Recapitulating Liver Embryology—Lessons to Be Learned for Liver Diseases
Abstract
1. Introduction
2. Hepatic Embryology
2.1. Liver Development
2.2. Biliary Duct Development
2.3. Vascular Development
3. Abnormalities of Development
3.1. Hepatic Abnormalities
3.2. Vascular Abnormalities
3.3. Biliary Abnormalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saxena, R.; Theise, N. Canals of Hering: Recent insights and current knowledge. Semin. Liver Dis. 2004, 24, 43–48. [Google Scholar] [CrossRef]
- Roskams, T.A.; Theise, N.D.; Balabaud, C.; Bhagat, G.; Bhathal, P.S.; Bioulac-Sage, P.; Brunt, E.M.; Crawford, J.M.; Crosby, H.A.; Desmet, V.; et al. Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers. Hepatology 2004, 39, 1739–1745. [Google Scholar] [CrossRef]
- Khalifa, A.; Rockey, D.C. The Value of Liver Biopsy and Histology in Liver Disease Diagnosis and Patient Care-a Pragmatic Prospective Clinical Practice Study. J. Clin. Gastroenterol. 2024, 58, 912–916. [Google Scholar] [CrossRef]
- Dhole, S.D.; Kher, A.S.; Ghildiyal, R.G.; Tambse, M.P. Chronic Liver Diseases in Children: Clinical Profile and Histology. J. Clin. Diagn. Res. JCDR 2015, 9, SC04–SC07. [Google Scholar] [CrossRef]
- Choi, J.H. Histological and Molecular Evaluation of Liver Biopsies: A Practical and Updated Review. Int. J. Mol. Sci. 2025, 26, 7729. [Google Scholar] [CrossRef]
- Vestentoft, P.S.; Jelnes, P.; Hopkinson, B.M.; Vainer, B.; Møllgård, K.; Quistorff, B.; Bisgaard, H.C. Three-dimensional reconstructions of intrahepatic bile duct tubulogenesis in human liver. BMC Dev. Biol. 2011, 11, 56. [Google Scholar] [CrossRef]
- Ober, E.A.; Lemaigre, F.P. Development of the Liver: Insights into Organ and Tissue Morphogenesis. J. Hepatol. 2018, 65, 1049–1062. [Google Scholar] [CrossRef]
- Berasain, C.; Avila, M.A. Regulation of hepatocyte identity and quiescence. Cell. Mol. Life Sci. CMLS 2015, 72, 3831. [Google Scholar] [CrossRef]
- Torre, C.; Perret, C.; Colnot, S. Molecular determinants of liver zonation. Prog. Mol. Biol. Transl. Sci. 2010, 97, 127–150. [Google Scholar] [CrossRef]
- Russell, J.O.; Monga, S.P. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. Annu. Rev. Pathol. 2017, 13, 351. [Google Scholar] [CrossRef]
- Goel, C.; Monga, S.P.; Nejak-Bowen, K. Role and Regulation of Wnt/β-Catenin in Hepatic Perivenous Zonation and Physiological Homeostasis. Am. J. Pathol. 2022, 192, 4–17. [Google Scholar] [CrossRef]
- Moon, H.; Ro, S.W. MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers 2021, 13, 3026. [Google Scholar] [CrossRef]
- Yu, S.; Gao, J.; Wang, H.; Liu, L.; Liu, X.; Xu, Y.; Shi, J.; Guo, W.; Zhang, S. Significance of Liver Zonation in Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2022, 10, 806408. [Google Scholar] [CrossRef]
- Strazzabosco, M.; Fabris, L. Development of the Bile Ducts: Essentials for the Clinical Hepatologist. J. Hepatol. 2012, 56, 1159. [Google Scholar] [CrossRef]
- Roskams, T.; Desmet, V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat. Rec. 2008, 291, 628–635. [Google Scholar] [CrossRef]
- Clotman, F.; Lannoy, V.J.; Reber, M.; Cereghini, S.; Cassiman, D.; Jacquemin, P.; Roskams, T.; Rousseau, G.G.; Lemaigre, F.P. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002, 129, 1819–1828. [Google Scholar] [CrossRef]
- Kalinichenko, V.V.; Zhou, Y.; Bhattacharyya, D.; Kim, W.; Shin, B.; Bambal, K.; Costa, R.H. Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J. Biol. Chem. 2002, 277, 12369–12374. [Google Scholar] [CrossRef]
