The Congenital Malformation of the Interatrial Septum—A Review of Its Development and Embryology with Clinical Implications
Abstract
1. Introduction
2. Heart Development
2.1. Heart Tube Formation and Looping
2.2. Development and Septation of Cardiac Chambers
3. Fetal Blood Circulation and Changes After Birth
3.1. Fetal Circulation
3.2. Postnatal Circulatory Adaptations
4. Malformations of the Interatrial Septum
4.1. Ostium Secundum Atrial Septal Defect
4.2. Ostium Primum Atrial Septal Defect
4.3. Sinus Venosus Atrial Septal Defect
4.4. Coronary Sinus Atrial Septal Defect
5. Etiology
6. Physiopathology
7. Clinical Aspects and Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crispi, F.; Gratacós, E. Fetal Cardiac Function: Technical Considerations and Potential Research and Clinical Applications. Fetal Diagn. Ther. 2012, 32, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Akhirome, E.; Walton, N.A.; Nogee, J.M.; Jay, P.Y. The Complex Genetic Basis of Congenital Heart Defects. Circ. J. 2017, 81, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Raissadati, A.; Nieminen, H.; Jokinen, E.; Sairanen, H. Progress in Late Results Among Pediatric Cardiac Surgery Patients. Circulation 2015, 131, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.C.; Arthurs, O.J.; Ashworth, M.T.; Ramsey, A.T.; Mifsud, W.; Lombardi, C.M.; Sebire, N.J. Clinical utility of postmortem microcomputed tomography of the fetal heart: Diagnostic imaging vs. macroscopic dissection. Ultrasound Obstet. Ultrasound Obstet. Gynecol. 2015, 47, 58–64. [Google Scholar] [CrossRef]
- Anderson, R.H.; Mohun, T.J.; Brown, N.A. Clarifying the morphology of the ostium primum defect. Am. J. Anat. 2015, 226, 244–257. [Google Scholar] [CrossRef]
- Pugnaloni, F.; Felici, A.; Corno, A.-F.; Marino, B.; Versacci, P.; Putotto, C. Gender differences in congenital heart defects: A narrative review. Transl. Pediatr. 2023, 12, 1753–1764. [Google Scholar] [CrossRef]
- Sylva, M.; Hoff, M.J.v.D.; Moorman, A.F. Development of the human heart. Am. J. Med. Genet. Part A 2013, 164, 1347–1371. [Google Scholar] [CrossRef]
- Männer, J.; Yelbuz, T.M. Functional Morphology of the Cardiac Jelly in the Tubular Heart of Vertebrate Embryos. J. Cardiovasc. Dev. Dis. 2019, 6, 12. [Google Scholar] [CrossRef]
- Groot, A.C.G.-D.; Bartelings, M.M.; Deruiter, M.C.; Poelmann, R.E. Basics of Cardiac Development for the Understanding of Congenital Heart Malformations. Pediatr. Res. 2005, 57, 169–176. [Google Scholar] [CrossRef]
- Ivanovitch, K.; Soro-Barrio, P.; Chakravarty, P.; Jones, R.A.; Bell, D.M.; Gharavy, S.N.M.; Stamataki, D.; Delile, J.; Smith, J.C.; Briscoe, J.; et al. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol. 2021, 19, e3001200. [Google Scholar] [CrossRef]
- Schleich, J.-M. Development of the human heart: Days 15–21. Heart 2002, 87, 487. [Google Scholar] [CrossRef] [PubMed]
- Brade, T.; Pane, L.S.; Moretti, A.; Chien, K.R.; Laugwitz, K.-L. Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harb. Perspect. Med. 2013, 3, a013847. [Google Scholar] [CrossRef]
- Buijtendijk, M.F.; Barnett, P.; van den Hoff, M.J.B. Development of the human heart. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, M.; Wirrig, E.; Phelps, A.; Wessels, A. Extracellular matrix and heart development. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 535–550. [Google Scholar] [CrossRef]
- Aleksandrova, A.; Czirok, A.; Kosa, E.; Galkin, O.; Cheuvront, T.J.; Rongish, B.J. The endoderm and myocardium join forces to drive early heart tube assembly. Dev. Biol. 2015, 404, 40–54. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, Z. The second heart field: The first 20 years. Mamm. Genome 2022, 34, 216–228. [Google Scholar] [CrossRef]
