The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middelkoop, T.C.; Korswagen, H.C. Development and migration of the C. elegans Q neuroblasts and their descendants. WormBook 2014, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Chalfie, M.; Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 1981, 82, 358–370. [Google Scholar] [CrossRef]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977, 56, 110–156. [Google Scholar] [CrossRef]
- Sundararajan, L.; Lundquist, E.A. Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans. Genetics 2012, 192, 1373–1388. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.O.; Li, H.; Lundquist, E.A. The MIG-15 NIK kinase acts cell-autonomously in neuroblast polarization and migration in C. elegans. Dev. Biol. 2008, 324, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Honigberg, L.; Kenyon, C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 2000, 127, 4655–4668. [Google Scholar]
- Sundararajan, L.; Norris, M.L.; Schoneich, S.; Ackley, B.D.; Lundquist, E.A. The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior-posterior neuroblast migration. Dev. Biol. 2014, 392, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Bringmann, H.; Cowan, C.R.; Kong, J.; Hyman, A.A. LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Curr. Biol. 2007, 17, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, D.C.; Lee, M.; Robertson, B.; Tsou, M.F.; Rose, L.S.; Wood, W.B. Embryonic handedness choice in C. elegans involves the Galpha protein GPA-16. Development 2003, 130, 5731–5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshar, K.; Willard, F.S.; Colombo, K.; Siderovski, D.P.; Gonczy, P. Cortical localization of the Galpha protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development 2005, 132, 4449–4459. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, D.C.; Crew, J.R.; Kramer, J.M.; Wood, W.B. Cuticle chirality and body handedness in Caenorhabditis elegans. Dev. Genet. 1998, 23, 164–174. [Google Scholar] [CrossRef]
- Josephson, M.P.; Aliani, R.; Norris, M.L.; Ochs, M.E.; Gujar, M.; Lundquist, E.A. The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit. Genetics 2017, 205, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Josephson, M.P.; Miltner, A.M.; Lundquist, E.A. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration. Genetics 2016, 203, 1747–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinovyeva, A.Y.; Yamamoto, Y.; Sawa, H.; Forrester, W.C. Complex Network of Wnt Signaling Regulates Neuronal Migrations during Caenorhabditis elegans Development. Genetics 2008, 179, 1357–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josephson, M.P.; Chai, Y.; Ou, G.; Lundquist, E.A. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans. PLoS ONE 2016, 11, e0148658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, N.; Middelkoop, T.C.; Mentink, R.A.; Betist, M.C.; Tonegawa, S.; Mooijman, D.; Korswagen, H.C.; van Oudenaarden, A. Feedback control of gene expression variability in the Caenorhabditis elegans Wnt pathway. Cell 2013, 155, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, J.; Ahmed, S.; Hodgkin, J. Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 2004, 168, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Novelli, J.; Page, A.P.; Hodgkin, J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics 2006, 172, 2253–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasi, K.; Hurskainen, M.; Kallio, M.; Staven, S.; Sormunen, R.; Heape, A.M.; Avila, R.L.; Kirschner, D.; Muona, A.; Tolonen, U.; et al. Lack of collagen XV impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J. Neurosci 2010, 30, 14490–14501. [Google Scholar] [CrossRef]
- Hurskainen, M.; Ruggiero, F.; Hagg, P.; Pihlajaniemi, T.; Huhtala, P. Recombinant human collagen XV regulates cell adhesion and migration. J. Biol. Chem. 2010, 285, 5258–5265. [Google Scholar] [CrossRef] [Green Version]
- Hagg, P.; Vaisanen, T.; Tuomisto, A.; Rehn, M.; Tu, H.; Huhtala, P.; Eskelinen, S.; Pihlajaniemi, T. Type XIII collagen: A novel cell adhesion component present in a range of cell-matrix adhesions and in the intercalated discs between cardiac muscle cells. Matrix Biol. 2001, 19, 727–742. [Google Scholar] [CrossRef]
