Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier
Abstract
:1. Introduction
2. Epigenetic Mechanisms in Animals That Play a Role in the Inheritance of Acquired Traits
2.1. DNA Methylation
2.2. Histone Modifications
2.3. Small Noncoding RNAs
3. Epigenetic Mechanisms in Insects That Play a Role in the Inheritance of Acquired Traits
4. Genetic Assimilation
5. Conclusions
Funding
Conflicts of Interest
References
- Yawen, Z. Charles Darwin’s Theory of Pangenesis. In Embryo Project Encyclopedia; Arizona State University, School of Life Sciences, Center for Biology and Society: Tempe, AZ, USA, 2014; Available online: http://embryo.asu.edu/handle/10776/8041 (accessed on 24 September 2020).
- Yawen, Z. The Germ-Plasm: A Theory of Heredity (1893), by August Weismann. In Embryo Project Encyclopedia; Arizona State University, School of Life Sciences, Center for Biology and Society: Tempe, AZ, USA, 2015; Available online: http://embryo.asu.edu/handle/10776/8284 (accessed on 24 September 2020).
- Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. FürHydrobiol. 1990, 119, 191–196. [Google Scholar]
- Tollrian, R. Chaoborus crystallinus predation on Daphnia pulex: Can induced morphological changes balance effects of body size on vulnerability? Oecologia 1995, 101, 151–155. [Google Scholar] [CrossRef]
- Waterland, R.A.; Jirtle, R.L. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 2003, 23, 5293–5300. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.; Matthews, S.G. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function in juvenile guinea pigs. J. Neuroendocr. 2007, 19, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Crudo, A.; Petropoulos, S.; Moisiadis, V.G.; Iqbal, M.; Kostaki, A.; Machnes, Z.; Szyf, M.; Matthews, S.G. Prenatal Synthetic Glucocorticoid Treatment Changes DNA Methylation States in Male Organ Systems: Multigenerational Effects. Endocrinology 2012, 153, 3269–3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, B.G.; Ressler, K.J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 2014, 17, 89–96. [Google Scholar] [CrossRef]
- Kishimoto, S.; Uno, M.; Okabe, E.; Nono, M.; Nishida, E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat. Commun. 2017, 8, 14031. [Google Scholar] [CrossRef] [Green Version]
- Keiser, C.N.; Mondor, E.B. Transgenerational Behavioral Plasticity in a Parthenogenetic Insect in Response to Increased Predation Risk. J. Insect Behav. 2013, 26, 603–613. [Google Scholar] [CrossRef]
- Freitak, D.; Schmidtberg, H.; Dickel, F.; Lochnit, G.; Vogel, H.; Vilcinskas, A. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 2014, 5, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, Z.M. Transgenerational influence of sensorimotor training on offspring behavior and its neural basis in Drosophila. Neurobiol. Learn. Mem. 2016, 131, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Gowri, V.; Dion, E.; Viswanath, A.; Piel, F.M.; Monteiro, A. Transgenerational inheritance of learned preferences for novel host plant odors in Bicyclus anynana butterflies. Evolution 2019, 73, 2401–2414. [Google Scholar] [CrossRef]
- Dion, E.; Pui, L.X.; Weber, K.; Monteiro, A. Early-exposure to new sex pheromone blends alters mate preference in female butterflies and in their offspring. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deichmann, U. Epigenetics: The origins and evolution of a fashionable topic. Dev. Biol. 2016, 416, 249–254. [Google Scholar] [CrossRef]
