Design, Control, and Applications of Granular Jamming Grippers in Soft Robotics
Abstract
1. Introduction
2. Fundamental Principles of Granular Jamming
2.1. Phase Transition Mechanism
2.2. Grip Forces
- Static Friction: Static friction forces are due to the tangential tension in contact of the hardened gripper membrane with the surface of the object (see Figure 4A); the use of soft particles can intensify this friction by generating a “squeezing” effect on the object due to the reduction in volume when applying a vacuum inside the membrane [31]. When the gripper does not lock the object and only exerts force through static friction, the maximum holding force does not depend on the granular material used [32].
- Geometric interlocking: When the gripper in its flexible state deforms around the target body and then stiffens, the resulting shape can create geometric constraints that prevent the object from slipping out of the gripper [33] (see Figure 4B). As in the static friction mechanism, the use of white particles can improve the ability to wrap around the object by enhancing the interlock [34]. The addition of programmable protrusions or deformations in the membrane can facilitate interlocking, especially for smaller objects [35].
- Suction force: If the gripper membrane succeeds in hermetically sealing a small part of the object surface, by applying vacuum inside the membrane and reaching the granular interference phase, an additional suction force is produced that contributes to the overall gripping force [36] (see Figure 4C). This mechanism has been little studied, possibly because it requires the object surface to be smooth or wet to achieve effective sealing [33].
2.3. Stiffness Control
2.4. Influence of Grain Properties
2.4.1. Grain Size
2.4.2. Materials of the Grains
2.4.3. Grain Shape
3. Adaptive Finger-like Grippers with Granular Jamming
4. Influence of the Membrane
4.1. Membrane Material and Properties
4.2. Membrane Morphology
5. Reset Methods
5.1. Manual Reset
5.2. Positive Pressure
5.3. Active Fluidization
6. Performance
6.1. Success Rate
6.2. Response Time
6.3. Activation Force
6.4. Holding Force
7. Applications
7.1. Computational Applications and Modeling
7.2. Underwater Environments
7.3. Tactile Perception
7.4. Medical Applications
7.5. Collaborative Robotics
7.6. Semi-Active Drive Method Using Granular Jamming
8. Discussion and Future Directions
8.1. Grain Databases and Exploration of 3D-Printed Grains
8.2. Computational Modeling
8.3. Exploration in the Mixture of Grains
8.4. Control Systems
8.5. Relationship Between Object Size, Fluidization Frequency, and Gripper Dimensions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
DEM | Discrete Element Method |
FEA | Finite Element Analysis |
EPS | Expanded polystyrene |
CLS | Chain-Like Structure |
GJ | Granular jamming mode in study |
EA | Electro adhesion mode in study |
RMS | Root Mean Square |
ICP | Iterative Closest Point |
NSGA-III | Nondominated Sorting Genetic Algorithm III |
AISMC | Adaptive integral sliding mode control |
References
- Melchiorri, C.; Kaneko, M. Robot Hands. In Springer Handbook of Robotics; Springer: Cham, Switzerland, 2016; pp. 463–480. ISBN 978-3-319-32552-1. [Google Scholar]
- Hota, R.K.; Liu, G.; Decraemer, B.; Swevels, B.; Burggraeve, S.; Verstraten, T.; Vanderborght, B.; Van de Perre, G. Automated Grasp Planning and Finger Design Space Search Using Multiple Grasp Quality Measures. Robotics 2024, 13, 74. [Google Scholar] [CrossRef]
- Siciliano, B.; Khatib, O. Robotics and the Handbook. In Springer Handbook of Robotics; Springer Handbooks; Siciliano, B., Khatib, O., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–6. ISBN 978-3-319-32552-1. [Google Scholar]
- Saudabayev, A.; Varol, H.A. Sensors for Robotic Hands: A Survey of State of the Art. IEEE Access 2015, 3, 1765–1782. [Google Scholar] [CrossRef]
- Controzzi, M.; Cipriani, C.; Carrozza, M.C. Design of Artificial Hands: A Review. In The Human Hand as an Inspiration for Robot Hand Development; Springer: Cham, Switzerland, 2014; pp. 219–246. ISBN 978-3-319-03017-3. [Google Scholar]