- Lemaigre, F.P. Development of the biliary tract. Mech. Dev. 2003, 120, 81–87. [Google Scholar] [CrossRef]
- Lyons, A.M.; Boulter, L. The developmental origins of Notch-driven intrahepatic bile duct disorders. Dis. Model. Mech. 2021, 14, dmm048413. [Google Scholar] [CrossRef]
- Tanimizu, N.; Mitaka, T. Re-evaluation of liver stem/progenitor cells. Organogenesis 2014, 10, 208–215. [Google Scholar] [CrossRef]
- Zong, Y.; Stanger, B.Z. Molecular Mechanisms of Bile Duct Development. Int. J. Biochem. Cell Biol. 2011, 43, 257. [Google Scholar] [CrossRef]
- Shin, D.; Monga, S.P.S. Cellular and Molecular Basis of Liver Development. Compr. Physiol. 2013, 3, 799. [Google Scholar] [CrossRef]
- Fabris, L.; Strazzabosco, M.; Crosby, H.A.; Ballardini, G.; Hubscher, S.G.; Kelly, D.A.; Neuberger, J.M.; Strain, A.J.; Joplin, R. Characterization and Isolation of Ductular Cells Coexpressing Neural Cell Adhesion Molecule and Bcl-2 from Primary Cholangiopathies and Ductal Plate Malformations. Am. J. Pathol. 2000, 156, 1599–1612. [Google Scholar] [CrossRef] [PubMed]
- Auth, M.K.H.; Joplin, R.E.; Okamoto, M.; Ishida, Y.; McMaster, P.; Neuberger, J.M.; Blaheta, R.A.; Voit, T.; Strain, A.J. Morphogenesis of primary human biliary epithelial cells: Induction in high-density culture or by coculture with autologous human hepatocytes. Hepatology 2001, 33, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, R.; Suer, R.E.; Van Hul, N.; Kopp, J.L.; Beaudry, J.; Cordi, S.; Antoniou, A.; Raynaud, P.; Lepreux, S.; Jacquemin, P.; et al. Embryonic Ductal Plate Cells Give Rise to Cholangiocytes, Periportal Hepatocytes and Adult Liver Progenitor Cells. Gastroenterology 2011, 141, 1432. [Google Scholar] [CrossRef]
- Limaye, P.B.; Alarcón, G.; Walls, A.L.; Nalesnik, M.A.; Michalopoulos, G.K.; Demetris, A.J.; Ochoa, E.R. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab. Investig. 2008, 88, 865–872. [Google Scholar] [CrossRef]
- Thenappan, A.; Li, Y.; Kitisin, K.; Rashid, A.; Shetty, K.; Johnson, L.; Mishra, L. Role of Transforming Growth Factor β Signaling and Expansion of Progenitor Cells in Regenerating Liver. Hepatology 2010, 51, 1373. [Google Scholar] [CrossRef]
- Hofmann, J.J.; Zovein, A.C.; Koh, H.; Radtke, F.; Weinmaster, G.; Iruela-Arispe, M.L. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: Insights into Alagille syndrome. Development 2010, 137, 4061–4072. [Google Scholar] [CrossRef]
- Kodama, Y.; Hijikata, M.; Kageyama, R.; Shimotohno, K.; Chiba, T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 2004, 127, 1775–1786. [Google Scholar] [CrossRef]
- Tchorz, J.S.; Kinter, J.; Müller, M.; Tornillo, L.; Heim, M.H.; Bettler, B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 2009, 50, 871–879. [Google Scholar] [CrossRef]
- Adams, J.M.; Jafar-Nejad, H. The Roles of Notch Signaling in Liver Development and Disease. Biomolecules 2019, 9, 608. [Google Scholar] [CrossRef]
- Tian, L.; Wang, Y.; Jang, Y.Y. Wnt signaling in biliary development, proliferation, and fibrosis. Exp. Biol. Med. 2022, 247, 360. [Google Scholar] [CrossRef]
- So, J.; Khaliq, M.; Evason, K.; Ninov, N.; Martin, B.L.; Stainier, D.Y.R.; Shin, D. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating Notch activity. Hepatology 2018, 67, 2352. [Google Scholar] [CrossRef]
