Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Viability Assay
2.3. Cell Growth Curves
2.4. Quantitative PCR
2.5. Western Blotting
2.6. Enzymatic Assays
2.6.1. SOD Assay
2.6.2. Catalase Assay
2.6.3. Xanthine Oxidase Assay
2.7. Statistical Analysis
3. Results
3.1. Effects of Molybdate Salts on HTR-8/SVneo Cell Viability
3.2. Effects of Molybdate Salts on Cell Proliferation
3.3. Effects of Molybdate Salts on Molybdenum Containing Enzyme Gene Expression, Protein Levels, and Enzyme Activity
3.4. Effects of Molybdate Salts on Molybdenum Cofactor Synthesis Gene Expression
3.5. Effects of Molybdate Salts on Antioxidant Gene Expression and Antioxidant Enzyme Activity
3.6. Effects of Molybdate Salts on Factors Related to Proliferation and Angiogenesis
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTB | Beta-actin |
AOX | Aldehyde oxidase |
ATCC | American Type Culture Collection |
AUC | Area under curve |
CAT | Catalase |
DKK1 | Dickkopf WNT signalling pathway inhibitor 1 |
DMSO | Dimethyl sulfoxide |
EDTA | Ethylenediamine tetraacetic acid |
EVT | Extravillous trophoblast |
FBS | Foetal bovine serum |
FGR | Foetal growth restriction |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GEPH | Gephyrin |
kDA | Kilodalton |
MARC1/2 | Mitochondrial amidoxime reducing component 1/2 |
MMP9 | Matrix metallopeptidase 9 |
Mo | Molybdenum |
Moco | Molybdenum cofactor |
MOCS1/2 | Molybdenum cofactor synthesis 1/2 |
MPT | Molybdopterin |
MTT | 3-(4,5-Diemthylthiazol-2-Yl)-2,5-Diphenylterazolium Bromide |
NFE2L2 | Nuclear factor erythroid-derived 2-like 2 |
NOS2 | Nitric oxide synthase 2 |
NOS3 | Nitric oxide synthase 3 |
PBS | Phosphate-buffered saline |
qRT-PCR | Quantitative real-time polymerase chain reaction |
RPMI | Roswell Park Memorial Institute (media) |
SOD1 | Superoxide dismutase 1 |
SOD2 | Superoxide dismutase 2 |
SUOX | Sulphite oxidase |
TBST | Tris-buffered saline with 0.1% Tween® 20 detergent |
U | Unit |
UPR | Unfolded protein response |
V | Volt |
VEGFA | Vascular endothelial growth factor A |
WNT2 | Wingless-type MMTV integration site family, member 2 |
XDH | Xanthine dehydrogenase |
XO | Xanthine oxidase |
XOR | Xanthine oxidoreductase |
References
- Foteva, V.; Fisher, J.J.; Qiao, Y.; Smith, R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023, 15, 3348. [Google Scholar] [CrossRef]
- Novotny, J.A. Molybdenum nutriture in humans. J. Evid.-Based Integr. Med. 2011, 16, 164–168. [Google Scholar] [CrossRef]
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef]
- Schwarz, G. Molybdenum cofactor and human disease. Curr. Opin. Chem. Biol. 2016, 31, 179–187. [Google Scholar] [CrossRef]
- Mendel, R.R. The molybdenum cofactor. J. Biol. Chem. 2013, 288, 13165–13172. [Google Scholar] [CrossRef]
- Mendel, R.R. Cell biology of molybdenum. Biofactors 2009, 35, 429–434. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Malinowski, W.; Szymański, S.; Mularczyk, M.; Tomska, N.; Rotter, I. Interactions between 14 Elements in the Human Placenta, Fetal Membrane and Umbilical Cord. Int. J. Environ. Res. Public Health 2019, 16, 1615. [Google Scholar] [CrossRef]