- Simpson, D.C. Gripping Surfaces for Artificial Hands. Hand 1971, 3, 12–14. [Google Scholar] [CrossRef]
- Schmidt, I. Flexible Moulding Jaws for Grippers. Ind. Robot. Int. J. 1978, 5, 24–26. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Steltz, E.; Mozeika, A.; Rembisz, J.; Corson, N.; Jaeger, H.M. Jamming as an Enabling Technology for Soft Robotics. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) 2010 SPIE, San Diego, CA, USA, 9 April 2010; Volume 7642, pp. 640–648. [Google Scholar]
- Fitzgerald, S.G.; Delaney, G.W.; Howard, D. A Review of Jamming Actuation in Soft Robotics. Actuators 2020, 9, 104. [Google Scholar] [CrossRef]
- Majmudar, T.S.; Sperl, M.; Luding, S.; Behringer, R.P. Jamming Transition in Granular Systems. Phys. Rev. Lett. 2007, 98, 058001. [Google Scholar] [CrossRef] [PubMed]
- Corwin, E.I.; Jaeger, H.M.; Nagel, S.R. Structural Signature of Jamming in Granular Media. Nature 2005, 435, 1075–1078. [Google Scholar] [CrossRef]
- O’Hern, C.S.; Silbert, L.E.; Liu, A.J.; Nagel, S.R. Jamming at Zero Temperature and Zero Applied Stress: The Epitome of Disorder. Phys. Rev. E 2003, 68, 011306. [Google Scholar] [CrossRef]
- Liu, A.J.; Nagel, S.R. (Eds.) Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales; CRC Press: London, UK, 2014; ISBN 978-0-429-17870-2. [Google Scholar]
- Liu, A.J.; Nagel, S.R. Jamming Is Not Just Cool Any More. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Cates, M.E.; Wittmer, J.P.; Bouchaud, J.-P.; Claudin, P. Jamming, Force Chains, and Fragile Matter. Phys. Rev. Lett. 1998, 81, 1841–1844. [Google Scholar] [CrossRef]
- Jaeger, H.M.; Nagel, S.R.; Behringer, R.P. Granular Solids, Liquids, and Gases. Rev. Mod. Phys. 1996, 68, 1259–1273. [Google Scholar] [CrossRef]
- Hudson, S.W. Mechanical Characterization of Jammable Granular Systems. Bachelor’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Magalhaes, C.F.M.; Atman, A.P.F.; Combe, G.; Moreira, J.G. Jamming Transition in a Two-Dimensional Open Granular Pile with Rolling Resistance. Pap. Phys. 2014, 6, 060007. [Google Scholar] [CrossRef]
- Nicodemi, M.; Coniglio, A.; Herrmann, H.J. Compaction and Force Propagation in Granular Packings. Phys. A Stat. Mech. Appl. 1997, 240, 405–418. [Google Scholar] [CrossRef]
- Behringer, R.P.; Chakraborty, B. The Physics of Jamming for Granular Materials: A Review. Rep. Prog. Phys. 2018, 82, 012601. [Google Scholar] [CrossRef]
- Chakraborty, B.; Behringer, B. Jamming of Granular Matter. In Statistical and Nonlinear Physics; Springer: New York, NY, USA, 2009; pp. 397–426. ISBN 978-1-0716-1454-9. [Google Scholar]
- Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P.N.; Weitz, D.A. Jamming Phase Diagram for Attractive Particles. Nature 2001, 411, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal Robotic Gripper Based on the Jamming of Granular Material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft Robotics Commercialization: Jamming Grippers from Research to Product. Soft Robot. 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Chen, Q.; Schott, D.; Jovanova, J. Conceptual Design of a Novel Particle-Based Soft Grasping Gripper. J. Mech. Robot. 2023, 16, 051004. [Google Scholar] [CrossRef]
- Aktaş, B.; Narang, Y.S.; Vasios, N.; Bertoldi, K.; Howe, R.D. A Modeling Framework for Jamming Structures. Adv. Funct. Mater. 2021, 31, 2007554. [Google Scholar] [CrossRef]
- Mort, P. Characterizing Flowability of Granular Materials by Onset of Jamming in Orifice Flows. Pap. Phys. 2015, 7, 070004. [Google Scholar] [CrossRef]
- Jin, W.-H.; Cheng, S.-B.; Liu, X.-X. Experimental Study on the Mechanism of Flow Blockage Formation in Fast Reactor. Nucl. Sci. Tech. 2023, 34, 84. [Google Scholar] [CrossRef]
- Wang, W.D.; Hu, W.; Li, Z. A Physically Intelligent, Multimodal Universal Soft Gripper Using Granular Materials. Adv. Funct. Mater. 2025, 35, 2418549. [Google Scholar] [CrossRef]
- Götz, H.; Santarossa, A.; Sack, A.; Pöschel, T.; Müller, P. Soft Particles Reinforce Robotic Grippers: Robotic Grippers Based on Granular Jamming of Soft Particles. Granul. Matter 2022, 24, 31. [Google Scholar] [CrossRef]