- Lemaigre, F.P. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. Annu. Rev. Pathol. Mech. Dis. 2019, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Terada, T. Ductal plate in hepatoblasts in human fetal livers: I. ductal plate-like structures with cytokeratins 7 and 19 are occasionally seen within human fetal hepatoblasts. Int. J. Clin. Exp. Pathol. 2013, 6, 889. [Google Scholar] [PubMed]
- Gordillo, M.; Evans, T.; Gouon-Evans, V. Orchestrating liver development. Development 2015, 142, 2094. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Hara, A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol. Int. 2022, 72, 589. [Google Scholar] [CrossRef]
- Collardeau-Frachon, S.; Scoazec, J.Y. Vascular Development and Differentiation During Human Liver Organogenesis. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2008, 291, 614–627. [Google Scholar] [CrossRef]
- Torres Rojas, A.M.; Lorente, S.; Hautefeuille, M.; Sanchez-Cedillo, A. Hierarchical Modeling of the Liver Vascular System. Front. Physiol. 2021, 12, 733165. [Google Scholar] [CrossRef]
- Lorente, S.; Hautefeuille, M.; Sanchez-Cedillo, A. The liver, a functionalized vascular structure. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Haugen, G.; Kiserud, T.; Godfrey, K.; Crozier, S.; Hanson, M. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2004, 24, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.; Wilson, M.A.; Johnston, M.V. Hypoxic Ischemic Encephalopathy in the Term Infant. Clin. Perinatol. 2009, 36, 835. [Google Scholar] [CrossRef] [PubMed]
- Henrion, J.; Schapira, M.; Luwaert, R.; Colin, L.; Delannoy, A.; Heller, F.R. Hypoxic hepatitis: Clinical and hemodynamic study in 142 consecutive cases. Medicine 2003, 82, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Firdouse, M.; Agarwal, A.; Pindiprolu, B.; Mondal, T. Two ductus venosus: A previously unreported anomaly. J. Ultrasound 2014, 17, 293. [Google Scholar] [CrossRef]
- Mariotti, V.; Fiorotto, R.; Cadamuro, M.; Fabris, L.; Strazzabosco, M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021, 3, 100251. [Google Scholar] [CrossRef]
- Nacif, L.S.; Buscariolli, Y.D.S.; D’Albuquerque, L.A.C.; Andraus, W. Agenesis of the right hepatic lobe. Case Rep. Med. 2012, 2012, 415742. [Google Scholar] [CrossRef]
- Matsushita, K.; Gotoh, K.; Eguchi, H.; Iwagami, Y.; Yamada, D.; Asaoka, T.; Noda, T.; Wada, H.; Kawamoto, K.; Doki, Y.; et al. Agenesis of the left hepatic lobe undergoing laparoscopic hepatectomy for hepatocellular carcinoma: A case report. Surg. Case Rep. 2017, 3, 50. [Google Scholar] [CrossRef]
- Eitler, K.; Bibok, A.; Telkes, G. Situs Inversus Totalis: A Clinical Review. Int. J. Gen. Med. 2022, 15, 2437. [Google Scholar] [CrossRef]
- Davenport, M. Syndromic variants of biliary atresia. World J. Pediatr. Surg. 2025, 8, e001040. [Google Scholar] [CrossRef]
- Betalli, P.; Davenport, M. Biliary Atresia and Other Congenital Disorders of the Extrahepatic Biliary Tree. In Pediatric Hepatology and Liver Transplantation; D’Antiga, L., Ed.; Springer: Berlin, Germany, 2019; pp. 129–144. [Google Scholar]
- Stahlschmidt, J.; Stringer, M.D.; Wyatt, J.; Davison, S.; Rajwal, S.; McClean, P. Histologic oddities at the porta hepatis in biliary atresia. J. Pediatr. Surg. 2008, 43, 1328–1332. [Google Scholar] [CrossRef]
- Shpoliansky, M.; Tobar, A.; Mozer-Glassberg, Y.; Rosenfeld Bar-Lev, M.; Shamir, R.; Shafir, M.; Gurevich, M.; Waisbourd-Zinman, O. Portal plate bile duct diameter in biliary atresia is associated with long-term outcome. Pediatr. Surg. Int. 2022, 38, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Quelhas, P.; Jacinto, J.; Cerski, C.; Oliveira, R.; Oliveira, J.; Carvalho, E.; Dos Santos, J. Protocols of Investigation of Neonatal Cholestasis—A Critical Appraisal. Healthcare 2022, 10, 2012. [Google Scholar] [CrossRef] [PubMed]
