Simultaneous Path Planning and Task Allocation in Dynamic Environments
Abstract
:1. Introduction
2. Related Work
3. Extended-SPADES
3.1. Introduction
3.2. Assumptions and Terminology
3.3. Overview of the Method
Algorithm 1: Extended-SPADES Framework |
3.3.1. Task Planner
3.3.2. Path Adaptor
3.3.3. Interference Objective Functional
4. Experiments and Results
4.1. Implementation
4.1.1. multi−CHOMP
4.1.2. Extended-SPADES
4.2. Experiments
5. Results and Discussion
5.1. multi−CHOMP
5.2. Extended-SPADES
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Objective Functionals in Detail
References
- Daniel, C.; Frans, O.; Hendrik, B.; Karl, T. Decentralised online planning for multi-robot warehouse commissioning. In Proceedings of the 16th Conference on Autonomous Agents489 and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent490 Systems, Sao Paulo, Brazil, 8–12 May 2017; pp. 492–500. [Google Scholar]
- Baxter, J.L.; Burke, E.K.; Garibaldi, J.M.; Norman, M. Multi-robot search and rescue: A potential field based approach. In Autonomous Robots and Agents; Springer: Berlin/Heidelberg, Germany, 2007; pp. 9–16. [Google Scholar]
- Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376–386. [Google Scholar] [CrossRef]
- Fox, D.; Ko, J.; Konolige, K.; Limketkai, B.; Schulz, D.; Stewart, B. Distributed multirobot exploration and mapping. Proc. IEEE 2006, 94, 1325–1339. [Google Scholar] [CrossRef]
- Ye, L.; Wu, F.; Zou, X.; Li, J. Path planning for mobile robots in unstructured orchard environments: An improved kinematically constrained bi-directional RRT approach. Comput. Electron. Agric. 2023, 215, 108453. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Z.; Luo, L.; Tang, Y.; Cheng, J.; Wei, H.; Wang, J. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard. Comput. Electron. Agric. 2024, 219, 108774. [Google Scholar] [CrossRef]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- LaValle, S.M.; Hutchinson, S.A. Optimal motion planning for multiple robots having independent goals. IEEE Trans. Robot. Autom. 1998, 14, 912–925. [Google Scholar] [CrossRef]
- Van Den Berg, J.P.; Overmars, M.H. Prioritized motion planning for multiple robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 430–435. [Google Scholar]
- Van Den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3–19. [Google Scholar]
- Turpin, M.; Mohta, K.; Michael, N.; Kumar, V. Goal assignment and trajectory planning for large teams of interchangeable robots. Auton. Robot. 2014, 37, 401–415. [Google Scholar] [CrossRef]
- Matthew, T.; Nathan, M.; Vijay, K. An approximation algorithm for time optimal multi-robot routing. In Algorithmic Foundations of Robotics XI; Springer: Berlin/Heidelberg, Germany, 2015; pp. 627–640. [Google Scholar]
- Liu, L.; Shell, D.A. An anytime assignment algorithm: From local task swapping to global optimality. Auton. Robot. 2013, 35, 271–286. [Google Scholar] [CrossRef]
- David, J.; Philippsen, R. Task Assignment and Trajectory Planning in Dynamic environments for Multiple Vehicles. In Robotics Science and System, Workshop on Task and Motion Planning; IOS Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef]
- Cao, Y.U.; Kahng, A.B.; Fukunaga, A.S. Cooperative mobile robotics: Antecedents and directions. Auton. Robot. 1997, 4, 7–27. [Google Scholar] [CrossRef]
- Gerkey, B.P.; Matarić, M.J. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 2004, 23, 939–954. [Google Scholar] [CrossRef]
- Ayorkor, K.G.; Anthony, S.; Bernardine, D.M. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 2013, 32, 1495–1512. [Google Scholar]
- Sameh, S.; Tucker, B. Efficient multi-robot coordination through auction-based task allocation and behavior-based execution. J. Artif. Intell. Res. 2009, 35, 725–755. [Google Scholar]
- LaValle, S.M. Rapidly-exploring random trees: Progress and prospects. In Algorithmic and Computational Robotics: New Directions: The Fourth Workshop on the Algorithmic Foundations of Robotics; CRC: Boca Raton, FL, USA, 2000; pp. 293–308. [Google Scholar]
- Choset, H. Coverage for robotics—A survey of recent results. Ann. Math. Artif. Intell. 2001, 31, 113–126. [Google Scholar] [CrossRef]
- Yang, L.; Gu, D.; Chen, L.; Hu, H. Multi-robot task allocation for robot soccer. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1202–1207. [Google Scholar]
- Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.K.; et al. Multi-agent pathfinding: Definitions, variants, and benchmarks. arXiv 2019, arXiv:1906.08291. [Google Scholar] [CrossRef]
- Silver, D. Cooperative pathfinding. In Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment Conference, Marina Del Rey, CA, USA, 1–2 June 2005. [Google Scholar]
- Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015, 219, 40–66. [Google Scholar] [CrossRef]
- Antonyshyn, L.; Silveira, J.; Givigi, S.; Marshall, J. Multiple Mobile Robot Task and Motion Planning: A Survey. ACM Comput. Surv. 2023, 55, 213. [Google Scholar] [CrossRef]
- Moon, S.; Oh, E.; Shim, D.H. An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments. J. Intell. Robot. Syst. 2013, 70, 303–313. [Google Scholar] [CrossRef]
- Masehian, E.; Nejad, A.H. A hierarchical decoupled approach for multi robot motion planning on trees. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3604–3609. [Google Scholar]
- Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D.D.; Stuckey, P.J. Integrated task assignment and path planning for capacitated multi-agent pickup and delivery. IEEE Robot. Autom. Lett. 2021, 6, 5816–5823. [Google Scholar] [CrossRef]
- Brown, K.; Peltzer, O.; Sehr, M.A.; Schwager, M.; Kochenderfer, M.J. Optimal sequential task assignment and path finding for multi-agent robotic assembly planning. In Proceedings of the 2020 IEEE546 International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31 August 2020; pp. 441–447. [Google Scholar]
- Xu, X.; Yin, Q.; Fu, Y.; Yu, M. Solving multi-goal task assignment and path finding problem with a Single Constraint Tree. In Proceedings of the 43rd Chinese Control Conference (CCC), Kunming, China, 28–31 July 2024; pp. 5704–5709. [Google Scholar]
- Qiu, Z.; Long, J.; Yu, Y.; Chen, S. Integrated task assignment and path planning for multi-type robots in an intelligent warehouse system. Transp. Res. Part Logist. Transp. Rev. 2025, 194, 103883. [Google Scholar] [CrossRef]
- Liu, S.; Feng, B.; Bi, Y.; Yu, D. An Integrated Approach to Precedence-Constrained Multi-Agent Task Assignment and Path Finding for Mobile Robots in Smart Manufacturing. Appl. Sci. 2024, 14, 3094. [Google Scholar] [CrossRef]
- Xia, G.; Sun, X.; Xia, X. Multiple task assignment and path planning of a multiple unmanned surface vehicles system based on improved self-organizing mapping and improved genetic algorithm. J. Mar. Sci. Eng. 2021, 9, 556. [Google Scholar] [CrossRef]
- Fang, C.; Mao, J.; Li, D.; Wang, N.; Wang, N. A coordinated scheduling approach for task assignment and multi-agent path planning. J. King Saud-Univ.-Comput. Inf. Sci. 2024, 36, 101930. [Google Scholar] [CrossRef]
- Murphey, R.A. Integrated Assignment and Path Planning. Doctoral Thesis, University of Florida, Gainesville, FL, USA, 2005. [Google Scholar]
- Umay, I.; Fidan, B.; Melek, W. An integrated task and motion planning technique for multi-robot-systems. In Proceedings of the 2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Ottawa, ON, Canada, 17–18 June 2019; pp. 1–7. [Google Scholar]
- Guo, H.; Miao, Z.; Ji, J.C.; Pan, Q. An effective collaboration evolutionary algorithm for multi-robot task allocation and scheduling in a smart farm. Knowl.-Based Syst. 2024, 289, 111474. [Google Scholar] [CrossRef]
- Edison, E.; Shima, T. Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 2011, 38, 340–356. [Google Scholar] [CrossRef]
- Tuna, G.; Gungor, V.C.; Gulez, K. An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters. Ad. Hoc. Netw. 2014, 13, 54–68. [Google Scholar] [CrossRef]
- Nigam, N. Dynamic replanning for multi-UAV persistent surveillance. In Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, USA, 19–22 August 2013; p. 4887. [Google Scholar]
- Emam, Y.; Mayya, S.; Notomista, G.; Bohannon, A.; Egerstedt, M. Adaptive task allocation for heterogeneous multi-robot teams with evolving and unknown robot capabilities. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 7719–7725. [Google Scholar]
- Luo, X.; Liu, C. Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications. arXiv 2024, arXiv:2401.04003. [Google Scholar]
- Xu, X.; de Soto, B.G. Deep reinforcement learning-based task assignment and path planning for multi-agent construction robots. In Proceedings of the 2nd Future of Construction Workshop at the International Conference on Robotics and Automation (ICRA 2023), London, UK, 29 May–2 June 2023. [Google Scholar]