- Gómez-Paccapelo, J.M.; Santarossa, A.A.; Bustos, H.D.; Pugnaloni, L.A. Effect of the Granular Material on the Maximum Holding Force of a Granular Gripper. Granul. Matter 2021, 23, 4. [Google Scholar] [CrossRef]
- Santarossa, A.; D’Angelo, O.; Sack, A.; Pöschel, T. Effect of Particle Size on the Suction Mechanism in Granular Grippers. Granul. Matter 2023, 25, 16. [Google Scholar] [CrossRef]
- Santarossa, A.; Pöschel, T. Enhanced Interlocking in Granular Jamming Grippers through Hard and Soft Particle. Mixtures Granul. Matter 2024, 26, 105. [Google Scholar] [CrossRef]
- Kapadia, J.; Yim, M. Design and Performance of Nubbed Fluidizing Jamming Grippers. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 5301–5306. [Google Scholar]
- Zhao, Y.; Wang, Y. A Palm-Shape Variable-Stiffness Gripper Based on 3D-Printed Fabric Jamming. IEEE Robot. Autom. Lett. 2023, 8, 3238–3245. [Google Scholar] [CrossRef]
- de Rodrigo, I.; Belart, J.; Lopez-Lopez, A.J. Universal Jamming Gripper: Experimental Analysis on Envelope and Granular Materials. Machines 2024, 12, 52. [Google Scholar] [CrossRef]
- Blanc, L.; François, B.; Delchambre, A.; Lambert, P. Characterization and Modeling of Granular Jamming: Models for Mechanical Design. Granul. Matter 2021, 23, 6. [Google Scholar] [CrossRef]
- Piskarev, Y.; Devincenti, A.; Ramachandran, V.; Bourban, P.-E.; Dickey, M.D.; Shintake, J.; Floreano, D. A Soft Gripper with Granular Jamming and Electroadhesive Properties. Adv. Intell. Syst. 2023, 5, 2200409. [Google Scholar] [CrossRef]
- Zeng, X.; Su, H.-J. A High Performance Pneumatically Actuated Soft Gripper Based on Layer Jamming. J. Mech. Robot. 2022, 15, 014501. [Google Scholar] [CrossRef]
- Santarossa, A.; D’Angelo, O.; Sack, A.; Pöschel, T. All-Terrain Granular Gripper. Particuology 2025, 104, 283–288. [Google Scholar] [CrossRef]
- Loeve, A.J.; van de Ven, O.S.; Vogel, J.G.; Breedveld, P.; Dankelman, J. Vacuum Packed Particles as Flexible Endoscope Guides with Controllable Rigidity. Granul. Matter 2010, 12, 543–554. [Google Scholar] [CrossRef]
- Gilday, K.; Hashem, R.; Abdulali, A.; Iida, F. The Xeno-Tongue Gripper: Granular Jamming Suction Cup with Bellow-Driven Self-Morphing. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 4–6 April 2023. [Google Scholar]
- Cheng, N.; Amend, J.; Farrell, T.; Latour, D.; Martinez, C.; Johansson, J.; McNicoll, A.; Wartenberg, M.; Naseef, S.; Hanson, W.; et al. Prosthetic Jamming Terminal Device: A Case Study of Untethered Soft Robotics. Soft Robot. 2016, 3, 205–212. [Google Scholar] [CrossRef]
- Dierks, N.; Wacker, C.; Zetzener, H.; Schilde, C.; Dröder, K.; Kwade, A. Modelling of the Moulding Process of a Granular-Based Vacuum Gripper with DEM. Comp. Part. Mech. 2025, 12, 2357–2376. [Google Scholar] [CrossRef]
- Howard, D.; O’Connor, J.; Brett, J.; Delaney, G.W. Shape, Size, and Fabrication Effects in 3D Printed Granular Jamming Grippers. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021; pp. 458–464. [Google Scholar]
- Joseph, T.; Baldwin, S.; Guan, L.; Brett, J.; Howard, D. The Jamming Donut: A Free-Space Gripper Based on Granular Jamming. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 4–6 April 2023; pp. 1–6. [Google Scholar]
- Valenzuela-Coloma, H.-R.; Lau-Cortes, Y.; Fuentes-Romero, R.-E.; Zagal, J.C.; Mendoza-Garcia, R.-F. Mentaca: An Universal Jamming Gripper on Wheels. In Proceedings of the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, Chile, 28–30 October 2015; pp. 817–823. [Google Scholar]
- Howard, D.; O’Connor, J.; Letchford, J.; Joseph, T.; Lin, S.; Baldwin, S.; Delaney, G. A Comprehensive Dataset of Grains for Granular Jamming in Soft Robotics: Grip Strength and Shock Absorption. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 4–6 April 2022. [Google Scholar]
- Nishida, T.; Shigehisa, D.; Kawashima, N.; Tadakuma, K. Development of Universal Jamming Gripper with a Force Feedback Mechanism. In Proceedings of the 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu, Japan, 3–6 December 2014; pp. 242–246. [Google Scholar]