- Waddington, C.H. Towards a Theoretical Biology. Nature 1968, 218, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Urvalek, A.; Laursen, K.B.; Gudas, L.J. The Roles of Retinoic Acid and Retinoic Acid Receptors in Inducing Epigenetic Changes. Subcell. Biochem. 2014, 70, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-T. Genes, Genetics, and Epigenetics: A Correspondence. Science 2001, 293, 1103–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nègre, N.; Brown, C.D.; Ma, L.; Bristow, C.A.; Miller, S.; Wagner, U.; Kheradpour, P.; Eaton, M.L.; Loriaux, P.; Sealfon, R.; et al. A cis-regulatory map of the Drosophila genome. Nature 2011, 471, 527–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 2007, 8, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Danchin, E.; Pocheville, A.; Rey, O.; Pujol, B.; Blanchet, S. Epigenetically facilitated mutational assimilation: Epigenetics as a hub within the inclusive evolutionary synthesis. Biol. Rev. Camb. Philos. Soc. 2019, 94, 259–282. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, T.M.; Rezwan, F.I.; Jiang, Y.; Karmaus, W.; Svanes, C.; Holloway, J.W. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J. Allergy Clin. Immunol. 2018, 142, 765–772. [Google Scholar] [CrossRef]
- Tuscher, J.J.; Day, J.J. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol. Dis. 2019, 132, 104591. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, A.; Mansuy, I.M. Inter- and transgenerational inheritance of behavioral phenotypes. Curr. Opin. Behav. Sci. 2019, 25, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Eli-Byarlay, H. The Function of DNA Methylation Marks in Social Insects. Front. Ecol. Evol. 2016, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Wellband, K.; Roth, D.; Linnansaari, T.; Curry, R.A.; Bernatchez, L. Environment-driven reprogramming of gamete DNA methylation occurs during maturation and is transmitted intergenerationally in salmon. BioRxiv 2021. [Google Scholar] [CrossRef]
- Engmann, O.; Mansuy, I.M. Chapter 18–Stress and its Effects Across Generations; Chen, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 269–290. [Google Scholar] [CrossRef]
- Bogdanović, O.; Veenstra, G.J.C. DNA methylation and methyl-CpG binding proteins: Developmental requirements and function. Chromosoma 2009, 118, 549–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.; Hutnick, L. Methyl-CpG binding proteins in the nervous system. Cell Res. 2005, 15, 255–261. [Google Scholar] [CrossRef]
- Du, J.; Johnson, L.M.; Jacobsen, S.E.; Patel, D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 2015, 16, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Bommarito, P.A.; Fry, R.C. Chapter 2-1—The Role of DNA Methylation in Gene Regulation; McCullough, S.D., Dolinoy, D.D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 127–151. [Google Scholar] [CrossRef]
- Roberts, S.B.; Gavery, M.R. Is There a Relationship between DNA Methylation and Phenotypic Plasticity in Invertebrates? Front. Physiol. 2012, 2, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeremias, G.; Barbosa, J.; Marques, S.M.; De Schamphelaere, K.A.; Van Nieuwerburgh, F.; Deforce, D.; Gonçalves, F.J.; Pereira, J.L.; Asselman, J. Transgenerational Inheritance of DNA Hypomethylation in Daphnia magna in Response to Salinity Stress. Environ. Sci. Technol. 2018, 52, 10114–10123. [Google Scholar] [CrossRef] [Green Version]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod. Toxicol. 2012, 34, 708–719. [Google Scholar] [CrossRef] [Green Version]
- Kelley, J.L.; Desvignes, T.; McGowan, K.L.; Perez, M.; Rodriguez, L.A.; Brown, A.P.; Culumber, Z.; Tobler, M. microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. J. Evol. Biol. 2021, 34, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Maze, I.; Nestler, E.J. The epigenetic landscape of addiction. Ann. N. Y. Acad. Sci. 2011, 1216, 99–113. [Google Scholar] [CrossRef]
- Norouzitallab, P.; Baruah, K.; Vandegehuchte, M.; Van Stappen, G.; Catania, F.; Bussche, J.V.; Vanhaecke, L.; Sorgeloos, P.; Bossier, P. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. FASEB J. 2014, 28, 3552–3563. [Google Scholar] [CrossRef]