- Vu, C.-T.; Liu, Y.-C. Deep Reinforcement Learning for Multi-Robot Local Path Planning in Dynamic Environments. In Proceedings of the 13th International Workshop on Robot Motion and Control590 (RoMoCo), Poznan, Poland, 2–4 July 2024; pp. 267–272. [Google Scholar]
- Zheng, Y.; Li, B.; An, D.; Li, N. A multi-agent path planning algorithm based on hierarchical reinforcement learning and artificial potential field. In Proceedings of the 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015; pp. 363–369. [Google Scholar]
- Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019, 9, 3057. [Google Scholar] [CrossRef]
- Philippsen, R.; Siegwart, R. Smooth and efficient obstacle avoidance for a tour guide robot. IEEE Int. Conf. Robot. Autom. 2003, 1, 446–451. [Google Scholar]
- David, J.; Rognvaldsson, T.; Soderberg, B.; Ohlsson, M. Deterministic Annealing based on Potts-spin model for Multi Robot Routing Problem. Springer J. Intell. Robot. Syst. 2021, 15, 321–334. [Google Scholar]
- David, J.; Valencia, R.; Philippsen, R.; Iagnemma, K. Local Path Optimizer for an Autonomous Truck in a Harbor Scenario. In Springer Field and Service Robotics: Results of the 11th International Conference; Springer: Geneva, Switzerland, 2018; pp. 499–512. [Google Scholar]
- David, J.; Valencia, R.; Philippsen, R.; Bosshard, P.; Iagnemma, K. Gradient based path optimization method for autonomous driving. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4501–4508. [Google Scholar]
- Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP: Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [Google Scholar] [CrossRef]
- Hakkinen, J.; Lagerholm, M.; Peterson, C.; Soderberg, B. Local routing algorithms based on Potts neural networks. IEEE Trans. Neural Netw. 2000, 11, 970–977. [Google Scholar] [CrossRef] [PubMed]
- David, J.; Rögnvaldsson, T. Multi-Robot Routing Problem with Min–Max Objective. Robotics 2021, 10, 122. [Google Scholar] [CrossRef]
- Philippsen, R. Robotics Motion Planning Library. 2016. Available online: https://github.com/poftwaresatent/trychomp (accessed on 15 January 2025).
- Pascal, B.; Roland, P. Investigation of Trajectory Optimization for Multiple Car-Like Vehicles. Semester Thesis, Halmstad University, Halmstad, Sweden, 2015. [Google Scholar]
Method | Best Case | Worst Case | Space | Scalability |
---|---|---|---|---|
multi−CHOMP | Moderate | |||
Hybrid multi−CHOMP | Good | |||
Gradient Descent | Best |
No of Robots | Extended-SPADES | GAP | SPADES | ||||||
---|---|---|---|---|---|---|---|---|---|
mkspn | time | success | mkspn | time | success | mkspn | time | success | |
10 | 18.50 | 0.20 | 1 | 20.10 | 2.80 | 0.90 | 22.08 | 5.10 | 0.72 |
15 | 19.80 | 1.32 | 1 | 22.40 | 4.60 | 0.85 | 24.64 | 8.90 | 0.44 |
20 | 21.00 | 7.45 | 1 | 23.50 | 6.20 | 0.8 | 25.73 | 12.30 | 0.22 |
25 | 22.10 | 9.67 | 1 | 24.00 | 9.50 | 0.80 | 27.25 | 15.70 | 0.08 |
30 | 23.20 | 10.88 | 0.99 | 25.30 | 13.20 | 0.80 | 31.00 | 19.40 | 0.02 |
35 | 24.50 | 23.12 | 0.98 | 26.00 | 17.60 | 0.80 | 32.80 | 25.10 | 0 |
40 | 25.80 | 31.40 | 0.98 | 26.90 | 22.90 | 0.70 | 34.00 | 30.50 | 0 |
45 | 26.90 | 36.80 | 0.7 | 27.40 | 28.40 | 0.70 | 35.20 | 36.20 | 0 |
50 | 27.50 | 42.10 | 0.7 | 28.10 | 34.10 | 0.70 | 36.00 | 42.00 | 0 |
Scenario | Extended-SPADES | SPADES | GAP | ||||||
---|---|---|---|---|---|---|---|---|---|
Completeness | Path Smoothness | Obs. Avoid | Completeness | Path Smoothness | Obs. Avoid | Completeness | Path Smoothness | Obs. Avoid | |
Corridor 1 | 0.6 | 0.90 | 0.75 | 0.5 | 0.75 | 0.78 | 0.92 | 0.88 | 0.90 |
Corridor 2 | 0.5 | 0.85 | 0.80 | 0.3 | 0.78 | 0.82 | 0.93 | 0.89 | 0.91 |
Circular Obstacles | 0.8 | 0.95 | 1.00 | 0.6 | 0.77 | 0.84 | 0.91 | 0.86 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, J.; Valencia, R. Simultaneous Path Planning and Task Allocation in Dynamic Environments. Robotics 2025, 14, 17. https://doi.org/10.3390/robotics14020017
David J, Valencia R. Simultaneous Path Planning and Task Allocation in Dynamic Environments. Robotics. 2025; 14(2):17. https://doi.org/10.3390/robotics14020017
Chicago/Turabian StyleDavid, Jennifer, and Rafael Valencia. 2025. "Simultaneous Path Planning and Task Allocation in Dynamic Environments" Robotics 14, no. 2: 17. https://doi.org/10.3390/robotics14020017
APA StyleDavid, J., & Valencia, R. (2025). Simultaneous Path Planning and Task Allocation in Dynamic Environments. Robotics, 14(2), 17. https://doi.org/10.3390/robotics14020017