- Alsakarneh, A.; Alnaqbi, S.; Alkaabi, M.; Alnaqbi, R.; Alnaqbi, M.; Alkaabi, A.; Tabaza, T. Experimental Analysis of the Holding-Force of the Jamming Grippers. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 6–8 February 2018; pp. 1–3. [Google Scholar]
- Miettinen, J.; Frilund, P.; Vuorinen, I.; Kuosmanen, P.; Kiviluoma, P. Granular Jamming Based Robotic Gripper for Heavy Objects. Proc. Est. Acad. Sci. 2019, 68, 421–428. [Google Scholar] [CrossRef]
- Amend, J.R.; Brown, E.; Rodenberg, N.; Jaeger, H.M.; Lipson, H. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE Trans. Robot. 2012, 28, 341–350. [Google Scholar] [CrossRef]
- Howard, D.; O’Connor, J.; Letchford, J.; Brett, J.; Joseph, T.; Lin, S.; Furby, D.; Delaney, G.W. Getting a Grip: In Materio Evolution of Membrane Morphology for Soft Robotic Jamming Grippers. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022; pp. 531–538. [Google Scholar]
- Mishra, R.; Philips, T.; Delaney, G.W.; Howard, D. Vibration Improves Performance in Granular Jamming Grippers. arXiv 2021, arXiv:2109.10496. [Google Scholar] [CrossRef]
- Coombe, C.; Brett, J.; Mishra, R.; Delaney, G.W.; Howard, D. Active Vibration Fluidization for Granular Jamming Grippers. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 3–7 April 2023; pp. 1–8. [Google Scholar]
- Fujita, M.; Tadakuma, K.; Takane, E.; Ichimura, T.; Komatsu, H.; Nomura, A.; Konyo, M.; Tadakoro, S. Variable Inner Volume Mechanism for Soft and Robust Gripping—Improvement of Gripping Performance for Large-Object Gripping. In Proceedings of the 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016. [Google Scholar] [CrossRef]
- Fujita, M.; Ikeda, S.; Fujimoto, T.; Shimizu, T.; Ikemoto, S.; Miyamoto, T. Development of Universal Vacuum Gripper for Wall-Climbing Robot. Adv. Robot. 2018, 32, 283–296. [Google Scholar] [CrossRef]
- Fujita, M.; Tadakuma, K.; Komatsu, H.; Takane, E.; Nomura, A.; Ichimura, T.; Konyo, M.; Tadokoro, S. Jamming Layered Membrane Gripper Mechanism for Grasping Differently Shaped-Objects without Excessive Pushing Force for Search and Rescue Missions. Adv. Robot. 2018, 32, 590–604. [Google Scholar] [CrossRef]
- Badilla-Solórzano, J.; Ihler, S.; Seel, T. HybGrip: A Synergistic Hybrid Gripper for Enhanced Robotic Surgical Instrument Grasping. Int. J. CARS 2024, 19, 2363–2370. [Google Scholar] [CrossRef]
- D’Avella, S.; Tripicchio, P.; Avizzano, C.A. A Study on Picking Objects in Cluttered Environments: Exploiting Depth Features for a Custom Low-Cost Universal Jamming Gripper. Robot. Comput.-Integr. Manuf. 2020, 63, 101888. [Google Scholar] [CrossRef]
- Halouani, N.; Shah Nazar, P.; Pott, P.P. Current Directions in Biomedical Engineering: Granular Jamming Gripper for an Ankle Rehabilitation Robot. Available online: https://digital.zlb.de/viewer/metadata/1351495836/1/ (accessed on 12 February 2025).
- Fajardo, P.R.B.; Genoves, V.F.S.; Libiran, J.G.; Ortiz, R.B.T.; Torres, K.V.B.; Serrano, K.K.D. Development of a Variable Negative Pressure Jamming Gripper through Visual Object Size Classification and Artificial Neural Network. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 2081–2085. [Google Scholar]
- Harada, K.; Nagata, K.; Rojas, J.; Ramirez-Alpizar, I.G.; Wan, W.; Onda, H.; Tsuji, T. Proposal of a Shape Adaptive Gripper for Robotic Assembly Tasks. Adv. Robot. 2016, 30, 1186–1198. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Lin, S.; Li, Y.; Chen, Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics 2023, 8, 209. [Google Scholar] [CrossRef]
- Licht, S.; Collins, E.; Badlissi, G.; Rizzo, D. A Partially Filled Jamming Gripper for Underwater Recovery of Objects Resting on Soft Surfaces. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6461–6468. [Google Scholar]
- Licht, S.; Collins, E.; Mendes, M.L.; Baxter, C. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools. Soft Robot. 2017, 4, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yin, X.; Xia, C.; Ye, L.; Wang, X.; Liang, B. TaTa: A Universal Jamming Gripper with High-Quality Tactile Perception and Its Application to Underwater Manipulation. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 6151–6157. [Google Scholar]
