Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Collection of Biological Material and Isolation of Rabbit Primary Cells
2.3. Preparation and Storage of Cell Samples for ICP-OES Analysis
2.4. Sample Mineralization and ICP-OES Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, S.K.; Pathak, N.N. Chemicals of Life and Chemical Reactions in the Animal Cells. In Fundamentals of Animal Nutrition; Springer: Singapore, 2021; pp. 13–19. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. In Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 317–374. [Google Scholar]
- Spears, J. Reevaluation of the metabolic essentiality of the minerals—Review. Asian-Australas. J. Anim. Sci. 1999, 12, 1002–1008. [Google Scholar] [CrossRef]
- Combs, G.F., Jr. Geological impacts on nutrition. In Essentials of Medical Geology: Revised Edition; Springer: Dordrecht, The Netherlands, 2012; pp. 179–194. [Google Scholar]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. A biogeochemical cycle for aluminium? J. Inorg. Biochem. 2003, 97, 1–7. [Google Scholar] [CrossRef]
- Exley, C. Aluminum in Biological Systems. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013; pp. 33–34. [Google Scholar]
- Pilmane, M.; Salma-Ancane, K.; Loca, D.; Locs, J.; Berzina-Cimdina, L. Strontium and strontium ranelate: Historical review of some of their functions. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 78, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, B.; Ciurli, S. Nickel and Human Health. In Interrelations Between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 321–357. [Google Scholar]
- Denkhaus, E.; Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol./Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef]
- Bulska, E.; Wagner, B. Quantitative aspects of inductively coupled plasma mass spectrometry. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2016, 374, 20150369. [Google Scholar] [CrossRef]
- Douvris, C.; Vaughan, T.; Bussan, D.; Bartzas, G.; Thomas, R. How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Sci. Total Environ. 2023, 905, 167242. [Google Scholar] [CrossRef]
- Boss, C.B.; Fredeen, K.J. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry; PerkinElmer Instruments: Springfield, IL, USA, 2004. [Google Scholar]
- Jagodic, J.; Rovcanin, B.; Krstic, D.; Paunovic, I.; Zivaljevic, V.; Manojlovic, D.; Stojsavljevic, A. Elemental profiling of adrenal adenomas in solid tissue and blood samples by ICP-MS and ICP-OES. Microchem. J. 2021, 165, 106194. [Google Scholar] [CrossRef]
- Egger, A.; Rappel, C.; Jakupec, M.; Hartinger, C.; Heffeter, P.; Keppler, B. Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. J. Anal. At. Spectrom. 2009, 24, 51–61. [Google Scholar] [CrossRef]
- Gligorijevic, N.; Arandelovic, S.; Filipovic, L.; Jakovljevic, K.; Jankovic, R.; Grguric-Sipka, S.; Ivanovic, I.; Radulovic, S.; Tesic, Z. Picolinate ruthenium(II)-arene complex with in vitro antiproliferative and antimetastatic properties: Comparison to a series of ruthenium(II)-arene complexes with similar structure. J. Inorg. Biochem. 2012, 108, 53–61. [Google Scholar] [CrossRef]
- Thompson, E.; Graham, E.; MacNeill, C.; Young, M.; Donati, G.; Wailes, E.; Jones, B.; Levi-Polyachenko, N. Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy. Int. J. Hyperth. 2014, 30, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Andreas, K.; Georgieva, R.; Ladwig, M.; Mueller, S.; Notter, M.; Sittinger, M.; Ringe, J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 2012, 33, 4515–4525. [Google Scholar] [CrossRef] [PubMed]