- Erhardt, S.; Zheng, M.; Zhao, X.; Le, T.P.; Findley, T.O.; Wang, J. The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects. J. Cardiovasc. Dev. Dis. 2021, 8, 89. [Google Scholar] [CrossRef]
- Shi, Y.; Yao, J.; Xu, G.; Taber, L.A. Bending of the Looping Heart: Differential Growth Revisited. J. Biomech. Eng. 2014, 136, 081002–08100215. [Google Scholar] [CrossRef]
- Harvey, R.P. Patterning the vertebrate heart. Nat. Rev. Genet. 2002, 3, 544–556. [Google Scholar] [CrossRef]
- Männer, J. On the form problem of embryonic heart loops, its geometrical solutions, and a new biophysical concept of cardiac looping. Ann. Anat.-Anat. Anz. 2013, 195, 312–323. [Google Scholar] [CrossRef]
- Butcher, J.T.; McQuinn, T.C.; Sedmera, D.; Turner, D.; Markwald, R.R. Transitions in Early Embryonic Atrioventricular Valvular Function Correspond with Changes in Cushion Biomechanics that are Predictable by Tissue Composition. Circ. Res. 2007, 100, 1503–1511. [Google Scholar] [CrossRef]
- Bruneau, B.G. Signaling and Transcriptional Networks in Heart Development and Regeneration. Cold Spring Harb. Perspect. Biol. 2013, 5, a008292. [Google Scholar] [CrossRef]
- Ivanovitch, K.; Esteban, I.; Torres, M. Growth and Morphogenesis during Early Heart Development in Amniotes. J. Cardiovasc. Dev. Dis. 2017, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Miao, L.; Shieh, D.; Spiotto, E.; Li, J.; Zhou, B.; Paul, A.; Schwartz, R.J.; Firulli, A.B.; Singer, H.A.; et al. Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification. Cell Rep. 2016, 15, 158–170. [Google Scholar] [CrossRef]
- Wu, M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr. Cardiol. 2018, 39, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Flores, B.G.R.; Guzmán, L.V.; García, M.S.; Lazzarini, R. Normal development of the heart: A review of new findings. Bol. Med. del Hosp. Infant. Mex. 2023, 80, 079–093. [Google Scholar] [CrossRef]
- Dye, B.; Lincoln, J. The Endocardium and Heart Valves. Cold Spring Harb. Perspect. Biol. 2020, 12, a036723. [Google Scholar] [CrossRef]
- Romano, V.; Gallinoro, C.M.; Mottola, R.; Serio, A.; Di Meglio, F.; Castaldo, C.; Sirico, F.; Nurzynska, D. Patent Foramen Ovale—A Not So Innocuous Septal Atrial Defect in Adults. J. Cardiovasc. Dev. Dis. 2021, 8, 60. [Google Scholar] [CrossRef]
- Moorman, A.F.M.; Christoffels, V.M. Cardiac Chamber Formation: Development, Genes, and Evolution. Physiol. Rev. 2003, 83, 1223–1267. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, H.; Qu, X.; Chang, C.; Shou, W. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am. J. Med. Genet. Part C Semin. Med. Genet. 2013, 163, 144–156. [Google Scholar] [CrossRef]
- Kanani, M.; Moorman, A.F.; Cook, A.C.; Webb, S.; Brown, N.A.; Lamers, W.H.; Anderson, R.H. Development of the Atrioventricular Valves: Clinicomorphological Correlations. Ann. Thorac. Surg. 2005, 79, 1797–1804. [Google Scholar] [CrossRef]
- Kloesel, B.; DiNardo, J.A.; Body, S.C. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth. Analg. 2016, 123, 551–569. [Google Scholar] [CrossRef]
- Rana, M.S.; Christoffels, V.M.; Moorman, A.F.M. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol. 2013, 207, 588–615. [Google Scholar] [CrossRef] [PubMed]
- Briggs, L.E.; Kakarla, J.; Wessels, A. The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 2012, 84, 117–130. [Google Scholar] [CrossRef]