- Licht, S.; Collins, E.; Ballat-Durand, D.; Lopes-Mendes, M. Universal Jamming Grippers for Deep-Sea Manipulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Howard, G.D.; Brett, J.; O’Connor, J.; Letchford, J.; Delaney, G.W. One-Shot 3D-Printed Multimaterial Soft Robotic Jamming Grippers. Soft Robot. 2022, 9, 497–508. [Google Scholar] [CrossRef]
- Kremer, P.; Nohooji, H.R.; Sanchez-Lopez, J.L.; Voos, H. TRIGGER: A Lightweight Universal Jamming Gripper for Aerial Grasping. IEEE Access 2023, 11, 50098–50115. [Google Scholar] [CrossRef]
- Matsumura, S.; Kawamura, S.; Kandpal, L.; Vangla, P. 3D Printed Porous Particle and Its Geotechnical Properties. Acta Geotech. 2023, 18, 5735–5753. [Google Scholar] [CrossRef]
- Delaney, G.W.; Cleary, P.W. The Packing Properties of Superellipsoids. Europhys. Lett. 2010, 89, 34002. [Google Scholar] [CrossRef]
- Delaney, G.W.; Howard, G. Multi-Objective Exploration of a Granular Matter Design Space. In Proceedings of the GECCO ’20: Genetic and Evolutionary Computation Conference, Cancún, Mexico, 8–12 July 2020; pp. 263–264. [Google Scholar]
- Fitzgerald, S.G.; Delaney, G.W.; Howard, D.; Maire, F. Evolving Soft Robotic Jamming Grippers. In Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 26 June 2021; pp. 102–110. [Google Scholar]
- Wissman, J.; Ikei, A.; Konarski, S.G.; Rohde, C.A.; Naify, C.J. Tunable Acoustics with Dielectric Elastomer Activated Granular Jamming Exhibiting a Solid–Fluid Transition. J. Appl. Phys. 2020, 128, 204901. [Google Scholar] [CrossRef]
- Hou, T.; Yang, X.; Aiyama, Y.; Liu, K.; Wang, Z.; Wang, T.; Liang, J.; Fan, Y. Design and Experiment of a Universal Two-Fingered Hand with Soft Fingertips Based on Jamming Effect. Mech. Mach. Theory 2019, 133, 706–719. [Google Scholar] [CrossRef]
- Liu, F.; Sun, F.; Fang, B.; Li, X.; Sun, S.; Liu, H. Hybrid Robotic Grasping With a Soft Multimodal Gripper and a Deep Multistage Learning Scheme. IEEE Trans. Robot. 2023, 39, 2379–2399. [Google Scholar] [CrossRef]
- Liu, X.; Ci, L.; Zhang, J.; Zhao, Y.; Arafat Aziz, K.M. A Granular Jamming Based Hollow Variable Stiffness Structure with Adjustable Local Hardness. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 5–9 December 2022; pp. 2237–2242. [Google Scholar]
- Li, Y.; Ishii, H. A Novel Design of Soft Pneumatic Actuator with Variable Stiffness Using Granular Jamming. In Proceedings of the 2024 International Conference on Advanced Robotics and Mechatronics (ICARM), Tokyo, Japan, 8–10 July 2024; pp. 735–740. [Google Scholar]
- Jiang, P.; Yang, Y.; Chen, M.Z.Q.; Chen, Y. A Variable Stiffness Gripper Based on Differential Drive Particle Jamming. Bioinspir. Biomim. 2019, 14, 036009. [Google Scholar] [CrossRef]
- Cheng, N.G.; Lobovsky, M.B.; Keating, S.J.; Setapen, A.M.; Gero, K.I.; Hosoi, A.E.; Iagnemma, K.D. Design and Analysis of a Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4328–4333. [Google Scholar]
- Chung, Y.C.; Chow, W.T. Soft Robotic Honeycomb Jamming Gripper Design. In Proceedings of the 2024 9th International Conference on Control and Robotics Engineering (ICCRE), Osaka, Japan, 10–12 May 2024; pp. 68–73. [Google Scholar]
- Jiang, Y.; Chen, D.; Liu, C.; Li, J. Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics. Soft Robot. 2019, 6, 118–132. [Google Scholar] [CrossRef]
- Jiang, A.; Ranzani, T.; Gerboni, G.; Lekstutyte, L.; Althoefer, K.; Dasgupta, P.; Nanayakkara, T. Robotic Granular Jamming: Does the Membrane Matter? Soft Robot. 2014, 1, 192–201. [Google Scholar] [CrossRef]
- Blackley, D.C. Polymer Latices: Science and Technology Volume 3: Applications of Latices; Springer Science & Business Media: Boston, NY, USA, 2012; ISBN 978-94-011-5848-0. [Google Scholar]
- Jacob, A.C.; Secco, E.L. Design of a Granular Jamming Universal Gripper. Lect. Notes Netw. Syst. 2022, 296, 268–284. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhou, H.; Zhao, C.; Barimah, B.; Li, B.; Xiang, C.; Li, L.; Gou, X.; Luo, M. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Soft Robot. 2022, 9, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E. Unjamming a Granular Hopper by Vibration. Europhys. Lett. 2009, 87, 24002. [Google Scholar] [CrossRef]