- Ovayolu, A.; Ovayolu, G.; Karaman, E.; Yuce, T.; Ozek, M.A.; Turksoy, V.A. Amniotic fluid levels of selected trace elements and heavy metals in pregnancies complicated with neural tube defects. Congenit. Anom. 2020, 60, 136–141. [Google Scholar] [CrossRef]
- Al-Saleh, E.; Nandakumaran, M.; Al-Rashdan, I.; Al-Harmi, J.; Al-Shammari, M. Maternal-foetal status of copper, iron, molybdenum, selenium and zinc in obese gestational diabetic pregnancies. Acta Diabetol. 2007, 44, 106–113. [Google Scholar] [CrossRef]
- Foteva, V.; Maiti, K.; Fisher, J.J.; Qiao, Y.; Paterson, D.J.; Jones, M.W.M.; Smith, R. Placental Element Content Assessed via Synchrotron-Based X-ray Fluorescence Microscopy Identifies Low Molybdenum Concentrations in Foetal Growth Restriction, Postdate Delivery and Stillbirth. Nutrients 2024, 16, 2549. [Google Scholar] [CrossRef]
- Maiti, K.; Sultana, Z.; Aitken, R.J.; Morris, J.; Park, F.; Andrew, B.; Riley, S.C.; Smith, R. Evidence that fetal death is associated with placental aging. Am. J. Obstet. Gynecol. 2017, 217, 441.e441. [Google Scholar] [CrossRef]
- Murata, M.; Fukushima, K.; Takao, T.; Seki, H.; Takeda, S.; Wake, N. Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells. J. Reprod. Dev. 2013, 59, 7–13. [Google Scholar] [CrossRef]
- Mayr, S.J.; Mendel, R.-R.; Schwarz, G. Molybdenum cofactor biology, evolution and deficiency. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118883. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for molybdenum. EFSA J. 2013, 11, 3333. [Google Scholar] [CrossRef]
- Tallkvist, J.; Oskarsson, A. Chapter 47—Molybdenum∗. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1077–1089. [Google Scholar]
- Zhang, Y.-L.; Liu, F.-J.; Chen, X.-L.; Zhang, Z.-Q.; Shu, R.-Z.; Yu, X.-L.; Zhai, X.-W.; Jin, L.-J.; Ma, X.-G.; Qi, Q.; et al. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst. Biol. Reprod. Med. 2013, 59, 312–318. [Google Scholar] [CrossRef]
- Titenko-Holland, N.; Shao, J.; Zhang, L.; Xi, L.; Ngo, H.; Shang, N.; Smith, M.T. Studies on the genotoxicity of molybdenum salts in human cells in vitro and in mice in vivo. Environ. Mol. Mutagen. 1998, 32, 251–259. [Google Scholar] [CrossRef]
- Panneerselvam, S.R.; Govindasamy, S. Effect of sodium molybdate on the status of lipids, lipid peroxidation and antioxidant systems in alloxan-induced diabetic rats. Clin. Chim. Acta 2004, 345, 93–98. [Google Scholar] [CrossRef]
- Zhai, X.-W.; Zhang, Y.-L.; Qi, Q.; Bai, Y.; Chen, X.-L.; Jin, L.-J.; Ma, X.-G.; Shu, R.-Z.; Yang, Z.-J.; Liu, F.-J. Effects of molybdenum on sperm quality and testis oxidative stress. Syst. Biol. Reprod. Med. 2013, 59, 251–255. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Iida, S.; Ueoka-Nakanishi, H.; Niimi, T.; Tomioka, R.; Maeshima, M. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor. PLoS ONE 2013, 8, e58175. [Google Scholar] [CrossRef]
- Griffiths, S.K.; Campbell, J.P. Placental structure, function and drug transfer. Contin. Educ. Anaesth. Crit. Care Pain 2015, 15, 84–89. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M., Jr.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5439. [Google Scholar] [CrossRef]
