An Aerial Robotic Missing-Person Search in Urban Settings—A Probabilistic Approach
Abstract
:1. Introduction
1.1. Urban Search for a Missing/Lost Person
1.2. Lost-Person Identification
1.3. Lost-Person Behavior in An Urban/City Environment
1.4. Contributions
2. Problem Statement: Robotic Urban Search for a Lost Person
2.1. Search Assumptions
2.1.1. The Lost Person
2.1.2. The Searchers
2.1.3. Search Planning
2.2. Iso-Probability Curves
3. Proposed Methodology
3.1. Lost-Person Motion Modelling and Prediction in an Urban Environment
3.1.1. The Urban Environment
3.1.2. Urban Lost-Person Behavior Model
3.1.3. Kernel-Based Iso-Probability Curve Estimate
3.2. Target Search
Algorithm 1. Proposed search-algorithm pseudocode. | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | partitions, assignments ← OptimizePartitionsAssignments(n_robot) robot_trajectories ← EmptyTrajectory(n_robot) while not CheckTermination(robot_trajectories) slowest_trajectory, slowest_robot ← ShortestTrajectoryOutward() append slowest_trajectory to robot_trajectories[slowest_robot] for each robot that is not slowest_robot trajectory ← SpiralOutward(robot) append trajectory to robot_trajectories[robot] end for slowest_ trajectory, slowest_robot ← FixedTrajectoryInward() append slowest_trajectory to robot_trajectories[slowest_robot] for each robot that is not slowest_robot trajectory ← SpiralInward(robot) append trajectory to robot_trajectories[robot] end for UpdateIsoProbabilityCurves() partitions.bounds ← CompPartitionBounds() end while |
3.2.1. Search Initialization
Partition Selection
Partition Assignment
3.2.2. Search Execution
Outward Trajectory
Inward Trajectory
Information Update
4. Simulated Experiments—Example Results
4.1. Example 1
4.1.1. Environment
4.1.2. Lost-Person Motion Prediction
4.1.3. Search
Search Initialization
Search Execution
4.2. Example 2
5. Comparison and Robustness Studies
5.1. Performance for Different Search Team and Robot Characteristics
5.2. Robustness to Lost-Person Model Inaccuracies
5.3. Comparison to Alternative Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
(rad) | ||||
0.932 | 1 | 0.0551 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 0.242 | 0.0815 | 10 |
(rad) | ||||
0.829 | 1 | 0.110 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 0.484 | 0.0815 | 10 |
(rad) | ||||
0.621 | 1 | 0.221 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 0.968 | 0.0815 | 10 |
(rad) | ||||
0.414 | 0.800 | 0.331 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 1.45 | 0.0815 | 10 |
(rad) | ||||
0.207 | 0.400 | 0.441 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 1.94 | 0.0815 | 10 |
(rad) | ||||
0.104 | 0.200 | 0.496 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 2.18 | 0.0815 | 10 |
References
- Manuel, M.P.; Faied, M.; Krishnan, M.; Paulik, M. Robot Platooning Strategy for Search and Rescue Operations. Intell. Serv. Robot. 2022, 15, 57–68. [Google Scholar] [CrossRef]
- Blitch, J.G. Artificial Intelligence Technologies for Robot Assisted Urban Search and Rescue. Expert Syst. Appl. 1996, 11, 109–124. [Google Scholar] [CrossRef]
- García, R.M.; de la Iglesia, D.H.; de Paz, J.F.; Leithardt, V.R.Q.; Villarrubia, G. Urban Search and Rescue with Anti-Pheromone Robot Swarm Architecture. In Proceedings of the 2021 Telecoms Conference (Conf℡E), Leiria, Portugal, 11–12 February 2021; pp. 1–6. [Google Scholar]
- Chen, X.; Zhang, H.; Lu, H.; Xiao, J.; Qiu, Q.; Li, Y. Robust SLAM System Based on Monocular Vision and LiDAR for Robotic Urban Search and Rescue. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 41–47. [Google Scholar] [CrossRef]
- Chatziparaschis, D.; Lagoudakis, M.G.; Partsinevelos, P. Aerial and Ground Robot Collaboration for Autonomous Mapping in Search and Rescue Missions. Drones 2020, 4, 79. [Google Scholar] [CrossRef]