- Delaney, G.W.; Cleary, P.W.; Hilden, M.; Morrison, R.D. Testing the Validity of the Spherical DEM Model in Simulating Real Granular Screening Processes. Chem. Eng. Sci. 2012, 68, 215–226. [Google Scholar] [CrossRef]
- Windows-Yule, C.R.K.; Rosato, A.D.; Thornton, A.R.; Parker, D.J. Resonance Effects on the Dynamics of Dense Granular Beds: Achieving Optimal Energy Transfer in Vibrated Granular Systems. New J. Phys. 2015, 17, 023015. [Google Scholar] [CrossRef]
- Lemrich, L.; Carmeliet, J.; Johnson, P.A.; Guyer, R.; Jia, X. Dynamic Induced Softening in Frictional Granular Materials Investigated by Discrete-Element-Method Simulation. Phys. Rev. E 2017, 96, 062901. [Google Scholar] [CrossRef] [PubMed]
- Scopus—Document Details—Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Available online: https://www-scopus-com.ezproxy.umng.edu.co/record/display.uri?eid=2-s2.0-85128802557&origin=resultslist&sort=plf-f&src=s&sid=db71c25ea61bba33bb229cb2856ed340&sot=b&sdt=cl&cluster=scofreetoread%2C%22all%22%2Ct&s=TITLE-ABS-KEY%28%22soft+Robotics%22+%2B+%22gripper%22+%2B+%22granular+jamming%22+OR+%22Jamming%22%29&sl=62&sessionSearchId=db71c25ea61bba33bb229cb2856ed340 (accessed on 1 August 2023).
- Jiang, Y.; Amend, J.R.; Lipson, H.; Saxena, A. Learning Hardware Agnostic Grasps for a Universal Jamming Gripper. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2385–2391. [Google Scholar]
- Fitzgerald, S.G.; Delaney, G.W.; Howard, D.; Maire, F. Evolving polydisperse soft robotic jamming grippers. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Melbourne, Australia, 14–18 July 2022. [Google Scholar] [CrossRef]
- Jiang, A.; Aste, T.; Dasgupta, P.; Althoefer, K.; Nanayakkara, T. Granular Jamming with Hydraulic Control. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013. [Google Scholar]
- Hughes, J.; Iida, F. Tactile Sensing Applied to the Universal Gripper Using Conductive Thermoplastic Elastomer. Soft Robot. 2018, 5, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, T.; Kiyokawa, T.; Matsubara, T.; Takamatsu, J.; Wada, T.; Ogasawara, T. Jamming Gripper-Inspired Soft Jig for Perceptive Parts Fixing. IEEE Access 2023, 11, 62187–62199. [Google Scholar] [CrossRef]
- Kremer, P.; Rahimi Nohooji, H.; Voos, H. Constrained Trajectory Optimization and Force Control for UAVs with Universal Jamming Grippers. Sci. Rep. 2024, 14, 11968. [Google Scholar] [CrossRef]
- Bartkowski, P.; Ciemiorek, M.; Bukowiecki, H.; Bomba, P.; Zalewski, R. Granular Jamming for Soft Robotics: Experiments and Modelling of Cyclic Loading. Arch. Civ. Mech. Eng. 2025, 25, 123. [Google Scholar] [CrossRef]
- De Barrie, D.; Pandya, M.; Pandya, H.; Hanheide, M.; Elgeneidy, K. A Deep Learning Method for Vision Based Force Prediction of a Soft Fin Ray Gripper Using Simulation Data. Front. Robot. AI 2021, 8, 631371. [Google Scholar] [CrossRef]
- Sun, B.; Wang, J.; Zhou, S.; Zhang, Y.; Jiang, J. An Adaptive Integral Sliding Mode Control Strategy for Medical Linear Accelerator Vacuum System. Appl. Radiat. Isot. 2024, 210, 111370. [Google Scholar] [CrossRef]
Type of Grain | Frequency | Gripping Force Range | Stiffness Range | Response Time | References |
---|---|---|---|---|---|
Coffee powder | 19 | 5–100 N | up to ~100 kPa effective modulus | 0.2–1 s | [24,35,39,48,49,50,53,54,55,56,57,58,59,60,61,62,63,64] |
Glass beads | 12 | 10–60 N | 50–150 kPa (depending on packing) | 0.5–1.2 s | [31,32,33,34,37,49,50,65,66,67,68,69] |
3D Prints | 3 | >40 N | Tunable depending on geometry | 0.3–0.8 s | [46,49,70] |
EPS | 3 | 5–20 N | low stiffness, <50 kPa | 0.2–0.5 s | [31,34,71] |
Sand | 2 | 20–50 N | ~100–200 kPa | 0.5–1.5 s | [32,51] |
Shape | M | A | B | C |
---|---|---|---|---|
Sphere | 2 | 1 | 1 | 1 |
Ellipsoid | 2 | 1 | 0.65 | 0.65 |
Superellipsoids | 3 | 1 | 0.75 | 0.6 |
Cube | 5 | 1 | 1 | 1 |
Type of Grain | Frequency | References |
---|---|---|