- Śliwka, L.; Wiktorska, K.; Suchocki, P.; Milczarek, M.; Mielczarek, S.; Lubelska, K.; Cierpiał, T.; Łyżwa, P.; Kiełbasiński, P.; Jaromin, A.; et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE 2016, 11, e0155772. [Google Scholar] [CrossRef]
- Memarzadeh, K.; Savage, D.J.; Bean, A.J. Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol. Ther. 2019, 20, 1416–1429. [Google Scholar] [CrossRef]
- Szalai, P.; Engedal, N. An Image-based Assay for High-throughput Analysis of Cell Proliferation and Cell Death of Adherent Cells. Bio-Protoc 2018, 8, e2835. [Google Scholar] [CrossRef]
- Stark, M.J.; Hodyl, N.A.; Wright, I.M.R.; Clifton, V.L. Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance. Placenta 2011, 32, 865–870. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Pi, S.; Wei, Z.; Wang, C.; Yang, F.; Li, G.; Nie, G.; Hu, G. Cadmium and molybdenum co-exposure triggers autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells. Sci. Total Environ. 2021, 759, 143570. [Google Scholar] [CrossRef]
- Dürig, J.; Calcagni, M.; Buschmann, J. Transition metals in angiogenesis—A narrative review. Mater. Today Bio 2023, 22, 100757. [Google Scholar] [CrossRef]
- Moll, M.; Scheurle, A.; Nawaz, Q.; Walker, T.; Kunisch, E.; Renkawitz, T.; Boccaccini, A.R.; Westhauser, F. Osteogenic and angiogenic potential of molybdenum-containing mesoporous bioactive glass nanoparticles: An ionic approach to bone tissue engineering. J. Trace Elem. Med. Biol. 2024, 86, 127518. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, X.; Zhao, M.; Zhou, Q.; Hu, X. Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology 2017, 11, 781–793. [Google Scholar] [CrossRef]
- Knöfler, M.; Pollheimer, J. Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front. Genet. 2013, 4, 190. [Google Scholar] [CrossRef]
- Mirabet, M.; Navarro, A.; Lopez, A.; Canela, E.I.; Mallol, J.; Lluis, C.; Franco, R. Ammonium toxicity in different cell lines. Biotechnol. Bioeng. 1997, 56, 530–537. [Google Scholar] [CrossRef]
- Slivac, I.; Blajić, V.; Radošević, K.; Kniewald, Z.; Gaurina Srček, V. Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth. Cytotechnology 2010, 62, 585–594. [Google Scholar] [CrossRef]
- Kaiser, B.N.; Gridley, K.L.; Ngaire Brady, J.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef]
- Bittner, F. Molybdenum metabolism in plants and crosstalk to iron. Front. Plant Sci. 2014, 5, 28. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, L.; Guo, K.; Zheng, L.; Liu, B.; Yu, W.; Guo, C.; Liu, Z.; Chen, Y.; Tang, Z. Effects of Different Selenium Levels on Gene Expression of a Subset of Selenoproteins and Antioxidative Capacity in Mice. Biol. Trace Elem. Res. 2013, 154, 255–261. [Google Scholar] [CrossRef]
- Khera, A.; Vanderlelie, J.J.; Holland, O.; Perkins, A.V. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner. Biol. Trace Elem. Res. 2017, 177, 394–403. [Google Scholar] [CrossRef]
- Lee, S.; Nam, K.-H.; Seong, J.K.; Ryu, D.-Y. Molybdate Attenuates Lipid Accumulation in the Livers of Mice Fed a Diet Deficient in Methionine and Choline. Biol. Pharm. Bull. 2018, 41, 1203–1210. [Google Scholar] [CrossRef]