- Mullassery, D.; Ba’Ath, M.E.; Jesudason, E.C.; Losty, P.D. Value of liver herniation in prediction of outcome in fetal congenital diaphragmatic hernia: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2010, 35, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Ott, K.C.; Bi, M.; Scorletti, F.; Ranginwala, S.A.; Marriott, W.S.; Peiro, J.L.; Kline-Fath, B.M.; Alhajjat, A.M.; Shaaban, A.F. The interplay between prenatal liver growth and lung development in congenital diaphragmatic hernia. Front. Pediatr. 2022, 10, 983492. [Google Scholar] [CrossRef]
- Kosiński, P.; Wielgoś, M. Congenital diaphragmatic hernia: Pathogenesis, prenatal diagnosis and management—Literature review. Ginekol. Polska 2017, 88, 24–30. [Google Scholar] [CrossRef]
- Montedonico, S.; Nakazawa, N.; Puri, P. Congenital diaphragmatic hernia and retinoids: Searching for an etiology. Pediatr. Surg. Int. 2008, 24, 755–761. [Google Scholar] [CrossRef]
- Coste, K.; Beurskens, L.W.J.E.; Blanc, P.; Gallot, D.; Delabaere, A.; Blanchon, L.; Tibboel, D.; Labbé, A.; Rottier, R.J.; Sapin, V. Metabolic disturbances of the vitamin A pathway in human diaphragmatic hernia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 308, L147. [Google Scholar] [CrossRef]
- Savopoulos, C.; Kakaletsis, N.; Kaiafa, G.; Iliadis, F.; Kalogera-Fountzila, A.; Hatzitolios, A.I. Riedel’s Lobe of the Liver: A Case Report. Medicine 2015, 94, e430. [Google Scholar] [CrossRef]
- Zonca, P.; Martinek, L.; Ihnat, P.; Fleege, J. Ectopic liver: Different manifestations, one solution. World J. Gastroenterol. WJG 2013, 19, 6485. [Google Scholar] [CrossRef]
- Akbulut, S.; Demyati, K.; Ciftci, F.; Koc, C.; Tuncer, A.; Sahin, E.; Karadag, N.; Yilmaz, S. Ectopic liver tissue (choristoma) on the gallbladder: A comprehensive literature review. World J. Gastrointest. Surg. 2020, 12, 534–548. [Google Scholar] [CrossRef]
- Emral, A.C. Incidental detection of ectopic liver tissue during elective cholecystectomy: A case report. Front. Surg. 2025, 12, 1565209. [Google Scholar] [CrossRef]
- Cho, Y.S.; Kim, J.W.; Seon, H.J.; Cho, J.Y.; Park, J.H.; Kim, H.J.; Choi, Y.D.; Hur, Y.H. Intrahepatic adrenocortical adenoma arising from adrenohepatic fusion mimicking hepatic malignancy: Two case reports. Medicine 2019, 98, e15901. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Thiessen, A.; Morse, A.; Shapiro, A.M.J. Heterotopic Pancreas within the Proximal Hepatic Duct, Containing Intraductal Papillary Mucinous Neoplasm. Case Rep. Surg. 2015, 2015, 816960. [Google Scholar] [CrossRef]
- Sorrentino, D.; Labombarda, A.; DeBiase, F.; Trevisi, A.; Giagu, P. Cavernous transformation of the portal vein associated to multiorgan developmental abnormalities. Liver Int. Off. J. Int. Assoc. Study Liver 2004, 24, 80–83. [Google Scholar] [CrossRef]
- Portmann, B.C.; Roberts, E.A. Developmental abnormalities and liver disease in childhood. MacSween’s Pathol. Liver 2012, 101, 101–156. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Li, S.; Ba, H.; Wang, H.; Zhu, L. Treatment Option for Abernethy Malformation—Two Cases Report and Review of the Literature. Front. Pediatr. 2020, 8, 497447. [Google Scholar] [CrossRef] [PubMed]
- Kwapisz, L.; Wells, M.M.; Al Judaibi, B. Abernethy malformation: Congenital absence of the portal vein. Can. J. Gastroenterol. Hepatol. 2014, 28, 587. [Google Scholar] [CrossRef] [PubMed]