Latex | 24 | [24,31,32,35,37,46,48,49,50,51,53,55,56,58,60,61,62,63,64,65,66,69,87] |
Silicone | 6 | [25,37,39,43,57,71] |
3D Printing | 2 | [54,70] |
Fiber | 1 | [52] |
N | Article | Target Bodie | Granular Matter | Holding Force [N] | Activation Force [N] | Membrane Diameter [mm] |
---|---|---|---|---|---|---|
1 | [35] | Cylinder (6 mm) | Coffee powder | 31.88 | 15 | 65 |
Sphere (6 mm) | 35.85 | 15 | ||||
Parallelepiped (6 mm) | 29.14 | 10 | ||||
2 | [58] | Sphere (8 mm) | Coffee powder | 0.1 | - | 100 |
Cube (10 mm) | 1.4 | - | ||||
Square pipe (10 cm) | 0.3 | - | ||||
3 | [59] | Cylinder | Coffee powder | 104.17 | 20 | 50 |
4 | [49] | Sphere (20 mm3) | 3D printing materials, ground coffee, glass spheres | 10 | - | 125 |
Cube (20 mm3) | 13.5 | - | ||||
Coin (20 mm3) | 1.7 | - | ||||
Star (20 mm3) | 14.3 | - | ||||
5 | [39] | Hemispheres (12 mm) | Coffee powder | 6.06 | 1.2 | 36 |
Hemispheres (27 mm) | 11.8 | 1.6 | ||||
Hemispheres (32 mm) | 11.06 | 2.35 | ||||
6 | [56] | Sphere (30 mm) | Coffee powder | 16 | 250 | 45 |
7 | [50] | Ballpoint pen | Ground coffee | 27 | 2 | 523 cm3 |
Aromatic beads | 20 | 2 | ||||
Adzuki beans | 13 | 2 | ||||
8 | [33] | Sphere (20 mm) | Glass beads (4 mm) | 4.38 | 37 | 73 |
Glass beads (120 µm) | 6.73 | 37 | ||||
9 | [32] | Glass sphere coated in rubber (17 mm) | Polymer | 25.3 | 26.8 | 60 cm3 |
Sand | 19.8 | 24.1 | ||||
Ceramic beads | 25.3 | 24 | ||||
Amaranto | 27.4 | 26 | ||||
Glass beads (2 mm) | 12.4 | 24.1 | ||||
Glass beads (200 µm) | 21.27 | 18.7 | ||||
10 | [34] | 3D-printed cylinder | Glass beads | 5.3 | - | 70 |
Expanded polystyrene | 18.2 | - | ||||
Combination of 10% glass beads 90% expanded polystyrene | 31.7 | - | ||||
11 | [51] | - | Coffee powder | 77.6 | - | 43 |
Sawdust | 66.1 | - | ||||
12 | [54] | Star (20 mm3) | Coffee powder | 6.6 | - | 25–40 |
Coin (20 mm3) | 16 | - | ||||
Cube (20 mm3) | 22.7 | - | ||||
Sphere (20 mm3) | 24.7 | - | ||||
13 | [60] | Surgical instruments | Coffee powder | 13.3 | - | 40 |
14 | [65] | Sphere (21.5 mm) | - | 11.5 | 9.1 | 43 |
15 | [70] | Cube (20 mm3) | 3D-printed grains | 7.862 | - | - |
Sphere (20 mm3) | 7.369 | - | ||||
Coin (20 mm3) | 2.891 | - | ||||
Star (20 mm3) | 9.563 | - | ||||
16 | [46] | Cube (20 mm3) | 3D-printed grains | 6.9 | - | 125 |
Sphere (20 mm3) | 4.74 | - | ||||
Coin (20 mm3) | 2.59 | - | ||||
Star (20 mm3) | 16.03 | - | ||||
17 | [31] | Smooth steel sphere (20 mm) | Glass beads (4 mm) | 0.78 | - | 75 |
Expanded polystyrene pearls (4.2 mm) | 14.83 | - | ||||
18 | [71] | 3D-printed cylinders | Expanded polystyrene pearls | 15.78 | 3.2 | 80 |
19 | [93] | 3D-printed cylinders | Ground coffee | 38.6 | 31.2 | 46 |
N | Article | Algorithm Type | Input Signals | Output Actuators | Parameter Dimensions | Reported Accuracy or Metric | Limitations |
---|---|---|---|---|---|---|---|
1 | [53] | Open-loop Pressure Control/State Modulation | Pressure commands (vacuum/positive pressure) | Vacuum pump, positive pressure port, solenoid valves | Reliability, fault tolerance, positioning accuracy, launch capability | Reliability increases up to 85%, error tolerance increases up to 25%, positioning accuracy ±60 mm (95% conf), gripping rate 16.2 picks/min. | Precision too coarse for high-precision manufacturing tasks. Difficult to compare with other grippers due to lack of standard benchmarks. |
2 | [50] | Force feedback (threshold-based) | Force measured by strain gauges | Electromagnetic valve (to activate vacuum pump) | Optimal filling volume, adequate pressing force | The effectiveness of the force feedback system was evaluated. | N/A. |
3 | [63] | Artificial Neuronal Network (ANN) | Pixel area of one side of the object, pixel area of the other side, weight of the object | Negative pressure control system (vacuum pump) | Pixel size, weight, optimal negative pressure | A 99.131% accuracy in determining optimal negative pressure. | The gripper and vacuum cleaner are not industry standard. Future work includes using commercial grippers and a higher-voltage motor. |