- Nedopil, A.; Klenk, C.; Kim, C.; Liu, S.; Wendland, M.; Golovko, D.; Schuster, T.; Sennino, B.; McDonald, D.; Daldrup-Link, H. MR Signal Characteristics of Viable and Apoptotic Human Mesenchymal Stem Cells in Matrix-Associated Stem Cell Implants for Treatment of Osteoarthritis. Investig. Radiol. 2010, 45, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; von See, M.; Yu, E.; Gunel, B.; Lu, K.; Vazin, T.; Schaffer, D.; Goodwill, P.; Conolly, S. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics 2016, 6, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhou, J.; Li, H.; Gao, Y.; Xu, C.; Zhao, S.; Chen, Y.; Cai, W.; Wu, J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol. Nutr. Food Res. 2015, 59, 2132–2142. [Google Scholar] [CrossRef]
- Marquez-Curtis, L.; Janowska-Wieczorek, A.; McGann, L.; Elliott, J. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology 2015, 71, 181–197. [Google Scholar] [CrossRef]
- Sieme, H.; Oldenhof, H.; Wolkers, W. Mode of action of cryoprotectants for sperm preservation. Anim. Reprod. Sci. 2016, 169, 2–5. [Google Scholar] [CrossRef]
- Meseguer, M.; Garrido, N.; Martínez-Conejero, J.; Simón, C.; Pellicer, A.; Remohí, J. Mitochondrial activity in the susceptibility for cryodamage after a cycle of freezing and thawing Role of cholesterol, calcium, and thawing. Fertil. Steril. 2004, 81, 588–594. [Google Scholar] [CrossRef]
- Shon, Y.H. Analysis of the Proteoglycan Content in Fresh and Cryopreserved Porcine Cardiovascular Tissues; Old Dominion University and Eastern Virginia Medical School: Norfolk, VA, USA, 1993. [Google Scholar]
- Villalobos-Olivera, A.; Martínez, J.; Escalante, D.; Martínez-Montero, M.E.; Sershen, N.; Lorenzo, J.C. Cryopreservation of pineapple shoot tips does not affect mineral contents of regenerated plants. Acta Physiol. Plant. 2021, 43, 15. [Google Scholar] [CrossRef]
- Kovac, M.; Vasicek, J.; Kulikova, B.; Bauer, M.; Curlej, J.; Balazi, A.; Chrenek, P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol. Prog. 2017, 33, 1601–1613. [Google Scholar] [CrossRef]
- Vasicek, J.; Balazi, A.; Bauer, M.; Svoradova, A.; Tirpakova, M.; Tomka, M.; Chrenek, P. Molecular Profiling and Gene Banking of Rabbit EPCs Derived from Two Biological Sources. Genes 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Tirpakova, M.; Vasicek, J.; Svoradova, A.; Balazi, A.; Tomka, M.; Bauer, M.; Makarevich, A.; Chrenek, P. Phenotypical Characterization and Neurogenic Differentiation of Rabbit Adipose Tissue-Derived Mesenchymal Stem Cells. Genes 2021, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, F.; Cañizares, F.J.; Cubero, M.A.; Serrano, M.M.; Robles, M.A.; Fernández-Segura, E. Ultrastructural and Intracellular Elemental Composition Analysis of Human Hematopoietic Cells During Cold Storage in Preservation Solutions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 235–236. [Google Scholar]
- Fernández-Segura, E.; Arrebola, F.; Cubero, M.A.; Cañizares, F.J.; Robles, M.A.; Navarrete, P. Changes in Intracellular Sodium, Chlorine, and Potassium Content in Hematopoietic Cells After Hypotermic Storage; Springer: Berlin/Heidelberg, Germany, 2008; pp. 259–260. [Google Scholar]
- Kozlova, I.; Roomans, G. Preservation of pancreas tissue during cold storage assessed by X-ray microanalysis. Am. J. Transplant. 2003, 3, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Arigony, A.; de Oliveira, I.; Machado, M.; Bordin, D.; Bergter, L.; Pra, D.; Henriques, J. The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability. BioMed Res. Int. 2013, 2013, 597282. [Google Scholar] [CrossRef]
- Seth, R.; Yang, S.; Cho, S.; Sabean, M.; Roberts, E. In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G. Toxicol. In Vitro 2004, 18, 501–509. [Google Scholar] [CrossRef]
- Grillo, C.; Reigosa, M.; de Mele, M. Does over-exposure to copper ions released from metallic copper induce cytotoxic and genotoxic effects on mammalian cells? Contraception 2010, 81, 343–349. [Google Scholar] [CrossRef]
- Lima, P.; Vasconcellos, M.; Montenegro, R.; Sombra, C.; Bahia, M.; Costa-Lotufo, L.; Pessoa, C.; Moraes, M.; Burbano, R. Genotoxic and cytotoxic effects of iron sulfate in cultured human lymphocytes treated in different phases of cell cycle. Toxicol. In Vitro 2008, 22, 723–729. [Google Scholar] [CrossRef]
