277-536984430 | 1068 | 355 | 39.18 | 6.15 | 13 | chloroplast |
TraesCS7A02G365600.3 | 7A:539543850-539554190 | 1572 | 523 | 58.40 | 5.47 | 7 | nucleus |
TraesCS7B02G261800.1 | 7B:482237779-482248552 | 1560 | 519 | 58.00 | 5.43 | 7 | nucleus |
TraesCS7B02G266000.1 | 7B:488410536-488414496 | 1062 | 353 | 39.01 | 6.09 | 14 | chloroplast |
TraesCS7D02G356800.1 | 7D:459923113-459936250 | 1560 | 519 | 58.04 | 5.33 | 7 | nucleus |
TraesCS7D02G360500.1 | 7D:463261509-463265496 | 1062 | 353 | 38.99 | 6.26 | 13 | chloroplast |
TraesCSU02G136000.1 | Un:121734084-121741419 | 1191 | 396 | 43.75 | 9.21 | 11 | mitochondrion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, P.; Gao, S.; He, L.; Xu, M.; Zhang, T.; Zhang, F.; Jiang, Y.; Liu, T.; Yang, J.; Yang, J.; et al. Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.). Plants 2021, 10, 19. https://doi.org/10.3390/plants10010019
Jin P, Gao S, He L, Xu M, Zhang T, Zhang F, Jiang Y, Liu T, Yang J, Yang J, et al. Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.). Plants. 2021; 10(1):19. https://doi.org/10.3390/plants10010019
Chicago/Turabian StyleJin, Peng, Shiqi Gao, Long He, Miaoze Xu, Tianye Zhang, Fan Zhang, Yaoyao Jiang, Tingting Liu, Jin Yang, Jian Yang, and et al. 2021. "Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.)" Plants 10, no. 1: 19. https://doi.org/10.3390/plants10010019
APA StyleJin, P., Gao, S., He, L., Xu, M., Zhang, T., Zhang, F., Jiang, Y., Liu, T., Yang, J., Yang, J., Dai, L., & Chen, J. (2021). Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.). Plants, 10(1), 19. https://doi.org/10.3390/plants10010019