- Matsuo, N.; Tanaka, S.; Yoshioka, H.; Koch, M.; Gordon, M.K.; Ramirez, F. Collagen XXIV (Col24a1) gene expression is a specific marker of osteoblast differentiation and bone formation. Connect. Tissue Res. 2008, 49, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Arbeeva, L.; Yau, M.; Mitchell, B.D.; Jackson, R.D.; Ryan, K.; Golightly, Y.M.; Hannan, M.T.; Nelson, A.; Jordan, J.M.; Hochberg, M.C. Genome-wide meta-analysis identified novel variant associated with hallux valgus in Caucasians. J. Foot Ankle Res. 2020, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Shah, N.S.; Sulong, S.; Wan Sulaiman, W.A.; Halim, A.S. Two novel genes TOX3 and COL21A1 in large extended Malay families with nonsyndromic cleft lip and/or palate. Mol. Genet. Genomic Med. 2019, 7, e635. [Google Scholar] [CrossRef]
- Mohamad Shah, N.S.; Salahshourifar, I.; Sulong, S.; Wan Sulaiman, W.A.; Halim, A.S. Discovery of candidate genes for nonsyndromic cleft lip palate through genome-wide linkage analysis of large extended families in the Malay population. BMC Genet. 2016, 17, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, L.; Gonczy, P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook 2014, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulos, P.; Kim, J.; Hyun, M.; Qamari, W.; Lee, I.; You, Y.J. DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome. G3 2015, 5, 1371–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colavita, A.; Krishna, S.; Zheng, H.; Padgett, R.W.; Culotti, J.G. Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 1998, 281, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, R.; Hutter, H.; Moerman, D.G. Membrane extensions are associated with proper anterior migration of muscle cells during Caenorhabditis elegans embryogenesis. Dev. Biol. 2011, 358, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Kalis, A.K.; Kroetz, M.B.; Larson, K.M.; Zarkower, D. Functional genomic identification of genes required for male gonadal differentiation in Caenorhabditis elegans. Genetics 2010, 185, 523–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, W.C.; Garriga, G. Genes necessary for C. elegans cell and growth cone migrations. Development 1997, 124, 1831–1843. [Google Scholar] [PubMed]
- Forrester, W.C.; Perens, E.; Zallen, J.A.; Garriga, G. Identification of Caenorhabditis elegans genes required for neuronal differentiation and migration. Genetics 1998, 148, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Joh, K.; Hedgecock, E.M.; Hori, K. Identification of epi-1 locus as a laminin alpha chain gene in the nematode Caenorhabditis elegans and characterization of epi-1 mutant alleles. DNA Seq. 1999, 10, 207–217. [Google Scholar] [CrossRef]
- Ghosh, S.; Sternberg, P.W. Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev. Biol 2014, 396, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Vogel, B.E.; Hedgecock, E.M. Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. Development 2001, 128, 883–894. [Google Scholar]
- Kawano, T.; Zheng, H.; Merz, D.C.; Kohara, Y.; Tamai, K.K.; Nishiwaki, K.; Culotti, J.G. C. elegans mig-6 encodes papilin isoforms that affect distinct aspects of DTC migration, and interacts genetically with mig-17 and collagen IV. Development 2009, 136, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.L.; Johnson, J.J.; Wang, S.; Sibley, M.H.; Gupta, M.C.; Kramer, J.M. Type IV collagen is detectable in most, but not all, basement membranes of Caenorhabditis elegans and assembles on tissues that do not express it. J. Cell Biol. 1997, 137, 1171–1183. [Google Scholar] [CrossRef]
- Kubota, Y.; Nagata, K.; Sugimoto, A.; Nishiwaki, K. Tissue architecture in the Caenorhabditis elegans gonad depends on interactions among fibulin-1, type IV collagen and the ADAMTS extracellular protease. Genetics 2012, 190, 1379–1388. [Google Scholar] [CrossRef] [Green Version]