- Knoebel, Y.; Weise, A.; Glei, M.; Sendt, W.; Claussen, U.; Pool-Zobel, B. Ferric iron is genotoxic in non-transformed and preneoplastic human colon cells. Food Chem. Toxicol. 2007, 45, 804–811. [Google Scholar] [CrossRef]
- Maier, J.; Malpuech-Brugère, C.; Zimowska, W.; Rayssiguier, Y.; Mazur, A. Low magnesium promotes endothelial cell dysfunction:: Implications for atherosclerosis, inflammation and thrombosis. Biochim. Biophys. Acta-Mol. Basis Dis. 2004, 1689, 13–21. [Google Scholar] [CrossRef]
- Sgambato, A.; Wolf, F.; Faraglia, B.; Cittadini, A. Magnesium depletion causes growth inhibition, reduced expression of cyclin D1, and increased expression of p27Kip1 in normal but not in transformed mammary epithelial cells. J. Cell. Physiol. 1999, 180, 245–254. [Google Scholar] [CrossRef]
- Killilea, D.; Ames, B. Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. Proc. Natl. Acad. Sci. USA 2008, 105, 5768–5773. [Google Scholar] [CrossRef] [PubMed]
- Hoefig, C.; Renko, K.; Köhrle, J.; Birringer, M.; Schomburg, L. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J. Nutr. Biochem. 2011, 22, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wu, M.; Botnen, J. Methylselenol, a Selenium Metabolite, Induces Cell Cycle Arrest in G1 Phase and Apoptosis via the Extracellular-Regulated Kinase 1/2 Pathway and Other Cancer Signaling Genes. J. Nutr. 2009, 139, 1613–1618. [Google Scholar] [CrossRef]
- Ho, E.; Ames, B. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA 2002, 99, 16770–16775. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Thomas, P.; Zalewski, P.; Graham, R.; Fenech, M. The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2011, 720, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Thomas, P.; Zalewski, P.; Fenech, M. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes Nutr. 2012, 7, 139–154. [Google Scholar] [CrossRef]
- Tenan, M.; Nicolle, A.; Moralli, D.; Verbouwe, E.; Jankowska, J.; Durin, M.; Green, C.; Mandriota, S.; Sappino, A. Aluminum Enters Mammalian Cells and Destabilizes Chromosome Structure and Number. Int. J. Mol. Sci. 2021, 22, 9515. [Google Scholar] [CrossRef]
- Grynpas, M.; Hamilton, E.; Cheung, R.; Tsouderos, Y.; Deloffre, P.; Hott, M.; Marie, P. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 1996, 18, 253–259. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Vasicek, J.; Kovac, M.; Balazi, A.; Kulikova, B.; Tomkova, M.; Olexikova, L.; Curlej, J.; Bauer, M.; Schnabl, S.; Hilgarth, M.; et al. Combined approach for characterization and quality assessment of rabbit bone marrow-derived mesenchymal stem cells intended for gene banking. New Biotechnol. 2020, 54, 1–12. [Google Scholar] [CrossRef]
Analysis Parameters | Value |
---|---|
Plasma RF Power | 1150 W |
Purge Gas Flow | Normal |
Auxiliary Gas Flow | 0.50 L/min |
Coolant Gas Flow | 12 L/min |
Nebulizer Gas Flow | 0.45 L/min |
Nebulizer Gas Pressure | 120 kPa |
Pump Speed | 50 rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vašíček, J.; Baláži, A.; Tirpáková, M.; Tomka, M.; Chrenek, P. Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells. J. Dev. Biol. 2025, 13, 6. https://doi.org/10.3390/jdb13010006
Vašíček J, Baláži A, Tirpáková M, Tomka M, Chrenek P. Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells. Journal of Developmental Biology. 2025; 13(1):6. https://doi.org/10.3390/jdb13010006
Chicago/Turabian StyleVašíček, Jaromír, Andrej Baláži, Mária Tirpáková, Marián Tomka, and Peter Chrenek. 2025. "Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells" Journal of Developmental Biology 13, no. 1: 6. https://doi.org/10.3390/jdb13010006
APA StyleVašíček, J., Baláži, A., Tirpáková, M., Tomka, M., & Chrenek, P. (2025). Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells. Journal of Developmental Biology, 13(1), 6. https://doi.org/10.3390/jdb13010006