- Hong, A.; Igharoro, O.; Liu, Y.; Niroui, F.; Nejat, G.; Benhabib, B. Investigating Human-Robot Teams for Learning-Based Semi-Autonomous Control in Urban Search and Rescue Environments. J. Intell. Robot. Syst. Theory Appl. 2019, 94, 669–686. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Liu, D.; Li, X. AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training. Sensors 2020, 20, 5223. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.D.; Yamaguchi, H.; Tanaka, T. Search and Rescue with Autonomous Flying Robots through Behavior-Based Cooperative Intelligence. J. Int. Humanit. Action 2018, 3, 18. [Google Scholar] [CrossRef]
- Baxter, J.L.; Burke, E.K.; Garibaldi, J.M.; Norman, M. Multi-Robot Search and Rescue: A Potential Field Based Approach. Stud. Comput. Intell. 2007, 76, 9–16. [Google Scholar]
- Furukawa, T.; Bourgault, F.; Lavis, B.; Durrant-Whyte, H.F. Recursive Bayesian Search-and-Tracking Using Coordinated UAVs for Lost Targets. Proc. IEEE Int. Conf. Robot. Autom. 2006, 2006, 2521–2526. [Google Scholar] [CrossRef]
- Ku, S.Y.; Nejat, G.; Benhabib, B. Wilderness Search for Lost Persons Using a Multimodal Aerial-Terrestrial Robot Team. Robotics 2022, 11, 64. [Google Scholar] [CrossRef]
- Kashino, Z.; Nejat, G.; Benhabib, B. Aerial Wilderness Search and Rescue with Ground Support. J. Intell. Robot. Syst. 2020, 99, 147–163. [Google Scholar]
- Rodríguez, M.; Al-Kaff, A.; Madridano, Á.; Martín, D.; de la Escalera, A. Wilderness Search and Rescue with Heterogeneous Multi-Robot Systems. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 110–116. [Google Scholar]
- Talha, M.; Hussein, A.; Hossny, M. Autonomous UAV Navigation in Wilderness Search-and-Rescue Operations Using Deep Reinforcement Learning. In Proceedings of the AI 2022: Advances in Artificial Intelligence; Aziz, H., Corrêa, D., French, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 733–746. [Google Scholar]
- Peake, A.; McCalmon, J.; Zhang, Y.; Raiford, B.; Alqahtani, S. Wilderness Search and Rescue Missions Using Deep Reinforcement Learning. In Proceedings of the 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Abu Dhabi, United Arab Emirates, 4–6 November 2020; pp. 102–107. [Google Scholar]
- Schedl, D.C.; Kurmi, I.; Bimber, O. An Autonomous Drone for Search and Rescue in Forests Using Airborne Optical Sectioning. Sci. Robot. 2021, 6, eabg1188. [Google Scholar] [CrossRef] [PubMed]
- Macwan, A.; Nejat, G.; Benhabib, B. Optimal Deployment of Robotic Teams for Autonomous Wilderness Search and Rescue. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4544–4549. [Google Scholar]
- Vilela, J.; Kashino, Z.; Ly, R.; Nejat, G.; Benhabib, B. A Dynamic Approach to Sensor Network Deployment for Mobile-Target Detection in Unstructured, Expanding Search Areas. IEEE Sens. J. 2016, 16, 4405–4417. [Google Scholar] [CrossRef]
- Hanna, D.; Ferworn, A.; Lukaczyn, M.; Abhari, A.; Lum, J. Using Unmanned Aerial Vehicles (UAVs) in Locating Wandering Patients with Dementia. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018, Monterey, CA, USA, 5 June 2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 809–815. [Google Scholar]
- Hanna, D.; Ferworn, A. A UAV-Based Algorithm to Assist Ground SAR Teams in Finding Lost Persons Living with Dementia. 2020 IEEEION Position Locat. Navig. Symp. PLANS 2020, 2020, 27–35. [Google Scholar] [CrossRef]
- Nagrare, S.R.; Chopra, O.; Jana, S.; Ghose, D. Decentralized Path Planning Approach for Crowd Surveillance Using Drones. 2021 Int. Conf. Unmanned Aircr. Syst. ICUAS 2021, 2021, 1020–1028. [Google Scholar] [CrossRef]
- Reardon, C.; Fink, J. Air-Ground Robot Team Surveillance of Complex 3D Environments. In Proceedings of the 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 320–327. [Google Scholar]
- Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV Surveillance in Complex Urban Environments. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Venice, Italy, 15–18 September 2009; Volume 2, pp. 82–85. [Google Scholar]
- Zhang, M.; Wang, H.; Wu, J. Multi-UAVs Target Tracking in Urban Environment Based on Distributed Model Predictive Control and Levy Flight-Salp Swarm Algorithm. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–6. [Google Scholar]
- Young, C.S.; Wehbring, J. Urban Search: Managing Missing Person Searches in the Urban Environment; dbS Productions LLC: Charlottesville, VA, USA, 2007. [Google Scholar]
- Young, C.S. The Search Intelligence Process. J. Search Rescue 2020, 4, 136–164. [Google Scholar] [CrossRef]
- Heintzman, L.; Hashimoto, A.; Abaid, N.; Williams, R.K. Anticipatory Planning and Dynamic Lost Person Models for Human-Robot Search and Rescue. Proc. IEEE Int. Conf. Robot. Autom. 2021, 2021, 8252–8258. [Google Scholar] [CrossRef]
- Alanezi, M.A.; Bouchekara, H.R.E.H.; Apalara, T.A.-A.; Shahriar, M.S.; Sha’aban, Y.A.; Javaid, M.S.; Khodja, M.A. Dynamic Target Search Using Multi-UAVs Based on Motion-Encoded Genetic Algorithm with Multiple Parents. IEEE Access 2022, 10, 77922–77939. [Google Scholar] [CrossRef]
- Waharte, S.; Symington, A.; Trigoni, N. Probabilistic Search with Agile UAVs. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 2840–2845. [Google Scholar]
- Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; Cristani, M. Person Re-Identification by Symmetry-Driven Accumulation of Local Features. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2360–2367. [Google Scholar] [CrossRef]
- Prosser, B.; Zheng, W.S.; Gong, S.; Xiang, T. Person Re-Identification by Support Vector Ranking. In Proceedings of the British Machine Vision Conference, BMVC 2010, Wales, UK, 30 August—2 September 2010. [Google Scholar] [CrossRef]
- Ma, B.; Su, Y.; Jurie, F. Covariance Descriptor Based on Bio-Inspired Features for Person Re-Identification and Face Verification. Image Vis. Comput. 2014, 32, 379–390. [Google Scholar] [CrossRef]
- Ma, B.; Su, Y.; Jurie, F. Local Descriptors Encoded by Fisher Vectors for Person Re-Identification. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf. 2012, 7583, 413–422. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C.H. Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [Google Scholar] [CrossRef]
- Ye, M.; Liang, C.; Wang, Z.; Leng, Q.; Chen, J.; Liu, J. Specific Person Retrieval via Incomplete Text Description. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 22 June 2015; pp. 547–550. [Google Scholar]
- Han, X.; He, S.; Zhang, L.; Xiang, T. Text-Based Person Search with Limited Data. In Proceedings of the 32nd British Machine Vision Conference, Online, 22–25 November 2021. [Google Scholar]
- Behera, N.K.S.; Sa, P.K.; Muhammad, K.; Bakshi, S. Large-Scale Person Re-Identification for Crowd Monitoring in Emergency. IEEE Trans. Autom. Sci. Eng. 2023, 1–9. [Google Scholar] [CrossRef]
- Nguyen, H.; Nguyen, K.; Sridharan, S.; Fookes, C. Aerial-Ground Person Re-ID. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Brisbane, Australia, 10–14 July 2023; pp. 2585–2590. [Google Scholar] [CrossRef]
- Koester, R.J. Lost Person Behavior: A Search and Rescue Guide on Where to Look for Land, Air and Water; dbs Productions LLC: Charlottesville, VA, USA, 2008. [Google Scholar]
- Koester, R. Determining Probabilistic Spatial Patterns of Lost Persons and Their Detection Characteristics in Land Search & Rescue. Ph.D. Thesis, University of Portsmouth, Portsmouth, UK, 2018. [Google Scholar]
- Hashimoto, A.; Abaid, N. An Agent-Based Model of Lost Person Dynamics for Enabling Wilderness Search and Rescue. In Proceedings of the ASME 2019 Dynamic Systems and Control (DSC) Conference, Park City, Utah, 8–11 October 2019; Volume 2. [Google Scholar] [CrossRef]