- Deepe, R.; Fitzgerald, E.; Wolters, R.; Drummond, J.; De Guzman, K.; Hoff, M.J.v.D.; Wessels, A. The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation. J. Cardiovasc. Dev. Dis. 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Aanhaanen, W.T.; Mommersteeg, M.T.; Norden, J.; Wakker, V.; Vries, C.d.G.-D.; Anderson, R.H.; Kispert, A.; Moorman, A.F.; Christoffels, V.M. Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart. Circ. Res. 2010, 107, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, N.; McCarthy, K.P.; Ho, S.Y. Anatomy of the atrial septum and interatrial communications. J. Thorac. Dis. 2018, 10, S2837–S2847. [Google Scholar] [CrossRef]
- Moorman, A.; Webb, S.; Brown, N.A.; Lamers, W.; Anderson, R.H. Development of the Heart: (1) Formation of the Cardiac Chambers and Arterial Trunks. Heart 2003, 89, 806–814. [Google Scholar] [CrossRef]
- Person, A.D.; Klewer, S.E.; Runyan, R.B. Cell biology of cardiac cushion development. Int. Rev. Cytol. 2005, 243, 287–335. [Google Scholar] [CrossRef]
- Anderson, R.H.; Spicer, D.E.; Brown, N.A.; Mohun, T.J. The Development of Septation in the Four-Chambered Heart. Anat. Rec. 2014, 297, 1414–1429. [Google Scholar] [CrossRef]
- Smedts, H.P.M.; Isaacs, A.; de Costa, D.; Uitterlinden, A.G.; van Duijn, C.M.; Groot, A.C.G.-D.; Helbing, W.A.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. VEGF Polymorphisms Are Associated With Endocardial Cushion Defects: A Family-Based Case-Control Study. Pediatr. Res. 2010, 67, 23–28. [Google Scholar] [CrossRef]
- Anderson, R.H.; Webb, S.; Brown, N.A.; Lamers, W.; Moorman, A. Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 2003, 89, 1110–1118. [Google Scholar] [CrossRef]
- Van Wijk, B.; van den Berg, G.; Abu-Issa, R.; Barnett, P.; van der Velden, S.; Schmidt, M.; Ruijter, J.M.; Kirby, M.L.; Moorman, A.F.; Hoff, M.J.V.D. Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways. Circ. Res. 2009, 105, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pomares, J.M.; de la Pompa, J.L.; Franco, D.; Henderson, D.; Ho, S.Y.; Houyel, L.; Kelly, R.G.; Sedmera, D.; Sheppard, M.; Sperling, S.; et al. Congenital coronary artery anomalies: A bridge from embryology to anatomy and pathophysiology—A position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc. Res. 2016, 109, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Miquerol, L.; Kelly, R.G. Organogenesis of the vertebrate heart. Wiley Interdiscip. Rev. Dev. Biol. 2012, 2, 17–29. [Google Scholar] [CrossRef]
- Posch, M.G.; Perrot, A.; Berger, F.; Özcelik, C. Molecular genetics of congenital atrial septal defects. Clin. Res. Cardiol. 2009, 99, 137–147. [Google Scholar] [CrossRef]
- Wu, L.; Li, N.; Liu, Y. Association Between Maternal Factors and Risk of Congenital Heart Disease in Offspring: A Systematic Review and Meta-Analysis. Matern. Child Health J. 2022, 27, 29–48. [Google Scholar] [CrossRef]
- Kiserud, T.; Acharya, G. The fetal circulation. Prenat. Diagn. 2004, 24, 1049–1059. [Google Scholar] [CrossRef]
- Rudolph, A.M. Hepatic and Ductus Venosus Blood Flows During Fetal Life. Hepatology 1983, 3, 254–258. [Google Scholar] [CrossRef]
- Zhang, D.; Lindsey, S.E. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J. Cardiovasc. Dev. Dis. 2023, 10, 240. [Google Scholar] [CrossRef]
- Gill, A.W. Postnatal cardiovascular adaptation. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 104, F220–F224. [Google Scholar] [CrossRef]
- Martin, S.S.; Shapiro, E.P.; Mukherjee, M. Atrial Septal Defects—Clinical Manifestations, Echo Assessment, and Intervention. Clin. Med. Insights Cardiol. 2014, 8 (Suppl. S1), 93–98. [Google Scholar] [CrossRef] [PubMed]