- Cram, E.J.; Shang, H.; Schwarzbauer, J.E. A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J. Cell Sci 2006, 119, 4811–4818. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.C.; Graham, P.L.; Kramer, J.M. Characterization of alpha1(IV) collagen mutations in Caenorhabditis elegans and the effects of alpha1 and alpha2(IV) mutations on type IV collagen distribution. J. Cell Biol. 1997, 137, 1185–1196. [Google Scholar] [CrossRef]
- Ackley, B.D.; Crew, J.R.; Elamaa, H.; Pihlajaniemi, T.; Kuo, C.J.; Kramer, J.M. The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J. Cell Biol. 2001, 152, 1219–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackley, B.D.; Kang, S.H.; Crew, J.R.; Suh, C.; Jin, Y.; Kramer, J.M. The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans. J. Neurosci 2003, 23, 3577–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundararajan, L.; Norris, M.L.; Lundquist, E.A. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, H.; Huhtala, P.; Lee, H.M.; Adams, J.C.; Pihlajaniemi, T. Membrane-associated collagens with interrupted triple-helices (MACITs): Evolution from a bilaterian common ancestor and functional conservation in C. elegans. BMC Evol. Biol. 2015, 15, 281. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Unsoeld, T.; Hutter, H. The transmembrane collagen COL-99 guides longitudinally extending axons in C. elegans. Mol. Cell Neurosci 2018, 89, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Hutter, H. Multiple Pathways Act Together To Establish Asymmetry of the Ventral Nerve Cord in Caenorhabditis elegans. Genetics 2019, 211, 1331–1343. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhu, Z.; Ou, G. The heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5 controls Caenorhabditis elegans Q neuroblast polarization during migration. Dev. Biol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spike, C.A.; Davies, A.G.; Shaw, J.E.; Herman, R.K. MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 2002, 129, 4999–5008. [Google Scholar]
- Merz, D.C.; Alves, G.; Kawano, T.; Zheng, H.; Culotti, J.G. UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev. Biol. 2003, 256, 173–186. [Google Scholar] [CrossRef]
- Lundquist, E.A.; Herman, R.K. The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-2. Genetics 1994, 138, 83–101. [Google Scholar] [CrossRef]
- Lundquist, E.A.; Herman, R.K.; Rogalski, T.M.; Mullen, G.P.; Moerman, D.G.; Shaw, J.E. The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. Development 1996, 122, 1601–1610. [Google Scholar] [PubMed]
- Page, A.P.; Johnstone, I.L. The cuticle. WormBook 2007, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentink, R.A.; Middelkoop, T.C.; Rella, L.; Ji, N.; Tang, C.Y.; Betist, M.C.; van Oudenaarden, A.; Korswagen, H.C. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev. Cell 2014, 31, 188–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silhankova, M.; Korswagen, H.C. Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr. Opin. Genet. Dev. 2007, 17, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, F.; Dietz, H.C. Marfan syndrome: From molecular pathogenesis to clinical treatment. Curr. Opin. Genet. Dev. 2007, 17, 252–258. [Google Scholar] [CrossRef]
- Yang, J.; Kramer, J.M. Proteolytic processing of Caenorhabditis elegans SQT-1 cuticle collagen is inhibited in right roller mutants whereas cross-linking is inhibited in left roller mutants. J. Biol. Chem. 1999, 274, 32744–32749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middelkoop, T.C.; Williams, L.; Yang, P.T.; Luchtenberg, J.; Betist, M.C.; Ji, N.; van Oudenaarden, A.; Kenyon, C.; Korswagen, H.C. The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Dev. Biol. 2012, 361, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AQR Position (%) | PQR Position (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype (n = 100) | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
wild-type | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
gpa-16(it143) 25 °C | 99 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 99 |
gpa-16(it143) 25 °C (reversed) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
dpy-17(e164) | 98 | 1 | 0 | 0 | 1 | 9 | 2 | 0 | 2 | 87 |
dpy-17(e1295) | 98 | 1 | 0 | 0 | 1 | 9 | 0 | 4 | 0 | 87 |
dpy-17(e1345) | 99 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 99 |