- Joun, J.H.; Li, L.; An, J.N.; Jang, J.; Oh, Y.K.; Lim, C.S.; Kim, Y.S.; Choi, K.; Lee, J.P.; Lee, J. Antioxidative effects of molybdenum and its association with reduced prevalence of hyperuricemia in the adult population. PLoS ONE 2024, 19, e0306025. [Google Scholar] [CrossRef]
- Chen, D.B.; Zheng, J. Regulation of placental angiogenesis. Microcirculation 2014, 21, 15–25. [Google Scholar] [CrossRef]
- Olsen, J.J.; Pohl, S.; Deshmukh, A.; Visweswaran, M.; Ward, N.C.; Arfuso, F.; Agostino, M.; Dharmarajan, A. The Role of Wnt Signalling in Angiogenesis. Clin. Biochem. Rev. 2017, 38, 131–142. [Google Scholar]
- Ghosh, R.; Lipson, K.L.; Sargent, K.E.; Mercurio, A.M.; Hunt, J.S.; Ron, D.; Urano, F. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE 2010, 5, e9575. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-Y.; Yen, C.-C.; Lee, K.-I.; Su, C.-C.; Yang, C.-Y.; Wu, C.-C.; Hsieh, S.-S.; Ueng, K.-C.; Huang, C.-F. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways. Toxicol. Appl. Pharmacol. 2016, 294, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.T.; Hsieh, C.S.; Chang, K.A.; Tain, Y.L. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int. J. Mol. Sci. 2012, 13, 14606–14622. [Google Scholar] [CrossRef]
- Bender, D.; Schwarz, G. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Lett. 2018, 592, 2126–2139. [Google Scholar] [CrossRef]
- Abumrad, N.N.; Schneider, A.J.; Steel, D.; Rogers, L.S. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am. J. Clin. Nutr. 1981, 34, 2551–2559. [Google Scholar] [CrossRef]
- Pott, E.B.; Henry, P.R.; Rao, P.V.; Hinderberger, E.J.; Ammerman, C.B. Estimated relative bioavailability of supplemental inorganic molybdenum sources and their effect on tissue molybdenum and copper concentrations in lambs. Anim. Feed. Sci. Technol. 1999, 79, 107–117. [Google Scholar] [CrossRef]
- Omo-Aghoja, L. Maternal and fetal Acid-base chemistry: A major determinant of perinatal outcome. Ann. Med. Health Sci. Res. 2014, 4, 8–17. [Google Scholar] [CrossRef]
- Abou-Kheir, W.; Barrak, J.; Hadadeh, O.; Daoud, G. HTR-8/SVneo cell line contains a mixed population of cells. Placenta 2017, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.; Andrews, K.D.; Loughran, M.J.; Rhodes, N.P.; Hunt, J.A. Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro. Biosci. Rep. 2011, 31, 199–210. [Google Scholar] [CrossRef]
- Martinelle, K.; Häggström, L. Mechanisms of ammonia and ammonium ion toxicity in animal cells: Transport across cell membranes. J. Biotechnol. 1993, 30, 339–350. [Google Scholar] [CrossRef]
- Ryll, T.; Wagner, R. AMMONIUM IONS INHIBIT CELL GROWTH BY INTRACELLULAR FORMATION OF UDP-ACTIVATED HEXOSAMINES. In Animal Cell Technology; Spier, R.E., Griffiths, J.B., Berthold, W., Eds.; Butterworth-Heinemann: Oxford, UK, 1994; pp. 149–151. [Google Scholar]
- Jovanović, M.; Stefanoska, I.; Radojčić, L.; Vićovac, L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins α5 and β1. Reproduction 2010, 139, 789–798. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer Sequence | Protein Name | |