- Tanghöj, G.; Naumburg, E. Risk factors for isolated atrial septal defect secundum morbidity. Sci. Rep. 2024, 14, 4757. [Google Scholar] [CrossRef] [PubMed]
- Moize, B.; Shariff, R.E.R.; Yusoff, M.R.; Ibrahim, K.S.; Kasim, S. Delayed Diagnosis of Right Heart Failure Due to Sinus Venosus Atrial Septal Defect, Persistent Left Superior Vena Cava and Partial Anomalous Pulmonary Venous Return. J. Asian Pac. Soc. Cardiol. 2024, 3, e11. [Google Scholar] [CrossRef]
- Cervantes-Salazar, J.L.; Pérez-Hernández, N.; Calderón-Colmenero, J.; Rodríguez-Pérez, J.M.; González-Pacheco, M.G.; Villamil-Castañeda, C.; Rosas-Tlaque, A.A.; Ortega-Zhindón, D.B. Genetic Insights into Congenital Cardiac Septal Defects—A Narrative Review. Biology 2024, 13, 911. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, Z.-Q.; Yan, W.-D.; Tang, C.-Z.; Xie, J.-Y.; Chen, H.; Hu, D.-Y. A novel mutation in GATA4 gene associated with dominant inherited familial atrial septal defect. J. Thorac. Cardiovasc. Surg. 2010, 140, 684–687. [Google Scholar] [CrossRef]
- Chawre, H.; Joshi, S. Morphological study of fossa ovalis and its clinical relevance. Indian Heart J. 2016, 68, 147–152. [Google Scholar] [CrossRef]
- Geva, T.; Martins, J.D.; Wald, R.M. Atrial septal defects. Lancet 2014, 383, 1921–1932. [Google Scholar] [CrossRef]
- Su, W.; Zhu, P.; Wang, R.; Wu, Q.; Wang, M.; Zhang, X.; Mei, L.; Tang, J.; Kumar, M.; Wang, X.; et al. Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin. Genet. 2016, 91, 349–354. [Google Scholar] [CrossRef]
- Guo, T.; McDonald-McGinn, D.; Blonska, A.; Shanske, A.; Bassett, A.S.; Chow, E.; Bowser, M.; Sheridan, M.; Beemer, F.; Devriendt, K.; et al. Genotype and cardiovascular phenotype correlations with TBX1 in 1,022 velo-cardio-facial/digeorge/22q11.2 deletion syndrome patients. Hum. Mutat. 2011, 32, 1278–1289. [Google Scholar] [CrossRef]
- Benhaourech, S.; Drighil, A.; El Hammiri, A. Congenital heart disease and Down syndrome: Various aspects of a confirmed association. Cardiovasc. J. Afr. 2016, 27, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Daene, M.; De Pauw, L.; De Meester, P.; Troost, E.; Moons, P.; Gewillig, M.; Rega, F.; Van De Bruaene, A.; Budts, W. Outcome of Down patients with repaired versus unrepaired atrioventricular septal defect. Int. J. Cardiol. Congenit. Heart Dis. 2023, 12, 100452. [Google Scholar] [CrossRef]
- Chen, Q.; Hong, D.; Huang, Y.; Zhang, Z.; Wang, S. Phenotypic and genotypic spectrum of noonan syndrome: A retrospective analysis of 46 consecutive pediatric patients presented at a regional cardiac center in China. Heliyon 2024, 10, e27038. [Google Scholar] [CrossRef] [PubMed]
- Linglart, L.; Gelb, B.D. Congenital heart defects in Noonan syndrome: Diagnosis, management, and treatment. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 73–80. [Google Scholar] [CrossRef]
- AmiRsardari, Z.; Gholipour, A.; Khajali, Z.; Maleki, M.; Malakootian, M.; Islam, M.S. Exploring the role of non-coding RNAs in atrial septal defect pathogenesis: A systematic review. PLoS ONE 2024, 19, e0306576. [Google Scholar] [CrossRef]
- Dehn, A.M.; Dannesbo, S.; Sellmer, A.; Høffner, L.; Blixenkrone-Møller, E.; Sillesen, A.-S.; Raja, A.A.; Vejlstrup, N.; Iversen, K.; Bundgaard, H.; et al. Atrial Septal Defect: Larger Right Ventricular Dimensions and Atrial Volumes as Early as in the First Month After Birth—A Case–Control Study Including 716 Neonates. Pediatr. Cardiol. 2023, 44, 1578–1586. [Google Scholar] [CrossRef]