- Baiges, A.; Turon, F.; Simón-Talero, M.; Tasayco, S.; Bueno, J.; Zekrini, K.; Plessier, A.; Franchi-Abella, S.; Guerin, F.; Mukund, A.; et al. Congenital Extrahepatic Portosystemic Shunts (Abernethy Malformation): An International Observational Study. Hepatology 2020, 71, 658–669. [Google Scholar] [CrossRef]
- McLin, V.A.; Franchi-Abella, S.; Brütsch, T.; Bahadori, A.; Casotti, V.; Goyet, J.d.V.d.; Dumery, G.; Gonzales, E.; Guérin, F.; Hascoet, S.; et al. Expert management of congenital portosystemic shunts and their complications. JHEP Rep. 2024, 6, 100933. [Google Scholar] [CrossRef]
- Lisovsky, M.; Konstas, A.A.; Misdraji, J. Congenital extrahepatic portosystemic shunts (Abernethy malformation): A histopathologic evaluation. Am. J. Surg. Pathol. 2011, 35, 1381–1390. [Google Scholar] [CrossRef]
- Jaklitsch, M.; Sobral, M.; Carvalho, A.M.; Marques, H.P. Abernethy malformation and hepatocellular carcinoma: A serious consequence of a rare disease. BMJ Case Rep. 2020, 13, e231843. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, C.; Nilsen, A.; Brandt, K.; Mohammad, S.; Melin-Aldana, H.; Superina, R. Liver histopathology in patients with hepatic masses and the Abernethy malformation. J. Pediatr. Surg. 2019, 54, 266–271. [Google Scholar] [CrossRef] [PubMed]
- De Vito, C.; Tyraskis, A.; Davenport, M.; Thompson, R.; Heaton, N.; Quaglia, A. Histopathology of livers in patients with congenital portosystemic shunts (Abernethy malformation): A case series of 22 patients. Virchows Arch. 2018, 474, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Weng, S.Q.; Dong, L.; Shen, X.Z.; Qu, X.D. Portal hypertension induced by congenital hepatic arterioportal fistula: Report of four clinical cases and review of the literature. World J. Gastroenterol. WJG 2015, 21, 2229. [Google Scholar] [CrossRef]
- Cao, B.; Tian, K.; Zhou, H.; Li, C.; Liu, D.; Tan, Y. Hepatic Arterioportal Fistulas: A Retrospective Analysis of 97 Cases. J. Clin. Transl. Hepatol. 2022, 10, 620. [Google Scholar] [CrossRef]
- McDonald, J.; Bayrak-Toydemir, P.; Pyeritz, R.E. Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Genet. Med. 2011, 13, 607–616. [Google Scholar] [CrossRef]
- De Gottardi, A.; Sempoux, C.; Berzigotti, A. Porto-sinusoidal vascular disorder. J. Hepatol. 2022, 77, 1124–1135. [Google Scholar] [CrossRef]
- Wong, C.; Mason, S.; Bowden, D.; Brais, R.; Harper, S. An unusual variation of gallbladder duplication originating from the right hepatic duct. Int. J. Surg. Case Rep. 2018, 51, 181–185. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Elansary, A.M.S.E.; Mohamed, A.M.I. A case report of double cystic duct during laparoscopic cholecystectomy in patient with chronic calcular cholecystitis. Int. J. Surg. Case Rep. 2021, 78, 116. [Google Scholar] [CrossRef]
- Kinoshita, I.H.B.; Torres, U.S.; Zanini, L.A.P.; Pinto, M.F.; Veloso, J.d.C.V.; de Siqueira, G.R.S.; D’IPpolito, G. The Ductal Plate From the Inside Out: An Illustrated Review of Fibropolycystic Liver Disease. Semin. Ultrasound CT MRI 2022, 43, 510–516. [Google Scholar] [CrossRef]
- Awasthi, A.; Das, A.; Srinivasan, R.; Joshi, K. Morphological and immunohistochemical analysis of ductal plate malformation: Correlation with fetal liver. Histopathology 2004, 45, 260–267. [Google Scholar] [CrossRef]