---|---|---|---|
MoCo Synthesis | MOCS1 | F 5′-CAGGCATGTTCAGTATTTCC-3′ | Molybdenum Cofactor 1 |
R 5′-CATCCTTTCCATAAAGTGGC-3′ | |||
MOCS2 | F 5′-GGTGCAATATCCCTATTTGTAG-3′ | Molybdenum Cofactor 2 | |
R 5′-AACACTGCTATGTGTTTGAC-3′ | |||
GPHN | F 5′-ACAGGTAATCAAATGAGCAG-3′ | Gephyrin | |
R 5′-TATGTGGACATGCATCAAAG-3′ | |||
Molybdoenzymes | MARC1 | F 5′-CAGATTGCTTACTCAGACAC-3′ | Mitochondrial Amidoxime Reducing Component 1 |
R 5′-GCTTTAACTTTCTTCTCTAGCC-3′ | |||
MARC2 | F 5′-CTGGGATGAACTCCTAATTG-3′ | Mitochondrial Amidoxime Reducing Component 2 | |
R 5′-TTTCCTGTCTATGACTCCAG-3′ | |||
AOX1 | F 5′-GAGAATGATGTGGTTTCCC-3′ | Aldehyde Oxidase 1 | |
R 5′-TTAAATTTCACTTCAGGCCC -3′ | |||
XOR | F 5′-CTACAGCTTTGAGACTAACTC-3′ | Xanthine Oxidoreductase | |
R 5′-TCTTATGATCTCCTGTTAGGC-3′ | |||
SUOX | F 5′-GACTCAAGTCAATCCCCTC-3′ | Sulfite Oxidase | |
R 5′-CATGACTCTCCATCCCTG-3′ | |||
Antioxidant | NFE2L2 | F 5′-CGTTTGTAGATGACAATGAGG-3′ | Nuclear factor erythroid-derived 2-like 2 |
R 5′-AGAAGT7CAGGTGACTGAG | |||
SOD1 | F 5′-GAGCAGAAGGAAAGTAATGG-3′ | Superoxide Dismutase 1 | |
R 5′-GATTAAAGTGAGGACCTGC-3′ | |||
SOD2 | F 5′-ATCATACCCTAATGATCCCAG-3′ | Superoxide Dismutase 2 | |
R 5′-AGGACCTTATAGGGTTTTCAG-3′ | |||
CAT | F 5′-CTCTTCTGGACAACTACAATG-3′ | Catalase | |
R 5′-AGGAGAATCTTCATCCAGTG-3′ | |||
Proliferation and Angiogenesis | WNT2 | F 5′-TTAATATGAACGCCCCTCTC-3′ | Wingless-type MMTV integration site family, member 2 |
R 5′-TACCACCATGAAGAGTTGAC-3′ | |||
DKK1 | F 5′-GGACAAGAAGGTTCTGTTTG-3′ | Dickkopf WNT signalling pathway inhibitor 1 | |
R 5′-CTTCTTTCAGGACAGGTTTAC-3′ | |||
MMP9 | F 5′-AAGGATGGGAAGTACTGG-3′ | Matrix metallopeptidase 9 | |
R 5′-GCCCAGAGAAGAAGAAAAG-3′ | |||
VEGFA | F 5′-AATGTGAATGCAGACCAAAG-3′ | Vascular endothelial growth factor A | |
R 5′-GACTTATACCGGGATTTCTTG-3′ | |||
NOS2 | F 5′-AGCTCAACAACAAATTCAGG-3′ | Nitric oxide synthase 2 | |
R 5′-ATCAATGTCATGAGCAAAGG-3′ | |||
NOS3 | F 5′-CAACCCCAAGACCTACG-3′ | Nitric oxide synthase 3 | |
R 5′-CGCAGACAAACATGTGG-3′ | |||
Housekeepers | GAPDH | F 5′-TCGGAGTCAACGGATTTG-3′ | Glyceraldehyde-3-phosphate deydrogenase |
R 5′-CAACAATATCCACTTTACCAGAG | |||
ACTB | F 5′-GACGACATGGAGAAAATCTG-3′ | Beta-actin | |
R 5′-ATGATCTGGGTCATCTTCTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foteva, V.; Fisher, J.J.; Qiao, Y.; Smith, R. Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro. J. Dev. Biol. 2025, 13, 8. https://doi.org/10.3390/jdb13010008
Foteva V, Fisher JJ, Qiao Y, Smith R. Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro. Journal of Developmental Biology. 2025; 13(1):8. https://doi.org/10.3390/jdb13010008
Chicago/Turabian StyleFoteva, Vladimira, Joshua J. Fisher, Yixue Qiao, and Roger Smith. 2025. "Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro" Journal of Developmental Biology 13, no. 1: 8. https://doi.org/10.3390/jdb13010008
APA StyleFoteva, V., Fisher, J. J., Qiao, Y., & Smith, R. (2025). Effects of Molybdenum Supplementation in the Form of Ammonium and Sodium Salts on Trophoblast Cell Physiology and Gene Expression In Vitro. Journal of Developmental Biology, 13(1), 8. https://doi.org/10.3390/jdb13010008