sqt-3(e2924) | 94 | 3 | 0 | 1 | 2 | 5 | 0 | 1 | 10 | 84 |
sqt-3(e2906) | 87 | 10 | 0 | 0 | 3 | 8 | 3 | 0 | 0 | 90 |
sqt-3(sc63) | 98 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
dpy-17(e164); sqt-3(e2924) | 91 | 6 | 0 | 0 | 3 | 9 | 2 | 2 | 0 | 87 |
dpy-17(e164); sqt-3(sc63) | 97 | 0 | 0 | 0 | 3 | 31 ** | 0 | 0 | 0 | 69 |
dpy-10(e128) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
dpy-13(e184) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
sqt-1(sc103) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
sqt-1(e1350) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
dpy-31(e2919) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
dbl-1(nk3) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
unc-129(ev554) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
unc-40(n324) | 99 | 0 | 0 | 1 | 0 | 48 | 2 | 2 | 4 | 44 |
ptp-3(mu245) | 96 | 0 | 0 | 1 | 3 | 33 | 3 | 2 | 3 | 59 |
dpy-17(e164); unc-40(n324) | 99 | 1 | 0 | 0 | 0 | 80 *** | 0 | 0 | 4 | 16 *** |
dpy-17(e1295); unc-40(n324) | 99 | 0 | 0 | 0 | 1 | 82 *** | 1 | 3 | 2 | 12 *** |
dpy-17(e1345); unc-40(n324) | 94 | 1 | 0 | 0 | 5 | 49 | 3 | 3 | 0 | 45 |
sqt-3(e2924); unc-40(n324) | 99 | 1 | 0 | 0 | 0 | 82 *** | 3 | 3 | 3 | 9 *** |
dpy-17(e164); ptp-3(mu245) | 77 | 5 | 2 | 1 | 15 * | 57 | 2 | 4 | 2 | 35 ** |
epi-1(rh92) | 6 | 29 | 42 | 23 | 0 | 0 | 1 | 7 | 80 | 12 |
epi-1(rh233) | 81 | 11 | 6 | 2 | 0 | 0 | 0 | 0 | 34 | 66 |
epi-1(rh27) | 13 | 21 | 44 | 22 | 0 | 0 | 1 | 5 | 81 | 13 |
epi-1(rh233); unc-40(n324) | 76 | 17 | 5 | 2 | 0 | 13 *** | 9 | 6 | 14 | 58 |
him-4(e1266) | 95 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 99 |
him-4(e1267) | 96 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 98 |
him-4(rh319) | 99 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 99 |
him-4(e1266); unc-40(n324) | 98 | 1 | 0 | 2 | 1 | 25 | 1 | 4 | 15 | 55 |
him-4(rh319); unc-40(n324) | 94 | 4 | 1 | 0 | 1 | 49 ** | 6 | 6 | 6 | 33 |
him-4(e1266); ptp-3(mu245) | 93 | 2 | 0 | 2 | 3 | 31 | 0 | 1 | 2 | 66 |
him-4(rh319); ptp-3(mu245) | 93 | 1 | 0 | 2 | 4 | 54 ** | 1 | 1 | 1 | 43 |
emb-9(b117) | 99 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 100 |
emb-9(b189) | 98 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 98 |
emb-9(g23) | 99 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 95 |
emb-9(hc70) | 100 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 98 |
emb-9(g34) | 100 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 97 |
let-2(g25) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
let-2(g37) | 95 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 99 |
let-2(b246) | 88 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
col-99(ok1204) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
hse-5(tm472) | 85 | 7 | 5 | 0 | 3 | 18 | 2 | 0 | 2 | 78 |
hse-5(ok2493) | 85 | 4 | 1 | 0 | 10 | 15 | 2 | 2 | 7 | 77 |
hse-5(tm472); unc-40(n324) | 65 | 16 | 15 | 1 | 3 | 44 | 17 | 26 | 6 | 7 |
hse-5(ok2493); unc-40(n324) | 71 | 13 | 6 | 7 | 3 | 41 | 18 | 16 | 13 | 12 |
hse-5(tm472); ptp-3(mu245) | 45 | 1 | 3 | 8 | 43 *** | 12 | 1 | 4 | 8 | 75 ** |
hse-5(ok2493); ptp-3(mu245) | 75 | 4 | 1 | 1 | 19 | 9 | 2 | 0 | 1 | 88 |
mec-8(e398) | 97 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 99 |
mec-8(e398) unc-40(n324) | 95 | 2 | 0 | 0 | 3 | 36 | 8 | 4 | 3 | 49 |
mec-8(e398); ptp-3(mu245) | 96 | 1 | 0 | 2 | 1 | 11 | 1 | 1 | 3 | 84 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, A.E.; Lundquist, E.A. The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans. J. Dev. Biol. 2021, 9, 7. https://doi.org/10.3390/jdb9010007
Lang AE, Lundquist EA. The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans. Journal of Developmental Biology. 2021; 9(1):7. https://doi.org/10.3390/jdb9010007
Chicago/Turabian StyleLang, Angelica E., and Erik A. Lundquist. 2021. "The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans" Journal of Developmental Biology 9, no. 1: 7. https://doi.org/10.3390/jdb9010007
APA StyleLang, A. E., & Lundquist, E. A. (2021). The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans. Journal of Developmental Biology, 9(1), 7. https://doi.org/10.3390/jdb9010007