- Vassoler, F.; White, S.L.; Schmidt, H.D.; Sadri-Vakili, G.; Pierce, R.C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 2012, 16, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Hashemian, S.M.; Pourhanifeh, M.H.; Fadaei, S.; Velayati, A.A.; Mirzaei, H.; Hamblin, M.R. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Mol. Ther. Nucleic Acids 2020, 21, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Aravin, A.A.; Lagos-Quintana, M.; Yalcin, A.; Zavolan, M.; Marks, D.; Snyder, B.; Gaasterland, T.; Meyer, J.; Tuschl, T. The Small RNA Profile during Drosophila melanogaster Development. Dev. Cell 2003, 5, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009, 10, 94–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercer, T.; Mattick, J. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 2013, 20, 300–307. [Google Scholar] [CrossRef]
- Gapp, K.; Jawaid, A.; Sarkies, P.; Bohacek, J.; Pelczar, P.; Prados, J.; Farinelli, L.; Miska, E.; Mansuy, I.M. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 2014, 17, 667–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoued, H.S.; Sannigrahi, S.; Hunter, S.C.; Doshi, N.; Sathi, Z.S.; Chan, A.W.S.; Walum, H.; Dias, B.G. Proximate causes and consequences of intergenerational influences of salient sensory experience. Genes Brain Behav. 2020, 19, e12638. [Google Scholar] [CrossRef] [PubMed]
- Rechavi, O.; Houri-Ze’Evi, L.; Anava, S.; Goh, S.; Kerk, S.Y.; Hannon, G.J.; Hobert, O. Starvation-Induced Transgenerational Inheritance of Small RNAs in C. elegans. Cell 2014, 158, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.S.; Kaletsky, R.; Lesnik, C.; Cota, V.; Blackman, E.; Parsons, L.R.; Gitai, Z.; Murphy, C.T. The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021, 184, 4697–4712. [Google Scholar] [CrossRef] [PubMed]
- Gegner, J.; Baudach, A.; Mukherjee, K.; Halitschke, R.; Vogel, H.; Vilcinskas, A. Epigenetic Mechanisms Are Involved in Sex-Specific Trans-Generational Immune Priming in the Lepidopteran Model Host Manduca sexta. Front. Physiol. 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, A.J.; Dearden, P.K. A ‘phenotypic hangover’: The predictive adaptive response and multigenerational effects of altered nutrition on the transcriptome of Drosophila melanogaster. Environ. Epigenetics 2017, 3, dvx019. [Google Scholar] [CrossRef] [Green Version]
- Stern, S.; Fridmann-Sirkis, Y.; Braun, E.; Soen, Y. Epigenetically Heritable Alteration of Fly Development in Response to Toxic Challenge. Cell Reports 2012, 1, 528–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, C.H. Genetic Assimilation of the Bithorax Phenotype. Evolution 1956, 10, 1–13. [Google Scholar] [CrossRef]
- Gibson, G.; Hogness, D.S. Effect of Polymorphism in the Drosophila Regulatory Gene Ultrabithorax on Homeotic Stability. Science 1996, 271, 200–203. [Google Scholar] [CrossRef]
- Sikkink, K.L.; Reynolds, R.M.; Ituarte, C.M.; Cresko, W.A.; Phillips, P. Rapid Evolution of Phenotypic Plasticity and Shifting Thresholds of Genetic Assimilation in the Nematode Caenorhabditis remanei. G3 Genes Genome Genet. 2014, 4, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Remy, J.-J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 2010, 20, R877–R878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gowri, V.; Monteiro, A. Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier. J. Dev. Biol. 2021, 9, 41. https://doi.org/10.3390/jdb9040041
Gowri V, Monteiro A. Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier. Journal of Developmental Biology. 2021; 9(4):41. https://doi.org/10.3390/jdb9040041
Chicago/Turabian StyleGowri, V., and Antónia Monteiro. 2021. "Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier" Journal of Developmental Biology 9, no. 4: 41. https://doi.org/10.3390/jdb9040041
APA StyleGowri, V., & Monteiro, A. (2021). Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier. Journal of Developmental Biology, 9(4), 41. https://doi.org/10.3390/jdb9040041