- Mirza, H.; Besse, W.; Somlo, S.; Weinreb, J.; Kenney, B.; Jain, D. An update on ductal plate malformations and fibropolycystic diseases of the liver. Hum. Pathol. 2023, 132, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, P.; Tate, J.; Callens, C.; Cordi, S.; Vandersmissen, P.; Carpentier, R.; Sempoux, C.; Devuyst, O.; Pierreux, C.E.; Courtoy, P.; et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 2011, 53, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Joy, P.S.; Sergi, C.M. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int. J. Mol. Sci. 2022, 23, 7838. [Google Scholar] [CrossRef]
- Huppert, S.S. A new set of classifications for ductal plate malformations. Hepatology 2011, 53, 1795–1797. [Google Scholar] [CrossRef]
- Gambella, A.; Kalantari, S.; Cadamuro, M.; Quaglia, M.; Delvecchio, M.; Fabris, L.; Pinon, M. The Landscape of HNF1B Deficiency: A Syndrome Not Yet Fully Explored. Cells 2023, 12, 307. [Google Scholar] [CrossRef]
- Pala, R.; Alomari, N.; Nauli, S.M. Primary Cilium-Dependent Signaling Mechanisms. Int. J. Mol. Sci. 2017, 18, 2272. [Google Scholar] [CrossRef]
- Masyuk, T.; Masyuk, A.; LaRusso, N. Cholangiociliopathies: Genetics, molecular mechanisms and potential therapies. Curr. Opin. Gastroenterol. 2009, 25, 265–271. [Google Scholar] [CrossRef]
- Waters, A.M.; Beales, P.L. Ciliopathies: An expanding disease spectrum. Pediatr. Nephrol. 2011, 26, 1039. [Google Scholar] [CrossRef]
- Johnson, C.A.; Gissen, P.; Sergi, C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J. Med. Genet. 2003, 40, 311–319. [Google Scholar] [CrossRef]
- Onuchic, L.; Padovano, V.; Schena, G.; Rajendran, V.; Dong, K.; Shi, X.; Pandya, R.; Rai, V.; Gresko, N.P.; Ahmed, O.; et al. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nat. Commun. 2023, 14, 1790. [Google Scholar] [CrossRef]
- Drenth, J.; Barten, T.; Hartog, H.; Nevens, F.; Taubert, R.; Balcells, R.T.; Vilgrain, V.; Böttler, T. EASL Clinical Practice Guidelines on the management of cystic liver diseases. J. Hepatol. 2022, 77, 1083–1108. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sieben, C.J.; Schauer, R.S.; Harris, P.C. Genetic Spectrum of Polycystic Kidney and Liver Diseases and the Resulting Phenotypes. Adv. Kidney Dis. Health 2023, 30, 397–406. [Google Scholar] [CrossRef]
- Harris, P.C.; Torres, V.E. Polycystic Kidney Disease. Annu. Rev. Med. 2009, 60, 321. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Galeano, M.C.R.; Ott, E.; Kaeslin, G.; Kausalya, P.J.; Kramer, C.; Ortiz-Brüchle, N.; Hilger, N.; Metzis, V.; Hiersche, M.; et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 2017, 49, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, B. Biliary cysts: Etiology, diagnosis and management. World J. Gastroenterol. WJG 2012, 18, 4801. [Google Scholar] [CrossRef]
- Bishop, K.C.; Perrino, C.M.; Ruzinova, M.B.; Brunt, E.M. Ciliated hepatic foregut cyst: A report of 6 cases and a review of the English literature. Diagn. Pathol. 2015, 10, 81. [Google Scholar] [CrossRef]
- Chatelain, D.; Chailley-Heu, B.; Terris, B.; Molas, G.; Le Caë, A.; Vilgrain, V.; Belghiti, J.; Degott, C.; Flejou, J.-F. The ciliated hepatic foregut cyst, an unusual bronchiolar foregut malformation: A histological, histochemical, and immunohistochemical study of 7 cases. Hum. Pathol. 2000, 31, 241–246. [Google Scholar] [CrossRef]
- Khandelwal, C.; Anand, U.; Kumar, B.; Priyadarshi, R.N. Diagnosis and Management of Choledochal Cysts. Indian. J. Surg. 2012, 74, 29. [Google Scholar] [CrossRef]
- Bhavsar, M.S.; Vora, H.B.; Giriyappa, V.H. Choledochal Cysts: A Review of Literature. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2012, 18, 230. [Google Scholar] [CrossRef]