- Nashat, H.; Montanaro, C.; Li, W.; Kempny, A.; Wort, S.J.; Dimopoulos, K.; Gatzoulis, M.A.; Babu-Narayan, S.V. Atrial septal defects and pulmonary arterial hypertension. J. Thorac. Dis. 2018, 10, S2953–S2965. [Google Scholar] [CrossRef]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: Executive Summary. J. Am. Coll. Cardiol. 2019, 73, 1494–1563. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease: The Task Force for the Management of Adult Congenital Heart Disease of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Card. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Fraisse, A.; Latchman, M.; Sharma, S.-R.; Bayburt, S.; Amedro, P.; di Salvo, G.; Baruteau, A.E. Atrial septal defect closure: Indications and contra-indications. J. Thorac. Dis. 2018, 10, S2874–S2881. [Google Scholar] [CrossRef]
Type of ASD | Prevalence | Anatomical Location | Embryological Cause | Genetic Associations/Syndromes | Clinical Features | Treatment Options |
---|---|---|---|---|---|---|
Ostium Secundum | Around 75% | Fossa ovalis (central part of atrial septum) | Excessive resorption of septum primum or underdevelopment of septum secundum | Chromosome 21 (Down syndrome); GATA4, TBX5, NKX2-5; Noonan syndrome (PTPN11); Holt–Oram syndrome | Often asymptomatic in childhood; symptoms may appear in adulthood (e.g., palpitations, stroke, heart failure) | Usually amenable to percutaneous device closure or surgery if significant shunt is present |
Ostium Primum | Around 20% | Lower atrial septum near AV valves | Failure of septum primum to fuse with endocardial cushions | Chromosome 22q11 (DiGeorge syndrome); TBX1 gene; Down syndrome (also common) | May be associated with AV valve defects (e.g., mitral cleft); often diagnosed early due to murmurs or heart failure | Surgical repair required due to involvement of AV valves and location near conduction tissue |
Sinus Venosus | Around 10% | Near entrance of superior (more common) or inferior vena cava | Incomplete incorporation of sinus venosus into right atrium | Often sporadic; NKX2-5, TBX5, GATA4, MYH6; Holt–Oram syndrome | Often associated with partial anomalous pulmonary venous return; may remain asymptomatic until adulthood | Surgical repair only (not suitable for percutaneous closure due to location and associated anomalies) |
Coronary Sinus Defect | Rare | Coronary sinus (unroofed or partially unroofed) | Incomplete development or unroofing of coronary sinus wall | Less well understood; associated with NKX2-5, GATA4, TBX5, MYH6 | Frequently associated with persistent left superior vena cava; may present with cyanosis or paradoxical embolism | Surgical correction is necessary; anatomy too complex for catheter-based closure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.C.; Martins, P.; Martins, M.d.F. The Congenital Malformation of the Interatrial Septum—A Review of Its Development and Embryology with Clinical Implications. J. Dev. Biol. 2025, 13, 28. https://doi.org/10.3390/jdb13030028
Oliveira RC, Martins P, Martins MdF. The Congenital Malformation of the Interatrial Septum—A Review of Its Development and Embryology with Clinical Implications. Journal of Developmental Biology. 2025; 13(3):28. https://doi.org/10.3390/jdb13030028
Chicago/Turabian StyleOliveira, Rui Caetano, Paula Martins, and Maria de Fátima Martins. 2025. "The Congenital Malformation of the Interatrial Septum—A Review of Its Development and Embryology with Clinical Implications" Journal of Developmental Biology 13, no. 3: 28. https://doi.org/10.3390/jdb13030028
APA StyleOliveira, R. C., Martins, P., & Martins, M. d. F. (2025). The Congenital Malformation of the Interatrial Septum—A Review of Its Development and Embryology with Clinical Implications. Journal of Developmental Biology, 13(3), 28. https://doi.org/10.3390/jdb13030028