4 | [61] | Heuristic perception algorithm (based on depth features) | Single camera depth image | Baxter Platform, Granular jamming gripper with coffee powder | Point of grasp (x,y,z, orientation) | Approximate success rate of 75%. Competitive with DNN solutions in computation time and capture success. | Difficulty with porous and bigger objects than gripper size. It is not robust to external forces/torques for some objects. The algorithm is specific to the proposed gripper. |
5 | [35] | Fluidization control strategy | Pumping frequency, duty cycle | Bidirectional pump | Pumping frequency, duty cycle, average positive pressure | Significantly higher clamping forces (typically 60%), wider range of object geometries. | Optimization of protrusion geometry is an area of further study. |
6 | [99] | Model Predictive Control (MPC) with force control | UAV status (position, speed), grip strength, mission requirements | UAV movement commands, gripper force commands | UAV trajectory, grip force, safety restrictions | Automated gripping with greater robustness and versatility, greater operational reliability | Simulation study, not real-time embedded performance. The previous open-loop setup required a human operator. |
7 | [39] | Mode switching logic (GJ, EA, combination) | Object properties (shape, surface, stiffness) | Vacuum pump (for GJ), high voltage source (for EA) | Grip strength, object sizes, object types | GJ lifts 38 times its weight. EA handles flat/fragile objects. Combined mode: 35% more grip strength. | GJ struggles with flat/fragile/delicate objects or objects larger than the bag. EA struggles with oily/wet surfaces. |
8 | [56] | Active vibration fluidization | Frequency and amplitude of wave | Computer-controlled audio exciter | Frequency, amplitude, temporal properties of the waveform | Improves grip strength. Grip strength favors low frequencies and high volumes thanks to the reorganization of grains and increased contact area. | Little work has been performed exploring other effects of granular physics. There is a need for a better understanding of the effects of time-varying vibration. |
9 | [98] | Pose estimation (point-to-feature ICP) | Visual detection of the jig membrane with integrated cameras | Hydraulic drive system (for oil quantity) | Object pose (orientation, position, angle) | RMS error <4° for orientation. Repeated object fixation <0.5 mm (position), <1.1° (angle). | It is a jig, not a gripper. The ICP can be computationally intensive. |
10 | [101] | Deep Learning Convolutional Neural Network (CNN) (strength prediction) | Images (video simulation) of gripper deformations | Strength prediction/stress maps | Contact forces, stress maps | Rigorous evaluation of prediction performance under variations in contact point, object material/shape, viewing angle, and occlusion. | FEA is computationally intensive for real-time feedback. Sensing in soft robotics is challenging. It is prediction, not direct control. |
11 | [75] | Multi-objective Evolutionary Algorithm (NSGA-III) for design optimization | Grain morphology parameters, target object sizes/shapes | Grain shapes optimized for 3D printing | Grain morphology, target object shape/size | Optimization for “optimal grip performance”. | Design optimization, not real-time control. Granular materials are complex to design. DEM modeling typically uses spherical grains for greater accuracy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, J.; Miranda, C. Design, Control, and Applications of Granular Jamming Grippers in Soft Robotics. Robotics 2025, 14, 132. https://doi.org/10.3390/robotics14100132
Cortes J, Miranda C. Design, Control, and Applications of Granular Jamming Grippers in Soft Robotics. Robotics. 2025; 14(10):132. https://doi.org/10.3390/robotics14100132
Chicago/Turabian StyleCortes, J., and C. Miranda. 2025. "Design, Control, and Applications of Granular Jamming Grippers in Soft Robotics" Robotics 14, no. 10: 132. https://doi.org/10.3390/robotics14100132
APA StyleCortes, J., & Miranda, C. (2025). Design, Control, and Applications of Granular Jamming Grippers in Soft Robotics. Robotics, 14(10), 132. https://doi.org/10.3390/robotics14100132