- Singham, J.; Yoshida, E.M.; Scudamore, C.H. Choledochal cysts: Part 1 of 3: Classification and pathogenesis. Can. J. Surg. 2009, 52, 434. [Google Scholar] [PubMed]
- Todani, T.; Watanabe, Y.; Toki, A.; Morotomi, Y. Classification of congenital biliary cystic disease: Special reference to type Ic and IVA cysts with primary ductal stricture. J. Hepato-Biliary-Pancreat. Surg. 2003, 10, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.H.; Hu, X.L.; Dai, C.J.; Niu, J.; Gu, J.Q. Expressions of p53 and inducible nitric oxide synthase in congenital choledochal cysts—PubMed. Hepatobiliary Pancreat. Dis. Int. 2004, 3, 120–123. [Google Scholar] [PubMed]
- Sugiyama, M.; Haradome, H.; Takahara, T.; Izumisato, Y.; Abe, N.; Masaki, T.; Mori, T.; Hachiya, J.; Atomi, Y. Biliopancreatic reflux via anomalous pancreaticobiliary junction. Surgery 2004, 135, 457–459. [Google Scholar] [CrossRef]
- Cha, S.W.; Park, M.S.; Kim, K.W.; Byun, J.H.; Yu, J.S.; Kim, M.J.; Kim, K.W. Choledochal cyst and anomalous pancreaticobiliary ductal union in adults: Radiological spectrum and complications. J. Comput. Assist. Tomogr. 2008, 32, 17–22. [Google Scholar] [CrossRef]












| Lesion | Mechanism Group | Frequency | Clinical Relevance |
|---|---|---|---|
| Accessory hepatic lobe/Riedel’s lobe | Hepatic | Rather frequent | Usually incidental; important mainly in surgery/imaging |
| Cavernous transformation of portal vein (“cavernoma”) | Vascular | Developmental anomaly; not framed as rare | May be incidental or cause mild portal HTN |
| Congenital portosystemic shunts (CPSS/Abernethy) | Vascular | Strong emphasis, clinically critical, underdiagnosed | Neuro- and cardio-pulmonary and high HCC risk |
| PSVD/NCPH spectrum | Vascular | Relevant, requires biopsy | Non-cirrhotic portal hypertension; needs follow-up |
| Biliary atresia | Hepatic/biliary positional defect | Rare overall but most common cause of pediatric liver transplant | Severe neonatal cholestasis; urgent surgical condition |
| Structural biliary variants (duplications, accessory ducts, etc.) | Biliary | Common | Critical during surgery (risk of iatrogenic injury) |
| Ductal plate malformations (CHF, Caroli) | Biliary/ciliopathy | One of the most important anomalies to recognize | From benign to severe portal HTN/transplant-level |
| Polycystic liver disease (ADPLD/ADPKD expression) | Biliary/ciliopathy | Very frequent extrarenal hepatic manifestation | Mass effect, infection, sometimes transplant required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.C.; Ferreira, S.; Gonçalves, I.; Martins, M.F. Recapitulating Liver Embryology—Lessons to Be Learned for Liver Diseases. J. Dev. Biol. 2025, 13, 39. https://doi.org/10.3390/jdb13040039
Oliveira RC, Ferreira S, Gonçalves I, Martins MF. Recapitulating Liver Embryology—Lessons to Be Learned for Liver Diseases. Journal of Developmental Biology. 2025; 13(4):39. https://doi.org/10.3390/jdb13040039
Chicago/Turabian StyleOliveira, Rui Caetano, Sandra Ferreira, Isabel Gonçalves, and Maria Fátima Martins. 2025. "Recapitulating Liver Embryology—Lessons to Be Learned for Liver Diseases" Journal of Developmental Biology 13, no. 4: 39. https://doi.org/10.3390/jdb13040039
APA StyleOliveira, R. C., Ferreira, S., Gonçalves, I., & Martins, M. F. (2025). Recapitulating Liver Embryology—Lessons to Be Learned for Liver Diseases. Journal of Developmental Biology, 13(4), 39. https://doi.org/10.3390/jdb13040039