- Hashimoto, A.; Heintzman, L.; Koester, R.; Abaid, N. An Agent-Based Model Reveals Lost Person Behavior Based on Data from Wilderness Search and Rescue. Sci. Rep. 2022, 12, 5873. [Google Scholar] [CrossRef]
- Mohibullah, W.; Julier, S.J. Developing an Agent Model of a Missing Person in the Wilderness. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Washington, DC, USA, 13–16 October 2013; pp. 4462–4469. [Google Scholar] [CrossRef]
- Dacey, K.; Whitsed, R.; Gonzalez, P. Using an Agent-Based Model to Identify High Probability Search Areas for Search and Rescue. Aust. J. Emerg. Manag. 2022, 37, 88–102. [Google Scholar] [CrossRef]
- Kashino, Z.; Kim, J.Y.; Nejat, G.; Benhabib, B. Spatiotemporal Adaptive Optimization of a Static-Sensor Network via a Non-Parametric Estimation of Target Location Likelihood. IEEE Sens. J. 2017, 17, 1479–1492. [Google Scholar] [CrossRef]
- Syrotuck, W.G. An Introduction to Land Search Probabilities and Calculations; Arner Publications: Rome, NY, USA, 1975. [Google Scholar]
- Schimpl, M.; Moore, C.; Lederer, C.; Neuhaus, A.; Sambrook, J.; Danesh, J.; Ouwehand, W.; Daumer, M. Association between Walking Speed and Age in Healthy, Free-Living Individuals Using Mobile Accelerometry—A Cross-Sectional Study. PLoS ONE 2011, 6, e23299. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Han, Y.; Fan, C. Polishing Path Generation for Physical Uniform Coverage of the Aspheric Surface Based on the Archimedes Spiral in Bonnet Polishing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 095440541983865. [Google Scholar] [CrossRef]
- Brown, D.; Sun, L. Exhaustive Mobile Target Search and Non-Intrusive Reconnaissance Using Cooperative Unmanned Aerial Vehicles. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1425–1431. [Google Scholar]
(rad) | ||||
0.518 | 1 | 0.276 | 0 | 0.938 |
(m/s) | (m/s) | |||
0.312 | 1.21 | 0.0815 | 10 |
Partition # | 1 | 2 | 3 |
---|---|---|---|
Lower Bound (%) | 0 | 54.8 | 81.2 |
Upper Bound (%) | 54.8 | 81.2 | 100 |
Number of Robots | 3 | 1 | 1 |
Partition # | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Lower Bound (%) | 0 | 34 | 53 | 65 | 76 | 85 | 93 |
Upper Bound (%) | 34 | 53 | 65 | 76 | 85 | 93 | 100 |
Number of Robots | 9 | 1 | 1 | 1 | 1 | 1 | 1 |
# of Robots | Robot Speed (m/s) | ||
---|---|---|---|
10 | 20 | 30 | |
5 | 51 | 70 | 76 |
10 | 69 | 83 | 90 |
15 | 78 | 90 | 93 |
# of Robots | Robot Speed (m/s) | ||
---|---|---|---|
10 | 20 | 30 | |
5 | 1488 | 1323 | 888 |
10 | 1183 | 684 | 515 |
15 | 871 | 603 | 458 |
Evaluation Set | Effective Radius (m) | Targets Found (%) | Median Find Time (s) |
---|---|---|---|
A--- | 1027 | 86 | 444 |
A-- | 1666 | 89 | 421 |
A- | 2789 | 82 | 779 |
A | 3362 | 76 | 888 |
A+ | 3941 | 71 | 937 |
A++ | 5264 | 59 | 970 |
A+++ | 6051 | 55 | 994 |
Method | Targets Found (%) | Median Find Time (s) | Find Time IQR (s) |
---|---|---|---|
Proposed (ours) | 84 | 509 | 1317 |
Exhaustive | 53 | 854 | 1967 |
Uniform-coverage | 27 | 2230 | 2817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haigh, C.; Nejat, G.; Benhabib, B. An Aerial Robotic Missing-Person Search in Urban Settings—A Probabilistic Approach. Robotics 2024, 13, 73. https://doi.org/10.3390/robotics13050073
Haigh C, Nejat G, Benhabib B. An Aerial Robotic Missing-Person Search in Urban Settings—A Probabilistic Approach. Robotics. 2024; 13(5):73. https://doi.org/10.3390/robotics13050073
Chicago/Turabian StyleHaigh, Cameron, Goldie Nejat, and Beno Benhabib. 2024. "An Aerial Robotic Missing-Person Search in Urban Settings—A Probabilistic Approach" Robotics 13, no. 5: 73. https://doi.org/10.3390/robotics13050073
APA StyleHaigh, C., Nejat, G., & Benhabib, B. (2024). An Aerial Robotic Missing-Person Search in Urban Settings—A Probabilistic Approach. Robotics, 13(5), 73. https://doi.org/10.3390/robotics13050073